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Abstract

Zearalenone (ZEA), a mycoestrogen produced by Fusarium fungal species, is mainly found in cereal crops such as maize,
wheat and barley. Although ZEA has been reported to be present in air, little is known about the health risk or the molecular
basis of action when lung cells are exposed to ZEA. As ZEA has a similar structure to estrogen, its potential risk as an
endocrine disrupting chemical (EDC) has thus aroused both environmental and public health concerns. The purpose of this
study is to identify the responses and underlying molecular changes that occur when human bronchial epithelial BEAS-2B
cells are exposed to ZEA. Differential gene expression profiles were identified in cells that were treated with 40 mM ZEA for
6 h and 24 h by high-throughput microarray analysis using Affymetrix Human Gene 2.0 GeneChip. The array results showed
that after ZEA treatment, 262 genes at 6 h and 1073 genes at 24 h were invovled in the differential regulation. Pathway
analysis revealed that diverse cellular processes were affected when lung cells were exposed to ZEA resulting in impaired
response to DNA damage, cell cycle arrest, down-regulation of inflammatory responses and alterations of epigenetic marks.
Results of further experiments indicated that 40 mM ZEA decreased cell viability, induced apoptosis and promoted reactive
oxygen species (ROS) generation in a time-dependent manner. Immuno-suppressive effects of ZEA were further revealed
through the suppression of lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines (IL-6, IL-8 and IL-1b).
Interestingly, the level of global DNA methylation was markedly decreased after 24 h exposure to ZEA. Collectively, these
observations suggested that a broad range of toxic effects are elicited by ZEA. Particularly, ROS may play a pivotal role in
ZEA-induced cell death. These adverse effects observed in lung cells suggest that exposure to ZEA may increase
susceptibility of lung cells to diseases and required further investigations.
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Introduction

Mycotoxin Zearalenone (ZEA) is a secondary metabolite

produced by various Fusarium fungal species [1,2] which are

usually found in contaminated maize, wheat and barley [3]. Due

to its structural similarity to estrogen, ZEA competes with estradiol

for binding to estrogen receptors (ERs) and provokes estrogenic

activities. Extensive studies have found that ZEA caused endocrine

disruption and reproductive disorders in in vitro models and in

laboratory and farm animals [4,5,6,7]. In addition, other effects of

ZEA including developmental toxicity, immunotoxicity and

genotoxicity have also been reported [3]. Increasing evidence

suggested that these effects are not exclusively due to the

estrogenic potency of ZEA but that oxidative stress may be an

important mediator of these observed toxic effects [8,9,10].

Besides foods and feeds, inhalation is another route of exposure

to ZEA. The detection of ZEA-producing fungi and toxigenic

spores in nasal cavity has been reported [11,12]. In addition, the

detection of air-borne ZEA was also documented. In a Belgium

study, the maximum level of ZEA detected was 2.4 mg/kg ZEA

which meant that exposure through dust inhalation for workers in

those companies was estimated to be 0.1% of the tolerable daily

intake of ZEA [13]. In a study carried out in Dalian, China, it was

reported that the daily inhaled ZEA by a worker in a poultry house

was estimated to be 17.432–20.512 ng respectively [14].

Estrogens have been shown to induce proliferation of non-small

cell lung cancer (NSCLC) through ER-mediated signaling

pathways [15]. Additionally, estrogen is also involved in the

activation of carcinogens via the metabolism of polycyclic

aromatic hydrocarbonds (PAHs) which promotes the formation

of catechol estrogens and potentially mutagenic DNA adducts

[16,17]. Interestingly, large cohort epidemiological studies indicate

that females are more susceptible to developing chronic lung

diseases including asthma and Chronic Obstructive Pulmonary

Disease (COPD) [18].

To date, the molecular basis of the effects of ZEA in lung cells

has not been fully investigated. Using a toxigenomic approach, we

attempted to study the mechanism of actions of ZEA on lung cells.

In addition, we show that ZEA induces a broad range of toxic

effect not solely because of its estrogenic potency but also through
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induction of oxidative stress. A BEAS-2B cell line over-expressing

a free radical scavenger, cytoglobin (CYGB) confirm that ZEA

generates free radicals.

Materials and Methods

Cell culture and treatments
Human bronchial epithelial BEAS-2B cell line [19] (from the

American Type Culture Collection, ATCC) was cultured in

Dulbecco’s Modified Eagles Medium (DMEM) supplemented with

10% (v/v) fetal bovine serum (FBS) and 100 U/ml of penicillin

and 10 mg/ml of streptomycin. All cells were maintained in a 37uC
humidified incubator with 5% CO2. DMEM with Geneticin

(G418, 200 mg/ml) were used to maintain and select Cygb

overexpressing cells.

ZEA powder (Sigma) was dissolved in DMSO, aliquoted and

stored at 220uC. The stock solution of ZEA was freshly diluted by

culture medium before use. BEAS-2B cells were seeded overnight

to achieve confluency. Cells were exposed to different concentra-

tion of ZEA or 0.05% DMSO solvent control for different

durations (6, 12, 24 and 48 h) depend on experiments. For

immune-responsive experiments, cells were stimulated by 2 mg/ml

lipopolysaccharide (LPS, Sigma) for 6 h.

Cell viability assay
16104–16105 cells were seeded in 96-well plates. After

incubation overnight, cells were exposed to a serial concentration

of ZEA (from 0 to 160 uM) for 6 h, 24 h or 48 h. 20 ml of 3-(4,5-

dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT,

Invitrogen) solution was then added to each well. After 3 hours

incubation, the medium was removed and DMSO was added to

dissolve the purple formazan. The optical density of each well was

quantified by measuring absorbance at 540 nm. The viabilities of

treated groups were expressed as a percentage of control group,

which was assumed as 100%.

Sample preparation and RNA extraction
56105 cells were seeded onto 6-well plates. After incubation

overnight, cells were treated with either 0.05% DMSO (solvent

control) or 40 mM ZEA (treatment) for 6 h and 24 h. RNA was

extracted by Trizol reagent (Invitrogen) according to the

manufacturer’s protocol. The quality of RNA for microarray

analysis was analyzed by the RNA 6000 Nano total RNA Assay

using the Agilent 2100 Bioanalyzer. Only RNA samples with an

A260/A280 ratio ,1.8, 28S/18S ratio larger than 1.8 and RNA

integrity number (RIN) larger than 8.0 were used for downstream

GeneChip analysis.

Gene expression profiling and data analysis
The gene expression profiles were determined using GeneChipH

Human Gene 2.0 ST Arrays (Affymetrix). Samples were

hybridized onto array chips, stained, washed, and scanned

according to Affymetrix protocol. The array image and cell

intensity files (.CEL files) were generated by Affymetric GeneChip

Figure 1. Cytotoxic effects of ZEA on BEAS-2B cells determined by MTT assay. Cells were treated with increasing concentrations of ZEA
(from 0 to 160 mM) for 48 h. Cell viability was expressed as percentages of control (values taken as 100%) and are mean 6 SD of at least 3
independent experiments. * represents p,0.05 significantly different from control as assessed by t-test.
doi:10.1371/journal.pone.0096404.g001

Figure 2. Venn diagrams of differential expressed genes at
different time points after ZEA treatment. The blue circles
represent 6 h differentially expressed genes while the red circles signify
that of 24 h. (A) Up-regulated genes. (B) Down-regulated genes.
doi:10.1371/journal.pone.0096404.g002
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Command Console. Both the RNA quality control tests and

GeneChip analysis were conducted by Center for Genomic

Services, HKU.

