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Abstract—The design and implementation of the k-means
clustering algorithm on an FPGA-accelerated computer clus-
ter is presented. The implementation followed the map-reduce
programming model, with both the map and reduce functions
executing autonomously to the CPU on multiple FPGAs. A hard-
ware/software framework was developed to manage gateware
execution on multiple FPGAs across the cluster. Using this k-
means implementation as an example, system-level tradeoff study
between computation and I/O performance in the target multi-
FPGA execution environment was performed. When compared
to a similar software implementation executing over the Hadoop
MapReduce framework, 15.5× to 20.6× performance improve-
ment has been achieved across a range of input data sets.

I. INTRODUCTION

The k-means clustering algorithm is a simple yet powerful
algorithm that forms the basis of many data analysis applica-
tions. It has found applications across many domains includ-
ing image processing, pattern recognition, machine learning,
bioinformatics, data mining and business analytics, etc. Be-
cause of its importance and high computational requirements,
various acceleration attempts have already been done over the
years.

While researchers have demonstrated the performance ben-
efit of implementing the k-means algorithm with FPGAs in
various settings, most existing works focused on optimizing
the hardware architecture to accelerate their specific applica-
tion. These solutions worked well on the specific single-FPGA
accelerators, but are not readily applicable to problems that
demand large-scale cluster computing facilities.

To that end, we present the design and implementation of
the k-means clustering algorithm on our multi-FPGA system.
Our implementation was designed to follow the map-reduce
programming model and was targeted to run on multiple
FPGAs installed as accelerators across the cluster. Compared
to previous works, our design is unique in that it is general-
purpose; it executes across multiple FPGAs, and is readily
scalable to larger systems with additional FPGAs.

Using our k-means implementation as an example, this work
explores the performance benefits and design considerations of
utilizing FPGAs as accelerators in a distributed heterogeneous
computer cluster. System-level performance was evaluated and
compared against similar software implementations executing
on top of the popular Hadoop MapReduce framework. As
I/O performance is often the system performance bottleneck,

extensive evaluations on inter- and intra-node communica-
tion were performed. In addition, by varying the number of
available mappers and their distributions among the set of
FPGAs in the system, tradeoff between computation and I/O
bandwidth was studied.

The remainder of this paper is organized as follows: Sec-
tion II provides background information and discusses related
work. Section III introduces the hardware and software archi-
tecture of the k-means implementation. Section IV presents the
experimental results from comparing our FPGA k-means im-
plementation against software counterparts. Section V contains
system-level performance evaluation on our FPGA system.
Section VI concludes this paper with future extension to this
work.

II. BACKGROUND AND RELATED WORK

A. k-means

The k-means algorithm is one of the most commonly used
unsupervised clustering algorithm for data analysis. The goal
of the k-means algorithm is to partition the input data into
k clusters such that data within a cluster are similar to each
other in some way while being dissimilar to data in other
clusters. The algorithm proceeds in iterations. Each iteration
begins with k centroids corresponding to the k clusters. Each
input data object is then assigned to one of the k clusters
whose centroid is at minimal distance to the data based on a
distance metric, such as its Euclidean or Manhattan distance.
Once all data objects are assigned, the centroids of each cluster
are updated according to the new partitioning. The algorithm
repeats until the centroids remain unchanged at the end of the
iteration.

A number of previous works have already demonstrated
the benefit of utilizing FPGAs in k-means implementations.
Several early attempts have been done to accelerate hyperspec-
tral images clustering using FPGAs. In [7], [10], hardware-
software systems combining processor and reconfigurable fab-
ric were proposed, demonstrating over 11× speedup over
the corresponding software implementations. Subsequently,
the authors in [6], [11] achieved similar speedup in process-
ing multi-spectral and hyper-spectral images by utilizing an
FPGA-optimized distance calculation in the k-means algo-
rithm. Likewise, FPGA implementation of k-means has also
found useful in real-time image clustering [13].
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More recently, in [8], [9], the FPGA implementation of k-
means algorithm for processing microarray data was examined
and compared to a similar GPU implementation. Further-
more, the authors in [12] explored the use of FPGA-specific
hardware structure to accelerate distance computation with
high-dimension data in k-means. While these previous works
have demonstrated respectable performance, only a single
FPGA was employed. Their focuses were to accelerate the
particular application using FPGA-specific hardware structure.
In contrast, this work examines the use of multiple FPGAs
to process large-scale k-means problems by systematically
following the map-reduce programming model.