The data of GeneChip were analyzed using Agilent GeneSpring

GX11 Software, Affrymetrix Transcriptome Analysis Console

(TAC) Software and R software (http://www.r-project.org). When

using the GeneSpring Software, filtering was performed to remove

background noise. Probes that have signals weaker than 20th

percentile of overall signal were not included into analysis.

Differentially expressed genes were identified as fold change $

1.5 and p,0.05 by unpaired t-test. Over-represented Gene

Ontology (GO) terms and enriched pathways associated with the

list of differentially expressed genes were generated by the built-in

GO and Single Experiment Analysis (SEA) of GeneSpring. Only

GO terms and pathways that have more than 2 entities (§3)

involved and p-value ,0.05 were considered.

To further analyze the gene expression data, the Gene Set

Enrichment Analysis (GSEA) were used to identify cohorts of

genes which are linked to certain biological processes/cellular

signaling pathways. Differentially expressed genes with annota-

tions and known features were subjected to GSEA. Pathways are

ranked according to the significance of enrichment [61]. Gene sets

with a p-value ,0.05 by one-way ANOVA and False Discovery

Rate (FDR) ,0.05 by multiple test correction of were considered

to be significantly affected.

Validation of gene expression by Quantitative Real-time
PCR (qPCR)

cDNA was synthesized from 1 mg RNA by using PrimeScriptTM

RT Master Mix (Takara) according to manufacturer’s instructions.

Primers were designed to avoid amplification of genomic DNA

Table 1. The 30 most differentially expressed genes in BEAS-2B cells after 6 h treatment with ZEA.

Gene symbol Gene description
Fold
change p-value

Up-regulated:

HSPA1B, HSPA1A Heat shock 70 kDa protein 1B, heat shock 70 kDa protein 1A 3.78 7.87E-07

SDIM1 Stress responsive DNAJB4 interacting membrane protein 1 2.63 0.00041

COPG2IT1 COPG2 imprinted transcript 1 (non-protein coding) 2.56 0.00087

DNAJA4 DnaJ (Hsp40) homolog, subfamily A, member 4 2.29 8.2E-05

LINC00473 Long intergenic non-protein coding RNA 473 2.29 6.4E-05

PARD6G-AS1 PARD6G antisense RNA 1 (non-protein coding) 2.25 7.2E-05

FAM72C Family with sequence similarity 72, member C 2.22 0.0003

HSPA4L Heat shock 70 kDa protein 4-like 2.17 1.7E-05

DDIT4 DNA-damage-inducible transcript 4 2.15 0.00044

ARL17A, ARL17B ADP-ribosylation factor-like 17A, ADP-ribosylation factor-like 17B, ADP-ribosylation factor-like protein 17-like 2.13 9.25E-07

BAG3 BCL2-associated athanogene 3 2.12 2.1E-05

MT1F Metallothionein 1F 2.05 0.00039

DRP2 Dystrophin related protein 2 2.03 0.00581

CHORDC1 Cysteine and histidine-rich domain (CHORD) containing 1 2.02 0.00012

LINC00310 Long intergenic non-protein coding RNA 310 1.98 6.9E-05

Down-regulated:

KRTAP2-4 Keratin associated protein 2-4-like, keratin associated protein 2-4 23.28 7.7E-05

SERPINB2, SERPINB10 Serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin peptidase Inhibitor, clade B (ovalbumin),
member 10

22.87 4E-06

PLAU Plasminogen activator, urokinase 22.79 4.2E-05

SHISA2 Shisa homolog 2 (Xenopus laevis) 22.72 0.00001

CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 22.66 7E-06

DLX2 Distal-less homeobox 2 22.63 0.00007

EDN1 Endothelin 1 22.57 6.9E-05

FOSL1 FOS-like antigen 1 22.44 1.1E-05

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 22.29 0.00062

SMAD7 SMAD family member 7 22.24 0.00039

KLF10 Kruppel-like factor 10 22.22 0.00018

IL8 Interleukin 8 22.22 0.0107

KRT80 Keratin 80 22.11 0.00016

RUNX2 Runt-related transcription factor 2 22.05 2.6E-05

LOC100131234 Familial acute myelogenous leukemia related factor 22.04 8.4E-05

doi:10.1371/journal.pone.0096404.t001
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using Primer Premier 5 software. The sequences of the primers

used are shown in Table S1. qPCR was performed using FastStart

Universal SYBR Green Master mix (Roche) and reaction mixes

were set up as per manufacturer’s instructions. The cycles were set

as 95uC, 10 min, 40 cycles of 95uCfor 15 sec, 60uCfor 20 sec and

72uCfor 45 sec followed by melting curve analysis. The change in

gene expression was calculated by comparative CT method with

the housekeeping gene b–actin used for normalization.

Measurement of Reactive Oxygen Species (ROS) levels by
DCFH-DA assay

The intracellular ROS levels were quantified by a fluorescent

probe, 29,79-dichlorofluorescein-diacetate (DCFH-DA, Molecular

Probes). After treatment with 40 mM ZEA, cells were washed and

resuspended in PBS at a concentration of 106 cells/ml and then

incubated with 10 mM DCFH-DA at 37uC for 40 minutes in the

dark. The ROS production was quantified by DCF fluorescence

intensity from 104 cells by flow cytometry. Results were expressed

as the percentage of ROS generation as compared to control.

Establishment of Cygb stably overexpressing cells
The stable BEAS-2B over-expressing Cytoglobin (Cygb) by

comprising the coding region of mouse Cygb which was cloned to

pcDNA 3.1/V5-His A vector (Invitrogen) between Hind III and

Xho I sites.

Table 2. The 30 most differentially expressed genes in BEAS-2B cells after 24 h treatment with ZEA.

Gene symbol Gene name Fold change p-value

Up-regulated:

HSPA1B, HSPA1A Heat shock 70 kDa protein 1B, heat shock 70 kDa protein 1A 6.54 3.46E-08

NR4A3 Nuclear receptor subfamily 4, group A, member 3 5.79 0.00018

CLDN12, CDK14 Claudin 12, cyclin-dependent kinase 14 5.25 0.00074

AGBL5-AS1 AGBL5 antisense RNA 1 (non-protein coding) 4.11 0.0001

LMOD1 Leiomodin 1 (smooth muscle) 3.91 4.9E-05

DNAJA4 DnaJ (Hsp40) homolog, subfamily A, member 4 3.32 4.5E-05

CHORDC1 Cysteine and histidine-rich domain (CHORD) containing 1 2.96 2.9E-05

LRP4-AS1 LRP4 antisense RNA 1 (non-protein coding) 2.95 0.00208

SDIM1 Stress responsive DNAJB4 interacting membrane protein 1 2.79 0.00018

HSPA4L Heat shock 70 kDa protein 4-like 2.75 1.3E-05

HSPH1 Heat shock 105 kDa/110 kDa protein 1 2.66 6.3E-05

DDIT4 DNA-damage-inducible transcript 4 2.62 1.7E-05

ALDH1L2 Aldehyde dehydrogenase 1 family, member L2 2.55 0.00011

SNORD14E Small nucleolar RNA, C/D box 14E 2.54 0.00154

CCDC146 Coiled-coil domain containing 146 2.52 0.0004

Down-regulated:

HLF Hepatic leukemia factor 26.4 1.8E-05

SERPINB2, SERPINB10 Serpin peptidase inhibitor, clade B (ovalbumin), member 2,
serpin Peptidase inhibitor, clade B (ovalbumin), member 10

25.52 0.00067

DIO2 Deiodinase, iodothyronine, type II 25.45 1.2E-05

PALMD Palmdelphin 24 0.00019

F2RL2 Coagulation factor II (thrombin) receptor-like 2 23.92 6.9E-05

MIRLET7A2 MicroRNA let-7a-2 23.81 0.02093

SHISA2 Shisa homolog 2 (Xenopus laevis) 23.78 8.5E-05

PSG5 Pregnancy specific beta-1-glycoprotein 5 23.75 0.00002

TACSTD2 Tumor-associated calcium signal transducer 2 23.65 5.4E-05

SNORD116-28, SNORD115-26,
SNORD115-13, SNORD115-7,
SNORD107

Small nucleolar RNA, C/D box 116-28, small nucleolar RNA,
C/D box 115-26, small nucleolar RNA, C/D box 115-13, small
nucleolar RNA, C/D box 115-7, small nucleolar RNA, C/D box 107

23.32 0.00459

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 23.32 0.00096

CPA4 Carboxypeptidase A4 23.23 0.00001

MIRLET7C microRNA let-7c 23.22 0.0225

FBXO32 F-box protein 32 23.06 0.00046

EPGN Epithelial mitogen homolog (mouse) 23.06 0.00547

doi:10.1371/journal.pone.0096404.t002
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To establish stably Cygb expressing cells, a 1576 bp core

ubiquitously-acting chromatin opening element (UCOE, a gift

from Dr. Michael Antoniou, School of Medicine, King’s College

London, UK) was inserted to the upstream of the CMV promoter

of pcDNA 3.1/V5-His A/Cygb. Successfully transfected cells were

selected using selective medium (DMEM with 10% FBS and

600 mg/ml G418). After 14 days of selection, single colonies were

picked and expression levels were checked to identify the clones

with Cygb over-expression. The incorporation of the UCOE onto

the Cygb–transgene construct resulted in the sustained high

expression of cytogobin in the stable BEAS-2B cell line. This

stable over-expression cell line was employed as a model system to

investigate the effects of free radicals generated by ZEA on cell

viability.

Table 3. Key pathways predicted by Single Experiment Analysis (SEA) following treatment with ZEA in BEAS-2B cells.

Pathway
Number of differential entities
involved

Total number of entities in the
category p-values

Treated with ZEA for 6 hr:

TGF-beta signaling pathway 3 55 0.00499

Treated with ZEA for 24 hr:

DNA Replication 14 42 0

G1 to S cell cycle control 17 68 1.21E-10

Cell cycle 19 103 2.33E-10

Synthesis of DNA 7 13 1.01E-09

Cholesterol biosynthesis 7 17 2.26E-08

Regulation of DNA replication 5 7 6.95E-08

SREBP signaling 10 56 1.45E-07

TGF Beta Signaling Pathway 9 55 1.55E-06

miRNA regulation of DNA Damage Response 10 98 2.64E-05

Lymphocyte TarBase 22 420 4.97E-05

Epithelium TarBase 17 278 5.52E-05

Senescence and Autophagy 10 106 6.23E-05

DNA damage response 8 68 7.07E-05

E2F-MIRHG1 feedback-loop 3 5 8.12E-05

Mitotic M-M-G1 phases 4 15 1.93E-04

AhR pathway 5 28 2.28E-04

SREBF and miR33 in cholesterol and lipid homeostasis 4 18 4.13E-04

APC-C-mediated degradation of cell cycle proteins 3 10 9.03E-04

L1CAM interactions 4 27 0.0011

BMP signaling and regulation 3 12 0.0016

Androgen receptor signaling pathway 7 85 0.0018

Unfolded Protein Response 3 14 0.0021

Leukocyte TarBase 8 128 0.0043

p38 MAPK Signaling Pathway 4 34 0.0048

MAPK signaling pathway 9 161 0.0056

TSH signaling pathway 5 65 0.010

Complement and Coagulation Cascades 4 64 0.020

Mitotic G1-G1-S phases 2 11 0.020

Metabolism of nucleotides 2 12 0.024

Apoptosis 5 83 0.027

Integrin cell surface interactions 2 16 0.032

Interleukin-1 signaling 2 15 0.032

Keap1-Nrf2 Pathway 2 14 0.032

Cancer prevention 2 15 0.036

Cell Cycle Checkpoints 2 16 0.036

miRNAs involved in DDR 4 69 0.043

Interleukin-11 Signaling Pathway 3 40 0.047

doi:10.1371/journal.pone.0096404.t003
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Table 4. Differentially expressed genes related to cell cycle regulation.

Gene symbol Gene description Fold change*

6 h 24 h

ANAPC16 Anaphase promoting complex subunit 16 1.6

ASNS Asparagine synthetase (glutamine-hydrolyzing) 2.35

ATF3 Activating transcription factor 3 21.63

AURKA Aurora kinase A 1.62

CCNB1 Cyclin B1 1.6

CCNE1 Cyclin E1 21.33 22.11

CCNE2 Cyclin E2 21.32 22.93

CD24 CD24 molecule 22.18

CDC20 Cell division cycle 20 homolog (S. Cerevisiae) 22.25

CDC45 Cell division cycle 45 homolog (S. Cerevisiae) 21.26 21.87

CDC6 Cell division cycle 6 homolog (S. Cerevisiae) 21.69

CDCA3 Cell division cycle associated 3 1.72

CDCA7 Cell division cycle associated 7 21.88

CDK14 Cyclin-dependent kinase 14 21.66 5.25

CDKN2B Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 21.52

CKAP5 Cytoskeleton associated protein 5 1.55

CKS2 CDC28 protein kinase regulatory subunit 2 1.19 1.57

CTGF Connective tissue growth factor 1.51

DBF4B DBF4 homolog B (S. Cerevisiae) 1.51

DLGAP5 Discs, large (Drosophila) homolog-associated protein 5 1.52

DSN1 DSN1, MIND kinetochore complex component, homolog
(S. Cerevisiae)

21.65

E2F1 E2F transcription factor 1 21.61

E2F7 E2F transcription factor 7 21.12 21.84

EGR1 Early growth response 1 21.28 22.09

GAS1 Growth arrest-specific 1 22.05

GAS2L3 Growth arrest-specific 2 like 3 1.57

HIST1H2BB Histone cluster 1, h2bb 21.48 22.03

HIST1H3A-J Histone cluster 1, H3A-J 21.34 21.66

HIST2H2AC Histone cluster 2, h2ac 21.24 21.58

HIST1H1B Histone cluster 1, h1b 21.18 21.78

H1F0 H1 histone family, member 0 21.9

HIST1H2AB, HIST1H2AE Histone cluster 1, h2ab, histone cluster 1, h2ae 21.79

HIST1H1C Histone cluster 1, h1c 21.77

HIST1H2BC, HIST1H2BI, HIST1H2BE-G Histone cluster 1, h2bc, histone cluster 1, h2bi,
histone cluster 1, h2be-g