B. Map-Reduce
In its most basic form, map-reduce is a simple programming

model that systematically applies an application-specific map
and reduce pure function to the input data list in stages.
The map function is first applied to each element of the
input list to produce an intermediate list, whose elements are
subsequently combined by the reduce function. As there is
no communication between individual instances of map, and
reduce is fully associative and commutative, they offer an
enormous opportunity for parallelization.

This powerful programming model is popularized by
Google as the MapReduce framework [5], with a now de facto
open-source implementation from Apache Foundation called
Hadoop [1]. While MapReduce also offers important features
such as fault tolerance, the underlying operating principle is
similar to the basic map-reduce model. The map function
takes in a list of key-value pairs and generates an intermediate
list of tuples. These intermediate key-value pairs are then
processed by different instances of reduce function with
optional sorting and grouping according to the keys.

As such a promising programming model, map-reduce has
also found interest in the FPGA community. To facilitate
application development, Yeung et al. proposed a map-reduce
library for both GPU and FPGA accelerators [15]. Similarly,
focusing on FPGA implementations, Shan et al. presented
a MapReduce framework that virtualizes the data synchro-
nization and communication among task scheduler, mappers
and reducers [14]. Both works aimed to improve designers’
productivity and portability of the generated MapReduce appli-
cations. Our work shares a similar goal of promoting design
productivity for large, multi-FPGA map-reduce applications
with a focus on CPU-FPGA and inter-FPGA communications.

C. Map-Reduce Processing of k-means
Our implementation of k-means was based loosely on the

MapReduce programming model. Each iteration of the k-
means algorithm was implemented as a MapReduce job, with
the distance calculation implemented as map tasks, and the
k recentering of centroids implemented as parallel reduce
tasks.

III. FPGA-ACCELERATED CLUSTER IMPLEMENTATION

One key feature of our k-means algorithm is that it runs
on multiple FPGAs installed in a computer cluster. Here, we
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Fig. 1: Cluster overview.

first describe our heterogeneous computer cluster, followed by
the design of the FPGA-based MapReduce k-means algorithm
and the software support system for such implementation.

A. Target Computer Cluster

Figure 1 shows an overview of our target heterogeneous
computer cluster. Our cluster consists of a homogeneous array
of compute nodes. Each compute node is equipped with
an FPGA accelerator. On top of basic communication and
memory access to the host, the FPGAs are also connected
by a dedicated communication network. This simple cluster
architecture is scalable and backward compatible with existing
systems, therefore enabling us to perform end-to-end perfor-
mance comparison with existing distributed software systems.

Each compute node is a heterogeneous computer with an
FPGA accelerator connected through standard PCIe connec-
tion. The host CPU is mainly responsible for managing the
attached FPGA. For instance, the host CPU is responsible
for configuring the FPGA and marshalling data between the
general UNIX file system and the FPGA.

One of the compute nodes is designated either physically or
logically as the head node. The main purpose of the head node
is to perform job execution and monitoring in the cluster. In
the case of our FPGA implementation, a custom management
software framework has been developed to manage all FPGA
execution from the head node. The node maintains information
of compute nodes like IP address and its availability for
computation.

Finally, the inter-FPGA network allows direct FPGA-FPGA
communication without involving any CPU. In fact, the soft-
ware system may be completely unaware of this mode of
inter-FPGA communication. While such network is essential
to provide low latency and high bandwidth inter-FPGA com-
munication, it must also be carefully designed such that it is
as scalable as the cluster itself. In our current version, we opt
for standard Gigabit Ethernet as the physical implementation
of this network as a tradeoff among performance, scalability
and reliability.