21.65

H1FX H1 histone family, member X 21.6

HIST2H4B, HIST4H4, HIST1H4A-F, HIST1H4H-L, Histone cluster 2, h4b, histone cluster 4, H4, histone
cluster 2, H4A-F histone cluster 1, H4H-L

21.58

HIST1H2AE, HIST1H2AB Histone cluster 1, h2ae, histone cluster 1, h2ab 21.53

HIST1H2BN Histone cluster 1, h2bn 2.2

H2BFXP H2B histone family, member X, pseudogene 1.6

INCENP Inner centromere protein antigens 135/155 kda 1.54

JUN Jun proto-oncogene 21.35 22.67

KLF10 Kruppel-like factor 10 22.24 22.1

KLF11 Kruppel-like factor 11 21.35 21.69

LOC100289187|ZNF655 Transmembrane protein 225-like, zinc finger protein 655 1.51 1.92

MYB V-myb myeloblastosis viral oncogene homolog (avian) 22.68

MYC V-myc myelocytomatosis viral oncogene homolog (avian) 21.31 21.63
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Cell death pathway analysis by Annexin V/PI double
staining

The apoptotic statuses of cells were determined using Annexin

V-FITC Apoptosis Detection Kit I (BD Pharmingen) following

manufacturer’s instructions. Briefly, cells treated with 40 mM ZEA

were washed with phosphate buffered saline (PBS) and then

resuspended in binding buffer at a concentration of 106 cells/ml.

Annexin V-FITC and Propidium Iodide (PI) were added to the

resuspended cells. Cells were incubated for 15 min at room

temperature in the dark. Apoptotic cells were analysed from 104

cells with a Beckman-Coulter FACScan flow cytometer. The

percentage of living, early apoptotic and dead cells were quantified

using the Modfit LT program.

Global DNA methylation analysis
To obtain an insight into the epigenetic effects of ZEA, global

DNA methylation levels were investigated. 5-aza-cytidine, a

known DNA methylation inhibitor acting as a substitute substrate

for DNA methyltransferase, was used as positive control. BEAS-2B

cells were treated with DMSO, 40 mM ZEA or 1 mM 5-aza-

cytidine for 24 h. After treatment, genomic DNA was extracted

using UltraClean Tissue & Cells DNA Isolation Kit (MO Bio

Laboratories, Inc.) according to the manufacturer’s protocols. The

concentrations and qualities of DNA were quantified by Nano-

Drop ND-1000 Spectrophotometer (Nano-Drop Technologies)

and checked by 0.7% agarose gel electrophoresis, respectively.

The global DNA methylation levels were determined using

MethylFlash Methylated DNA Quantification Kit (Colorimetric)

(Epigentek Group Inc.) following manufacturer’s instructions.

DNA is bound to specifically treated strip wells that have high

DNA affinity. The 5-methylcytosine of DNA is detected using

antibodies and quantified using an ELISA-like reaction by reading

absorbance at 450 nm.

Statistical analysis
Unless otherwise specified, all data are results of 3 independent

experiments, each with 3 samples per group and represent as

mean6 SD. Student t-test and one-way analysis of variance

(ANOVA) followed by Duncan’s post hoc test were conducted

using SPSS v11.5 software. Values of p,0.05 were considered as

significant.

Results

ZEA reduced viability of BEAS-2B cells
The cytotoxic effects of ZEA on cell viability were determined

using MTT assay. The results revealed that ZEA induced cell

death in a time- and dose-dependent manner (p,0.05). After 48 h

treatments, the Lowest Observable Adverse Effect Level (LOAEL)

was 40 mM, with a percentage of viable cells of 62.9667.30%

(Figure 1). As 40 mM has no significant inhibitory effect on cell

viability after 6 h and 24 h treatments but was the LOAEL after

48 h treatment, it was chosen as the concentration for use in

subsequent experiments.

Identification of differentially expressed genes
The number of differentially expressed genes are observed to

increase in a time-dependent manner. According to the Tran-

scriptome Analysis Console (TAC) software, out of 53,617 gene

probes on the Genechip, 262 (131 genes up-regulated and 131

genes down-regulated) and 1073 (357 genes up-regulated and 716

genes down-regulated) genes were differentially expressed at 6 h

and 24 h, respectively. The complete list of the differentially

expressed genes and their fold change at 6 h and 24 h are shown

in Table S2 and S3, respectively. The number of commonly up-

regulated and down-regulated genes at both time points is 67 and

68, respectively (Figure 2).

For both time-point, the most significantly up-regulated genes

are heat shock proteins of 70 kDA in size (HSPA1B, HSPA1A)

which increased by 3.7-fold and 6.54-fold at 6 h and 24 h,

Table 4. Cont.

Gene symbol Gene description Fold change*

6 h 24 h

NEK2 NIMA (never in mitosis gene a)-related kinase 2 2.17

NEK6 NIMA (never in mitosis gene a)-related kinase 6 21.24 21.57

NOG Noggin 21.95 22.35

PAK3 P21 protein (Cdc42/Rac)-activated kinase 3 1.63 1.91

PLK2 Polo-like kinase 2 21.16 21.64

RHOB Ras homolog gene family, member B 21.43 21.81

SERPINE1 Serpin peptidase inhibitor, clade E (nexin, plasminogen
activator inhibitor type 1), member 1

21.09 22.33

TGFB2 Transforming growth factor, beta 2 21.2 21.75

TGFBR1 Transforming growth factor, beta receptor 1 21.51

TGFBR3 Transforming growth factor, beta receptor III 21.57

THBS1 Thrombospondin 1 21.59 21.47

UBE2C Ubiquitin-conjugating enzyme E2C 1.77

UBE2S Ubiquitin-conjugating enzyme E2S 1.62

WISP2 WNT1 inducible signaling pathway protein 2 21.26 22.24

*Only the fold change with p,0.05 are shown.
doi:10.1371/journal.pone.0096404.t004
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respectively (Table 1 and Table 2). On the other hand, the most

significantly down-regulated gene common for both time points is

serpin peptidase inhibitor, clade B (ovalbumin), member 2 and 10

(SERPINB2, B10) which decreased by 2.87-fold and 5.52-fold at

6 h and 24 h, respectively.

Functional classification of differentially expressed genes
The identification of enriched ‘‘Biological Processes’’ under GO

category was performed using GeneSpring. The enriched GO

terms at 6 h and 24 h are shown in Table S4 and Table S5

respectively. The most significantly enriched GO term at 6 h is

‘‘protein folding’’ (p = 5.59E-07) while that at 24 h is ‘‘DNA

dependent DNA replication’’ (p = 1.35E-14).

Table 5. Differentially expressed genes related to replication, damage and repair of DNA.

Gene symbol Gene name Fold change*

6 h 24 h

AGTR1 Angiotensin II receptor, type 1 21.53

BLM Bloom syndrome, recq helicase-like 21.66

BUB1 Budding uninhibited by benzimidazoles 1 homolog (yeast) 1.69

CDC45 Cell division cycle 45 homolog (S. Cerevisiae) 21.26 21.87

CDC6 Cell division cycle 6 homolog (S. Cerevisiae) 21.69

CENPF Centromere protein F, 350/400 kda (mitosin) 1.53

CLSPN Claspin 21.11 21.84

DDB2 Damage-specific DNA binding protein 2, 48 kda 21.22 21.73

EXO1 Exonuclease 1 22.25

GINS2 GINS complex subunit 2 (Psf2 homolog) 21.16 22.15

GINS3 GINS complex subunit 3 (Psf3 homolog) 21.16 21.65

HELB Helicase (DNA) B 21.26 21.78

HELLS Helicase, lymphoid-specific 21.3 21.97

KIF18A Kinesin family member 18A 1.1 1.59

KIF2C Kinesin family member 2C 21.9

MCM10 Minichromosome maintenance complex component 10 21.08 21.77

MCM2 Minichromosome maintenance complex component 2 21.15 22.2

MCM3 Minichromosome maintenance complex component 3 21.15 21.53

MCM4 Minichromosome maintenance complex component 4 21.65

MCM5 Minichromosome maintenance complex component 5 21.14 22.29

MCM6 Minichromosome maintenance complex component 6 21.82

MCM7 Minichromosome maintenance complex component 7 21.16 21.82

NUF2 NUF2, NDC80 kinetochore complex component, homolog (S. Cerevisiae) 1.09 21.75

ORC1|ORC1L Origin recognition complex, subunit 1 | origin recognition complex,
subunit 1-like (S. Cerevisiae)

21.89

POLA1 Polymerase (DNA directed), alpha 1, catalytic subunit 21.25 21.56

POLE2 Polymerase (DNA directed), epsilon 2 (p59 subunit) 21.15 21.81

POLN Polymerase (DNA directed) nu 1.85 1.56

PRIM1 Primase, DNA, polypeptide 1 (49 kda) 21.23 21.8

PTTG1 Pituitary tumor-transforming 1 1.77

RAD51 RAD51 homolog (S. Cerevisiae) 21.08 21.54

RFC2 Replication factor C (activator 1) 2, 40 kda 21.17 21.57

RRM2 Ribonucleotide reductase M2 21.13 21.58

RUVBL2 Ruvb-like 2 (E. Coli) 1.54

SPC24 SPC24, NDC80 kinetochore complex component, homolog (S. Cerevisiae) 21.19 21.79

STAG1 Stromal antigen 1 21.21 21.54

TIPIN TIMELESS interacting protein 21.58 21.64

TK2 Thymidine kinase 2, mitochondrial 21.16 21.84

TYMS Thymidylate synthetase 21.18 21.53

UNG Uracil-DNA glycosylase 21.1 21.77

*Only the fold change with p,0.05 are shown.
doi:10.1371/journal.pone.0096404.t005
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Pathway analysis of differentially expressed genes
The pathways altered after ZEA treatments were identified by

single experiment analysis (SEA) using GeneSpring. The over-

represented pathways at 6 h and 24 h are shown in Table 3. At

6 h, only the ‘‘transforming growth factor-beta (TGF-b) signaling’’

pathway is altered. At 24 h, the top five most significantly altered

pathways are ‘‘DNA Replication’’, ‘‘G1 to S cell cycle control’’,

‘‘cell cycle’’, ‘‘synthesis of DNA’’ and ‘‘cholesterol biosynthesis’’.

These results suggest that ZEA alters DNA replication and cell

cycle progression in BEAS-2B cells. The differentially expressed

genes associated with the progression of cell cycle from G1 to S

phase, the replication, damage and repair of DNA and the

apoptotic pathway are shown in Table 4, Table 5 and Table 6

respectively.

In addition, the analysis also revealed significantly enriched

Keap1-Nrf2 pathway (p-value = 0.032, Table 3) which suggested

that the oxidative status of cells is altered. The apoptotic pathway

is another significantly altered biological process that was observed

(p-value = 0.027, Table 3). The list of differentially expressed genes

related to apoptosis is summarized in Table 6.

To further identify the dysregulated biological processes,

differential regulated genes were subjected to Gene Set Enrich-

ment Analysis (GSEA). GSEA enabled us to determine whether a

priori defined set of genes is statistically significantly (with nominal

p-value ,0.05 and FDR,0.25) enriched after treatment with

ZEA. The detailed results are shown in Table S6. Interestingly, in

addition to the pathways as identified by SEA, gene sets related to

the extracellular matrix molecule tenascin C [20], histone

deacetylation [21] and estrogenic responses [22] were also

recognized to be enriched (Figure 3).

ZEA induced oxidative stress in BEAS-2B cells
The generation of ROS after treatment with ZEA was detected

by flow cytometry. The fluorescence intensity in wild type cells

that were exposed to 40 mM ZEA for 6, 12, 24 and 48 h increased

in a time-dependent manner by 18.4, 29.3, 28.0 and 25.1%,

respectively (Figure 4A).

Concurred with the induction of ROS levels, the expressions of

selected oxidative stress-related genes were up-regulated

(Figure 4B-E). The up-regulation of heat shock protein 27

(Hsp27), superoxide dismutase (SOD2) and catalase were more

pronounced at 6 h and their expression were increased by 2.86,

1.81 and 1.92 folds, respectively. Moreover, the expression of heat

shock protein 70 (Hsp70) was dramatically increased by 41.98

folds and the up-regulation was maintained after 12 and 24 h

treatment.

Table 6. Differentially expressed genes related to apoptosis.

Gene symbol Gene description Fold change*

6 h 24 h

BAG3 BCL2-associated athanogene 3 2.12 1.91

BIRC5 Baculoviral IAP repeat-containing 5 21.59

BLID BH3-like motif containing, cell death inducer 21.76 22.2

DDIT4 DNA-damage-inducible transcript 4 2.15 2.62

DEDD2 Death effector domain containing 2 1.64 1.89

DFFA DNA fragmentation factor, 45 kda, alpha polypeptide 1.15 1.45

DLX2 Distal-less homeobox 2 22.63

F3 Coagulation factor III (thromboplastin, tissue factor) 21.56 22.8

FOSL1 FOS-like antigen 1 22.44

GABARAPL1 GABA(A) receptor-associated protein like 1 21.76

HELLS Helicase, lymphoid-specific 21.3 21.97

HSPA1A, HSPA1B Heat shock 70 kda protein 1A, heat shock 70 kda protein 1B 4.57 6.27

IER3 Immediate early response 3 21.92 21.28

IFI16 Interferon, gamma-inducible protein 16 21.15 22.01

IGFBP3 Insulin-like growth factor binding protein 3 21.45 22.62

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 21.5 21.85

JMJD6 Jumonji domain containing 6 1.36 1.73

KLF10 Kruppel-like factor 10 22.24 22.1

MYC V-myc myelocytomatosis viral oncogene homolog (avian) 21.31 21.63

PDCD4, MIR4680 Programmed cell death 4 (neoplastic transformation inhibitor), microrna 4680 21.51

SERPINB2, SERPINB10 Serpin peptidase inhibitor, clade B (ovalbumin), member 2 and member 10 22.87 25.52

SFN Stratifin 21.21 22.78

SMAD6 SMAD family member 6 22 22.4

SMAD7 SMAD family member 7 22.24 22.51

SNAI2 Snail homolog 2 (Drosophila) 21.59 21.49

TGM2 Transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase) 1.99

THBS1 Thrombospondin 1 21.59 21.47

doi:10.1371/journal.pone.0096404.t006
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Over-expression of CYGB reduced ZEA-induced ROS
generation and apoptosis in BEAS-2B cells

Over-expression of CYGB, a free radical scavenger, was used to

study the role of oxidative stress upon ZEA-induced cytotoxicity.