B. Map-Reduce k-means Implementation

Each iteration of the k-means algorithm is formulated as a
map-reduce job in our implementation.
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Let N be the number of input data and K be the number
of clusters these data are partitioned into. Also, let C(i) =

{µ(i)
k : k ∈ 1, 2, . . . ,K} be the set of center of gravity of

the K clusters in iteration i, where i ∈ Z+. The set of initial
centroids C(0) are K randomly chosen data from the input.

The map function takes 1 input data and produces 1 key-
value pair where the key is the closest centroid to the input
data, and value is the input data itself. To facilitate this com-
putation, it is assumed that the map function receives C(i−1)

before start of iteration i. In our current implementation,
Euclidean distance between the centroid and the data is used.

These intermediate key-value pairs are then grouped by their
key in a shuffling stage and are collectively passed to the
reduce function. The reduce function thus takes as input
a set of key-value pairs with the same key and computes the
new centroid, µ(i)

k , among them.
1) FPGA Computation: Both the map and reduce func-

tions are implemented using FPGA fabrics. We call each
physical implementation of the map function in FPGA a
mapper and that of the reduce function a reducer.

In theory, with N input data, a maximum of N instances
of map may be executed in parallel for best performance. In
practice, only M physical mappers, where M � N , are used
to timeshare the workload of the N map instances. The M
mappers may further be implemented across multiple FPGAs.

In our k-means implementation, the number of reduce
instances required depends on the actual input data. Since K
is relatively small in our design, exactly K reducers are used
in our design, each of them responsible for computing centroid
of one cluster. Currently, all K reducers are physically located
within 1 single FPGA. However, multiple FPGAs may be
designated as reducer FPGA. Depending on the hashed value
of the key, the mapper FPGA groups all the intermediate key-
value pairs into different buffers. Key-value pairs stored within
a specific buffer are then transferred to a designated reducer
FPGA.

Figure 2 shows a high-level block diagram of our k-means
design using 3 FPGAs. Within a mapper FPGA, multiple map-
pers and a central scheduler are presented. At the beginning
of each iteration, the starting centroids, C(i−1) are first sent
from the host CPU to each on-chip mapper. Each mapper
stores these centroids within its own BRAM. Subsequently,
input data are continuously streamed from the host CPU to an
on-chip input buffer within the scheduler. Each input data is
a D-dimensional double-precision floating point number. As
soon as a mapper becomes available, it fetches data from this
input buffer, computes its Euclidean distance against the stored
centroids, and produces a key-value pair accordingly. The key
part is an integer representing the closest centroid found and
the value part is the data point. Finally, the computed key-
value pair is stored in an output buffer, ready to be sent to the
reducer FPGA.

On the reducer FPGA, a similar structure can be observed.
Once the key-value pairs are received from the dedicated
FPGA network, they are processed by the corresponding on-
chip reducer module. K reducers are implemented such that

each of them may be responsible exclusively for computing
the µ(i)

k of its own cluster. Each reducer has its own set of
input and output buffers. It fetches key-value pairs from the
input buffer and extracts from it the data point. Subsequently,
it accumulates all the received data points and eventually
computes µ(i)

k based on the accumulated value. The newly
computed centroid is then stored into the output buffer.

2) Communication: There are two main communication
channels in our k-means implementation. The first involves
retrieving input data from the general file system to be
processed by the mappers; while the other involves passing
intermediate key-value pairs between mappers and reducers
in multiple FPGAs. The output of the reducers contains K
centroid locations and incurs negligible I/O bandwidth.

The input to our k-means algorithm is large data file with
up to 100 million data points. In a commercial computer
cluster, large data files are normally stored on a distributed file
system, such as the Hadoop Distributed File System (HDFS)
so multiple processing nodes can process them concurrently.
To provide similar facilities to our FPGA design, the input data
files are also partitioned into smaller chunks and distributed to
the respective hosting nodes of the FPGA accelerators before
the algorithm executes.

During the execution of the k-means algorithm, the hard-
ware/software system as shown in Figure 3 is responsible for
continuously streaming data from the host to the FPGA. A
simple C++ program, called the Data Manager, is executed
on each compute node whose responsibility is to retrieve
data from the partitioned data file in the general-purpose
file system. Another software program, called the Streamer,
interacts with the Data Manager. Whenever the Data Manager
has a batch of input data, the Streamer takes over the batch and
streams it to the FPGA, with the help of a PCIe driver residing
in the Linux Kernel. The PCIe driver copies the batch of data
from user-space memory to kernel-space memory. Then, the
FPGA is instructed by the driver to perform Direct Memory
Access (DMA) read operation on the kernel-space memory.
By doing the DMA transfer, the data points are transferred
from the main memory to the FPGA through the PCIe channel.
Performance of this first communication path is limited by the
combined effect of hard-disk speed, OS overhead, as well as
PCIe bus transfer speed.

The other major communication facility in the system is
the FPGA-to-FPGA communication path between the mappers
and the reducers. This communication path takes place through
the direct inter-FPGA network as mentioned in Section III-A.

Refer back to Figure 2, the intermediate key-value pairs
generated from the mappers are collected by the Scheduler.
The pairs are then transmitted to the Ethernet core, which
packetizes the pairs into Ethernet frames. The MAC address
of the reducer FPGA is inserted automatically to the header of
each frame by the hardware support system. These frames are
then transmitted to the Gigabit Ethernet switch, which routes
the frames to the destination FPGA according to the frame’s
header. The Ethernet core on reducer FPGA de-packetizes
the received frames and forwards the key-value pairs in the
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Fig. 3: PC-to-FPGA communication.

payload to the Scheduler. Finally, the Scheduler looks up the
key in the received pair and forwards it to the corresponding
reducer in the FPGA. Final results are transferred back to the
host through PCIe bus.

C. Hardware/Software Management System

To facilitate the execution of hardware/software applications
with multiple FPGA accelerators in the cluster, a general-
purpose management system has been developed. The system
provides resource and process management across the cluster.
It also manages the usage of FPGA accelerators among
users, and facilitates efficient inter-FPGA communication au-
tonomous to the hosting CPUs.

To run a hardware/software job in the cluster, as illustrated
in Figure 4, a top-level program is needed to submit a job
request to the head node following a simple server/client
model. The job tracker program running at the head node
handles the job request by searching a list of available compute
nodes and allocating enough nodes for the job. The top-
level program is also required to submit the job with a
configuration file. The configuration file contains information
such as location of the executable of the Data Manager, the

input data file and so on. After the configuration file is parsed,
the executables of both the Data Manager and the Streamer are
copied to the allocated compute nodes and remotely executed
using Open MPI library [3]. The Streamer process is spawned
and instructed to reset the underlying FPGA. Then, input data
are retrieved and streamed to the FPGAs in different compute
nodes in parallel. When the job is completed, the job tracker
carries out some clean-up works such as freeing the used
compute nodes.

As such, most of the hardware and software components
described in the previous section are general-purpose modules
that are reusable. In the PC-to-FPGA communication, the
communication channel between the Data Manager and the
Streamer is a software FIFO. Therefore, the Streamer can be
reused if another application that handles input data differently
in the Data Manager is to be implemented. Also in the FPGA
gateware design, the DMA core and the Ethernet core are
designed to be reused for other applications as well. The
two cores communicate with the Scheduler using FIFO-like
buffers. As long as the FIFO-like interface is followed, the
logic design of the Scheduler is independent of the two cores.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
The performance of our FPGA k-means implementation

was evaluated in the targeted heterogeneous computer cluster.
The experiment was run on three compute nodes, each con-
taining a KC705 FPGA board from Xilinx. Each KC705 board
contains a Kintex-7 FPGA connected to the CPU through a
PCIe ×4 gen. 1 connection. The boards were connected with
a dedicated Gigabit Ethernet network. Two of the boards were
configured as mappers and one was configured as reducer as
shown in Figure 2. The maximum number of mappers M = 64
was employed on the two mapper FPGAs, with 32 mappers
executing on each FPGA. The final FPGA served as a reducer
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FPGA with K reducer modules implemented. Each FPGA
design operated at 250 MHz.