Unlike the wild type BEAS-2B cells, the detection of significantly

increased level of ROS was delayed to after 24 h and 48 h ZEA

exposure. In addition, the level of induction was lowered to 14.0

and 23.9%, respectively (Figure 4A). These results suggested that

over-expression of CYGB can attenuate and postpone the increase

of ROS levels induced by ZEA.

The detection of apoptotic cells was done by flow cytometry.

Apoptotic cells were found in both wild type and CYGB-

overexpressing cells after 24 and 48 h ZEA treatment (Figure 5).

Over-expression of the endogenous free radcial scavenger, CYGB,

conferred protective effects against ZEA-induced cell death. After

ZEA exposure for 48 h, 13.6862.96% of wild type whilst

74.5560.78% of CYGB-overexpressing cells were still alive. On

the other hand, 72.5762.61% of wild type whilst 13.9561.15% of

CYGB-overexpressing cells underwent apoptosis and were at late

apoptotic states.

Validation of differentially expressed genes by qPCR
Disturbingly, many of the pro-inflammatory responsive genes

were down-regulated while those anti-inflammatory genes were

up-regulated (Table 7). The anti-inflammatory effects of ZEA were

further revealed in its ability to reduce lipopolysaccharide (LPS)-

induced release of pro-inflammatory cytokines. After 6 h treat-

ment, LPS alone induced the expressions of IL-6, IL-8 and IL-1b
by 1.49, 1.37 and 1.29 folds, respectively. However, the inductions

of these cytokines were significantly suppressed by ZEA (Figure 6).

After analyzing the microarray data, the expression changes of

10 selected genes including SERPINB2 and PLAU (apoptosis),

CYP1B1 (aryl hydrocarbon receptor signaling), SMAD7 (TGF-b
signaling), IL-8 and IL-37 (inflammatory response), JUN and

EGR1 (regulation of transcription), CCNE2 (progression of cell

cycle) and DDIT4 (response to DNA damage) were verified by

quantitative real-time PCR (qPCR). The expression pattern

(direction of regulation) showed a good agreement between the

data of microarray and qPCR, although the fold-changes detected

by qPCR appeared to be more pronounced (Figure 7).

Figure 3. Analysis of the functional gene set enrichment after 24 h ZEA treatment by GSEA. Differential gene expression was ranked by
fold change. The most up-regulated genes are shown on the left while the most down-regulated genes are shown on the right. The black vertical
lines indicate where the genes in the signature get set appeared. (A) Genes that is down-regulated in the presence of extracellular matrix molecule
Tenascin C. (B) Genes that are down-regulated upon knockdown of boh histone deacetylase (HDAC) 1 and 2. (C) Genes that are down-regulated by
estradol and down-regulated by estrogen-related receptor alpha. Enrichment score (ES, Y axis) is a running-sum statistic showing if the prior defined
set of genes are randomly distributed or found at the extremes (top or bottom) of the list. If the genes are overrepresented at the bottom of our
ranked list of genes, the ES will be close to 21 and vice versa. A normalized enrichment score (NES) takes into account the number of genes in the
pathway. A negative NES indicates ‘‘bottom’’ enrichment of the list. The interpretation of the plots referred to [61].
doi:10.1371/journal.pone.0096404.g003
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Figure 4. Induction of oxidative stress in BEAS-2B cells by ZEA. (A) Levels of ROS in wild type and CYGB over-expressed cells detected by
DCFH-DA probe using flow cytometry. Relative DCF+ levels (equivalent to intracellular ROS levels) were expressed as percentage increased compare
to DMSO control. Bars with a and b denote significant differences in wild type whereas A,B and C reflect significant differences in CYGB over-
expressed cells (One-way ANOVA, p,0.05). *, ** and *** represent p,0.05, p,0.01 and p,0.001 denoting significant differences from respective wild
type values. The mRNA expression of oxidative stress related genes in BEAS-2B cells were quantified by real-time PCR. The mRNA expression of b–
actin was used for normalization. (B) Heat shock protein 70 (Hsp70). (C) Heat shock protein 27 (Hsp27). (D) Superoxide dismutase 2 (SOD2). (E)
Catalase. Results represent the mean6 SD of at least 3 independent experiments. Bars with different alphabets are significant different (One-way
ANOVA, p,0.05).
doi:10.1371/journal.pone.0096404.g004
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ZEA caused global DNA hypomethylation in BEAS-2B
cells

As shown in Figure 8, the level of global DNA methylation was

significantly lowered to 40.3611.1% (p,0.01) and 53.09633.75%

(p,0.01) relative to control in cells treated with 1 mM 5-aza-

cytidine or 40 mM ZEA respectively. These results suggest that

global DNA demethylation occurs when BEAS-2B cells are

exposed to ZEA.

Discussion

The aim of this study is to decipher the toxic effects and

molecular mechanisms induced by ZEA in human bronchial

epithelial cells (BEAS-2B). Our experiments and biological

interpretation of the genome-wide transcriptome analysis indicat-

ed that induction of oxidative stress, arrest of cell cycle

progression, initiation of apoptosis, suppression of inflammatory

responses and changes of epigenetic marks are the consequences of

exposure to ZEA.

Induction of oxidative stress by ZEA
The broad range of toxic events provoked by ZEA is believed

not solely due to the interaction with estrogen receptors but also

through the induction of oxidative stress. Our results indicated

that the Keap1-Nrf2 pathway was suppressed (Table 3), as the

levels of intracellular ROS was increased (Figure 4A) and the

expression of free radical scavengers, SOD2 and catalase, were up-

regulated (Figure 4D and E) after ZEA treatment. Nrf2 is a

transcription factor that binds to the antioxidant responsive

element at the regulatory region of target genes that confer

protection against oxidative stress [23]. Nrf2 is normally seques-

tered and inhibited at the cytoplasm by Keap1. However, under

stress conditions, Nrf2 dissociates from Keap1 and translocates to

the nucleus to control gene expression [23]. The expression of

Figure 5. Induction of apoptosis in BEAS-2B cells by ZEA. Early apoptotic cells stained with Annexin V are shown in lower right quadrant. Late
apoptotic or necrotic cells are stained with both Annexin V and PI and are shown in upper right quadrant. Living cells are not stained and are shown
in lower left quadrant. (A) 24 h wild type control. (B) 24 h wild type ZEA-treated. (C) 48 h wild type control. (D) 48 h wild type ZEA-treated. (E) 24 h
CYGB over-expressed control. (F) 24 h CYGB over-expressed ZEA-treated. (G) 48 h CYGB over-expressed control. (H) 48 h CYGB over-expressed ZEA-
treated.
doi:10.1371/journal.pone.0096404.g005

Figure 6. Quantitative PCR showing mRNA expression of inflammatory cytokines and chemokines in LPS stimulated BEAS-2B cells.
The mRNA expression of b–actin was used for normalization. (A) Interleukin 6 (IL-6). (B) Interleukin 8 (IL-8). (C) Interleukin 1, beta (IL-1b). Results
represent the mean6 SD of at least 3 independent experiments and bars with different alphabets show significant differences (One-way ANOVA, p,
0.05).
doi:10.1371/journal.pone.0096404.g006
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Table 7. Differentially expressed genes related to inflammatory responses.