The performance of our FPGA implementation was com-
pared against two software implementations, with one being
a baseline implementation and the other being an optimized
implementation. The baseline software implementation of the
k-means clustering closely followed the original multi-FPGA
design so as to provide an one-to-one comparison. The k-
means application from the open-source Mahout library [2]
version 0.7 was used as the optimized software example.
The Mahout library includes a MapReduce implementation
of the k-means clustering running on Hadoop cluster and
is well-optimized for large input data set. Both software
implementations were executed on a Hadoop cluster (version
2.0.0) with 3 compute nodes and 1 head node connected with
Gigabit Ethernet. All computer nodes run Linux operating
system and are equipped with Intel Core i5 2.90 GHz CPU
and 8 GB of RAM.

Input data set to both the hardware and software designs
was chosen from the UCI Machine Learning Repository
[4]. The data set is an individual household electric power
consumption data set. It contains a 4-year record of electric
power consumption of a household with sampling rate of one
minute. The data set consists of 2075259 entries of 9 attributes.
Based on the UCI data set, we created two sets of input
data to our k-means implementation. For the first input data
set, it consists of 2 attributes extracted from the UCI data
set, namely global active power and global reactive power.
For the second input data set, 4 attributes from the UCI data
set are used, which are global active power, sub metering 1,
sub metering 2 and sub metering 3. By using the two input
data sets in our k-means algorithm, seasonal or monthly power
consumption pattern can be observed. Both data sets were
stored on compute nodes as a set of D-dimensional data points,
with each dimension being a 64-bit double-precision floating
point number. As mentioned, the data set used in the multi-

0

5

10

15

20

25

3 6 12

P
er

fo
rm

a
n

ce
 s

p
ee

d
u

p
 

Number of clusters 

2D data 4D data

Fig. 5: Performance speedup of the k-means implementation
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FPGA version was manually partitioned into two halves such
that the two mapper FPGAs shared the workload from the
input data set, while the one in Hadoop version was stored on
the Hadoop Distributed File System (HDFS).

In both FPGA and Hadoop versions, the processing time
was measured between reading the first byte of data by the
mappers and writing the final results to CPU by the reducer.

B. Experimental Results

Figure 5 shows the performance speedup of our FPGA k-
means implementation against the baseline software imple-
mentation. As shown from the results, the performance of
the FPGA implementation is 15.5× to 20.6× faster than its
software counterpart. Unfortunately, the speedup advantage of
the FPGA implementation over software shrinks as the input
data dimension increases. We expect such a small decrease in
speedup is due to the increased overhead in streaming data
in the FPGA implementation when compared to the software
implementation.

Figure 6 presents the results obtained by comparing the
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FPGA k-means implementation with the optimized software
k-means. The results show that our FPGA implementation
can still achieve 10.6× to 16.3× speedup over the optimized
software version.

In both software k-means implementations, data are re-
trieved from the HDFS, copied to main memory and pro-
cessed by the CPU directly. On the other hand, the FPGA
implementation has the additional overhead of copying the
entire data set from main memory to FPGA through the PCIe
bus. When compared to the software implementation, such
additional memory copying overhead only increases as input
data size increases, diminishing the speedup advantage of the
FPGA implementation.

V. SYSTEM-LEVEL PERFORMANCE EVALUATION

Despite the fact that up to 20.6× performance speedup
is obtained with our k-means implementation on multiple
FPGAs, it is important to identify the I/O bottleneck in the
system for future improvement. In order to do so, a micro-
benchmark designed to measure the I/O performance in the
system was carried out with a baseline k-means experiment.
The baseline experiment accepted input data sets ranging from
100 k to 100M 2D data points that were randomly generated.
The same hardware setup as the previous experiment was used,
with 3 KC705 boards as mapper and reducer FPGAs.

The micro-benchmark also involves experiments evaluating
the performance of major data paths so that the I/O bottleneck
in our system can be pinpointed. The major data paths lie in
the host-to-FPGA and inter-FPGA communication channels.
The host-to-FPGA communication includes data movement
from hard-disk, through main memory and down to FPGA
via PCIe bus. The inter-FPGA channel refers to the mapper-
reducer communication through the Gigabit Ethernet switch.
It is believed that these two channels contribute a large portion
of communication overhead to the system.

A. I/O Performance Evaluation

Figure 7 shows the throughput performance of the baseline
experiment as K varies. By considering the throughput perfor-
mance, it can be seen that the throughputs of all three values
of K stay roughly constant for M = 64. In all 3 cases, it
is conjectured that the throughput performance is limited by
data I/O in the system. On the other hand, the performance
for M = 16 is more likely limited by the smaller number
of mappers. As K increases, the performance is particularly
vulnerable to the increased complexity.

To pinpoint the system I/O bottleneck, the following specifi-
cally designed experiments were used to measure the through-
put performance of the major data paths:

1) Host-to-FPGA test
2) Ethernet line speed test
3) k-means map-only test
The first test aimed to specifically evaluate the performance

of the data channel between host PC and FPGA board. Input
data were stored on two compute nodes and streamed to the
attached FPGA. On the mapper FPGAs, the data streamed

TABLE I: Processing time of the data streaming process on
two mapper FPGAs.

No. of input data points Processing time Throughput
100 k 0.5665 sec 2.69 MBps
1M 0.7035 sec 21.69 MBps
10M 2.2721 sec 67.16 MBps
100M 15.3445 sec 99.44 MBps

from the host were discarded so that the overhead of the k-
means algorithm would not be included. The measurement
would solely represent the performance of the data channel.
Table I shows the throughput performance of the data stream-
ing process. For the case of 100M data points, the throughput
achieved was 99.44 Megabyte per second (MBps). In other
words, the maximum data streaming capacity in the FPGA
system was 99.44 MBps.

The second test was to measure the throughput of the
Ethernet channel between mapper and reducer FPGAs. Key-
value pairs were artificially generated by the two mapper FP-
GAs. The generated pairs were then transmitted to the reducer
FPGA. The overall transmission time for the key-value pairs in
the mapper-reducer communication was measured and shown
in Table II. It can be seen that the maximum performance of
the mapper-reducer communication was 111.67 MBps.

The third test was the same as the baseline experiment,
except that the intermediate key-value pairs were discarded at
the output of all mapper modules. The key-value pairs were not
transmitted to the reducer FPGA for performing the reduce
function and hence the latency overhead from the Ethernet
communication was removed. The overall time for streaming
data to FPGA and generating all key-value pairs was measured.

Figure 8 summarizes the results from previous experiments.
It shows a model of factors determining the performance of
the k-means application. For simplicity, only the case of the
largest input data set, 100M input vectors, is considered. The
theoretical throughput as shown in the figure was measured
using the number of hardware cycles required by a mapper to
compute the closest centroid in our current implementation.

For small number of mappers available, such as M = 16,
the computational power of the mapper modules is the major
limiting factor to the k-means application. This effect is
clearly indicated in Figure 8b and Figure 8c, where the three
solid lines are very close at M = 16, implying that the
k-means application performance is heavily limited by the
compute capacity of the FPGA system. As the number of
mappers increases, the host-to-FPGA communication becomes
the major bottleneck to the application performance. For the
cases of M = 32 and M = 64 in Figure 8a, the solid line
(k-means map-only) overlaps with the dashed line (Host-to-
FPGA channel), pointing out that the k-means performance
is bounded by the data streaming capacity. Therefore, the
performance of our current implementation of the k-means
application cannot be maximized. Immediate next step is
accordingly to develop a more efficient implementation on the
host-to-FPGA communication.
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Fig. 7: Effect of varying on K on system throughput performance. D = 2 in all cases.
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(a) K = 3
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(b) K = 6
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Fig. 8: Performance model of the k-means application. Input = 100M points and D = 2 in all cases.

TABLE II: Processing time of key-value pairs transmission in
mapper-reducer communication.