Gene symbol Gene description Fold change*

6 h 24 h

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 22.29 23.32

BCL3 B-cell CLL/lymphoma 3 21.32 21.79

BMPER BMP binding endothelial regulator 21.49 22.21

CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequence b 21.56

CCL2 Chemokine (C-C motif) ligand 2 21.57

CD24 CD24 molecule 22.18

CT45A5, CT45A2,
CT45A3, CT45A6,
CT45A4, CT45A1

Cancer/testis antigen family 45, member A5, cancer/testis antigen
family 45, member A2, cancer/testis antigen family 45, member A3,
cancer/testis antigen family 45, member A6, cancer/testis antigen
family 45, member A4, cancer/testis antigen family 45, member A1

1.54

CXCR7 Chemokine (C-X-C motif) receptor 7 21.28 21.68

DKK1 Dickkopf WNT signaling pathway inhibitor 1 22.9

DUSP22 Dual specificity phosphatase 22 21.19 21.56

EDN1 Endothelin 1 22.57 21.53

ELF4 E74-like factor 4 (ets domain transcription factor) 21.54 21.54

F2RL2 Coagulation factor II (thrombin) receptor-like 2 21.73 23.92

F3 Coagulation factor III (thromboplastin, tissue factor) 21.56 22.8

FCER1G Fc fragment of ige, high affinity I, receptor for; gamma polypeptide 1.77

FSTL3 Follistatin-like 3 (secreted glycoprotein) 21.46 21.87

IFI16 Interferon, gamma-inducible protein 16 21.15 22.01

IFIT1 Interferon-induced protein with tetratricopeptide repeats 1 2.29

IFITM1 Interferon induced transmembrane protein 1 (9–27) 21.94

IGHV4-31, IGHG1,
IGHA1, IGH@, IGHJ2

Immunoglobulin heavy variable 4–31, immunoglobulin heavy constant
gamma 1 (G1m marker), immunoglobulin heavy constant alpha 1,
immunoglobulin heavy locus, immunoglobulin heavy joining 2

1.64 1.17

IGSF23 Immunoglobulin superfamily, member 23 21.12 21.66

IGSF3 Immunoglobulin superfamily, member 3 21.26 21.62

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 21.5 21.85

IL11 Interleukin 11 2.1

IL1R1 Interleukin 1 receptor, type I 21.53

IL27RA Interleukin 27 receptor, alpha 21.45 21.68

IL31RA Interleukin 31 receptor A 21.18 21.52

IL37 Interleukin 37 1.53 1.77

IL6R Interleukin 6 receptor 21.23 21.55

IL7R Interleukin 7 receptor 21.5 22.52

IL8 Interleukin 8 22.22 21.7

IRAK4 Interleukin-1 receptor-associated kinase 4 21.13 21.69

ITGB3 Integrin, beta 3 (platelet glycoprotein iiia, antigen CD61) 1.95

JUN Jun proto-oncogene 21.35 22.67

KLF10 Kruppel-like factor 10 22.24 22.1

LAMC2 Laminin, gamma 2 21.34 21.7

LRIG3 Leucine-rich repeats and immunoglobulin-like domains 3 1.19 21.75

LY6K Lymphocyte antigen 6 complex, locus K 21.25 22.02

NCR3LG1 Natural killer cell cytotoxicity receptor 3 ligand 1 21.23 21.94

NOG Noggin 21.95 22.35

OAS3 2’-5’-oligoadenylate synthetase 3, 100 kda 21.2 21.65

PLAU Plasminogen activator, urokinase 22.79 21.6

SEMA3C Sema domain, immunoglobulin domain (Ig), short basic domain,
secreted, (semaphorin) 3C

21.59

SEMA3D Sema domain, immunoglobulin domain (Ig), short basic domain,
secreted, (semaphorin) 3D

21.18 21.65
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SOD2 and catalase are up-regulated under oxidative stress by the

binding of Nrf2 to their promoters [24]. In addition, our results

show dramatic up-regulation of heat shock proteins, which are

early markers of oxidative stress [25,26].

On the other hand, the generation of ROS (Figure 4A) and the

induction of apoptosis (Figure 5) were significantly attenuated by

the over expression of CYGB, a potent free radical scavenger.

Collectively, our results suggest that ZEA is a strong inducer of

ROS and oxidative stress is the underlying mediator of ZEA-

induced cytotoxicity. These observations substantiate early reports

showing that exogenous antioxidants including vitamin E and

Tunisian radish protect against ZEA-induced oxidative damage

and subsequent apoptosis [27,28].

The mechanism by which ZEA induces production of ROS is

ambiguous. It is known that upon metabolism of ZEA, 3a-/3b-

hydroxysteroid dehydrogenases catalyze the formation of two

major reductive metabolites, a– and b-Zearalenol [29]. Pfeiffer et

al [30] identified two highly unstable oxidative metabolites of

ZEA, 13-hydroxy-ZEA and 15-hydroxy ZEA, which are demon-

strated to possess the same potency for causing oxidative DNA

damage (as measured by the level of 8-oxo-29-deoxyguanosine of

DNA) as catechols of estradiols [31]. Therefore, we believe that

ROS could be generated during the formation of these metabo-

lites. In addition, ROS may be generated due to the alteration of

mitochondrial NADPH-oxidase which functions to generate

superoxide anions (O2
2) from normal oxygen [32]. Our array

results support this supposition as the expression of NADPH-

oxidase (NOX5) is up-regulated by 1.32 and 1.6 fold upon 6 and

24 h exposure to ZEA (Table S2 and S3).

DNA damages and inhibition of DNA repair by ZEA
Excessive generation of ROS can oxidize cellular macromole-

cules including DNA, protein and lipids. The ability of ZEA to

cause oxidative DNA damage including DNA fragmentation,

single- and double stranded breakage as well as formation of 8-

oxoguanine were reported [9,27,33]. Our microarray results also

signified the suppression of DNA repair and induction of DNA

damage (Table 3 and 5). The expression of breast cancer 1, early

onset (BRCA1), RAD51, bloom syndrome, RecQ helicase-like

(BLM), flap-endonuclease 1 (FEN1), uracil-DNA glycosylase

(UNG), damage-specific DNA binding protein 2 (DDB2) and

exonuclease 1 (EXO1) were significantly suppressed after 24 h

ZEA treatment (Table 5).

BRCA1 functions in response to the signal of DNA damage and

transcriptionally control downstream effectors [34,35]. RAD51

and BLM are involved in the repair of DNA double-strand break

through homologous recombination [36,37]. BRCA1 and RAD51

also interact to control recombination and maintain the integrity

of the genome [38]. FEN1 [39], UNG [40], DDB2 [41] and

EXO1 [42] are involved in DNA base-excision repair, DNA

mismatch repair and homologous recombination. On the other

hand, DNA-damage-inducible transcript 4 (DDIT4) and never in

mitosis gene a-related kinase 2 (NEK2) which are involved in

controlling DNA damage checkpoint and proper DNA repair, are

significantly induced by 2.62 and 2.17 folds respectively after 24 h

ZEA treatment (Table 5). Our transcriptome analysis suggested

that ZEA inhibited DNA repair and induced DNA damages.

Our microarray data also revealed that the progression of cell

cycle and replication of DNA in BEAS-2B cells was suppressed by

ZEA (Table 4 and 5). The expressions of cyclin E (CCNE1,

CCNE2), which are essential for S phase progression, are

significantly down-regulated by 2.11 and 2.93 folds respectively

while p21 activated kinase 3 (PAK3), a known inhibitor of Cdk4, is

simultaneously induced by 1.91 folds after 24 h of ZEA treatment.

These observations suggest that cyclinD/cdk4 and cyclinE/cdk2

complexes which are essential for G1/S cell cycle progression have

been suppressed.

Arrest of cell cycle by ZEA
In addition, many genes related to DNA replication, which are

also essential for S phase progression, are down-regulated after

24 h of ZEA treatment (Table 5). The essential components of the

pre-replicative complex (pre-RC) including origin recognition

complex, subunit 1 (ORC1), cell division cycle 6 (CDC6) and most

member of minichromosome maintenance protein (MCM 2–7)

show decreased levels of expression (Table 5). In addition, the

assembly and activation complex comprising MCM 10, CDC45,

replication factor C (activator 1) 2 (RFC2) and interaction with

subunits of replicative polymerase, including polymerase (DNA

directed), alpha 1 (POLA1), polymerase (DNA directed), epsilon 2

(POLE2) and primase, DNA, polypeptide 1 (PRIM1), are also

down-regulated (Table 5). DNA helicase B (HELB), which is

involved in DNA synthesis, is down-regulated by 1.78 folds

(Table 5). From the above results, it can be concluded that ZEA

directly affects the machinery for DNA replication and synthesis in

BEAS-2B cells.

Taken together, it is tempting to speculate that ZEA induces

DNA damage and halts cell cycle at G1/S phase as attempts to

repair the damage are unsuccessful. These findings are in

agreement with earlier studies which reported that ZEA induced

DNA fragmentation and cell cycle arrest [27,33]. The presence of

irreparable DNA lesions may lead to the occurrence of subsequent

apoptosis in the affected cells (Figure 9).

Table 7. Cont.

Gene symbol Gene description Fold change*

6 h 24 h

SMAD6 SMAD family member 6 22 22.4

SMAD7 SMAD family member 7 22.24 22.51

SMAD9 SMAD family member 9 21.5 21.58

TGFB2 Transforming growth factor, beta 2 21.2 21.75

TGFBR1 Transforming growth factor, beta receptor 1 21.51

TNFAIP8L1 Tumor necrosis factor, alpha-induced protein 8-like 1 1.88

*Only the fold change with p,0.05 are shown.
doi:10.1371/journal.pone.0096404.t007
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Down-regulation of inflammatory responses by ZEA
Due to the large surface structure of the lung, its innate immune

response is essential as the first line of defense to act against

environmental particles, allergens and invasion of pathogens. The

responses often include production of cytokines and chemokines to

recruit inflammatory effector cells such as macrophages, neutro-

phils, eosinophils and lymphocytes [43]. Our results indicated that

ZEA weakened the innate immune response to bacterial

pathogens (LPS) in bronchial epithelial cells through down-

regulating the expression of various inflammatory genes (Figure 6

and Table 7). The mechanism of this down-regulation is possibly

through the inhibition of the toll-like receptor (TLR) signaling

pathway (Table 3). TLR is a cell surface member of the pattern

recognition receptors (PRRs) which are essential as first line

defense of the host’s responses to allergens and pathogens [44,45].

IL-1 receptor-associated kinase 4 (IRAK4) is an intrinsic kinase

which mediates inhibition of IL-1/TLR induced NF-kB activation

[44]. Upon activation and stimulation of TLRs, association of

MyD88 recruits IRAK4 which in turn induces the phosphoryla-

tion of IRAK1 and triggers downstream activation of NF-kB [44].

In our microarray results, the expression of both MyD88 and

IRAK4 are respectively down-regulated by 1.45 and 1.69 folds,

pointing to the upstream suppression of TLR signaling and

subsequent activation of NF-kB.

Both suppressive and inductive effects of ZEA on inflammatory

responses have been reported [46,47,48] albeit with different

models, dosage and duration of incubation with ZEA. Oxidative

stress could trigger inflammation signals through activation of

transcription regulators, NF-kB and AP-1 [49]. In our results,

however, ZEA induced ROS generations but suppressed inflam-

matory responses. These observations could be explained by the

suppression of NF-kB activation through inhibition of the TLR

signaling Myd88-dependent pathway as aforementioned. The

finding is consistent with earlier proteomic study in H295R cells

showing possible suppression of NF-kB pathway after ZEA

exposure [50]. Importantly, our results also indicate that the

expressions of JUN, FOSL1 and ATF3 which form the AP-1

transcription complex are significantly decreased (Table 7)

suggesting that the AP-1 activation is possibly inhibited by ZEA.

These observations suggested that exposure to air-borne ZEA

may increase susceptibility of bronchial epithelial cells to infections

due to down-regulation of the expression of inflammatory

cytokines and chemokines.

Potential epigenetic changes by ZEA
On the other hand, GSEA of the array results indicated that the

histone deacetylation pathway is altered (Figure 3). Histone

deacetlyation is associated with pathogenesis of lung diseases.

For example, in COPD, the progressive reduction of HDAC

activity is linked to the severity of the disease [51,52,53].

Methylated promoters are often coupled with regional histone

deacetylation and contribute to transcriptional inactivation.

Global hypomethylation was also observed in BEAS-2B cells

incubated with ZEA (Figure 8). Possibly, the presence of 8-OHdG

[54,55] and O6-methylguanine formed during ROS-induced

DNA damage prevented the methylation of adjacent cytosine

residues [56,57,58]. Disturbingly, global DNA hypomethylation is

a feature of tumorigenesis [59,60]. The role of DNA hypomethy-

lation in the development of cancer is still a paradox. Demeth-

ylation of DNA usually occurs at intragenic regions and at

repetitive DNA sequences. Three mechanisms including causing

instability of chromosome, reactivation of transposable elements

and loss of imprinting are proposed [60]. More importantly,

altered DNA methylation levels can be stably inherited during

DNA replication and disturb subsequent generations. Our results

raised the concern on long-lasting effect of ZEA to lung cells which

required further investigation.

Figure 7. Validation of the expressions of selected genes by real-time PCR. (A) 6 hr. (B) 24 hr. Real-time PCR results are represented as
mean6 SD of at least 3 independent experiments
doi:10.1371/journal.pone.0096404.g007

Figure 8. Induction of global DNA demethylation in BEAS-2B
cells by exposure to ZEA for 24 h. Results represent the mean6 SD
of at least 3 independent experiments and ** represents p,0.01
significantly different from DMSO control values as assessed by t-test.
doi:10.1371/journal.pone.0096404.g008

Figure 9. Proposed mechanisms of apoptosis induced by ZEA
in BEAS-2B cells. The expression changes of genes associated with
the biological processes are indicated.
doi:10.1371/journal.pone.0096404.g009
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Conclusions

Our results clearly pointed out the diverse biological responses

that ensued when BEAS-2B lung epithelial cells are exposure to

ZEA. It also gives us an insight into the molecular mechanisms

underlying the adverse consequences of air-borne ZEA. Disturb-

ingly, our results suggested that exposure to ZEA may increase

susceptibility of bronchial epithelial cells to diseases through i) the

down-regulation of inflammatory cytokines and ii) demethylation

of DNA which is a feature of lung carcinogenesis.
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