No. of input data points Processing time Throughput
100 k 0.0181 sec 105.50 MBps
1M 0.1720 sec 110.91 MBps
10M 1.7091 sec 111.60 MBps
100M 17.0805 sec 111.67 MBps

B. Effect of Number of FPGAs

Finally, the benefit of utilizing multiple FPGAs to ease the
data streaming workload in large data processing is explored.
So far, all the experiments in previous subsections have been
performed with 2 mapper FPGAs and 1 reducer FPGA.
To show the advantage of employing multiple FPGAs, two
different system setups were evaluated. In both cases, 24
mappers were employed in the system. However, in the first
case, 3 FPGAs each containing 8 mappers were used, while in
the second case, only 1 FPGA was used with all 24 mappers
implemented. In all experiments, various data dimensions were
used, while input data set was fixed at 90M points and K
remained at 3. The input data set was equally divided into
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Fig. 9: Performance of FPGA design on variable number of
FPGAs. Input = 90M points and K = 3 in all cases.

3 subsets individually stored on the compute nodes. Figure 9
shows their performance results. It is apparent that distributing
the same number of mappers across 3 FPGAs consistently
outperforms that using 1 FPGA.
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TABLE III: Resource consumption of map and reduce functions on FPGA (Xilinx Kintex-7 XC7K325T). Overall resource
consumption for M = 32 and K = 12.

Modules Registers LUTs DSP48E1s BRAM
Map 4188 (1%) 4108 (2%) 13 (1%) 72kB (1%)
Reduce 14422 (3%) 13358 (6%) 24 (2%) 36kB (1%)
Overall Map 147343 (36%) 140654 (69%) 416 (49%) 5328kB (33%)
Overall Reduce 179554 (44%) 145159 (71%) 288 (34%) 3960kB (24%)

We attribute the performance benefit of the multi-FPGA
implementation to the reduced I/O bandwidth requirement on
the mapper FPGA as we split the set of mappers into multiple
FPGAs. This effect is particularly prominent with large D.
Consider each pair of columns. With 90M 4D data points, the
single-mapper-FPGA version is more than 2 times slower than
the multi-mapper-FPGA version. With 90M 8D data points,
the performance of using only one mapper FPGA is about 4
times slower.

Further experiments may be done in the future so as to better
understand the balanced ratio between mappers and FPGAs.

C. Resource Consumption

Table III summarizes the resource consumption of the FPGA
k-means design. The modules Map and Reduce show the
resource utilization of individual map and reduce function.
The Overall Map and Overall Reduce modules indicate re-
source usage of the largest map and reduce designs, which
were implemented with M = 32 and K = 12 respectively.

VI. CONCLUSIONS

In this paper, we have presented an implementation of
the k-means algorithm using multiple FPGAs in a heteroge-
neous computer cluster. The implementation took advantage
of the map-reduce programming model to allow easy scaling
and parallelization across the distributed computer system. A
dedicated inter-FPGA communication channel was built in
order to allow an efficient and autonomous data movement
between FPGAs. A cluster management system was also
developed to handle job requests and monitor the overall
cluster. Performance evaluations using real-life statistics as
input data were carried out and the experimental results were
compared with two software k-means solutions running on
Hadoop cluster. Our performance results show that the multi-
FPGA implementation can outperform the baseline software
implementation in all test cases, offering speedup from 15.5×
to 20.6×. In addition, the performance of the multi-FPGA
implementation was also compared with that of the optimized
software implementation offered by the Mahout library. The
results demonstrate performance speedup of the multi-FPGA
design, ranging from 10.6× to 16.3×. I/O bottleneck analysis
was conducted with several specifically designed experiments.
It was found that the primary source of I/O limitation within
the k-means application was the host-to-FPGA communication
channel. Various studies show that, by taking advantage of
multiple FPGAs, the I/O communication overhead can be re-
lieved and greater performance improvement can be achieved.

In the future, we plan to increase the scale of the exper-
iment to evaluate the case for utilizing multiple FPGAs in
processing large data sets in data centers. Further experiments
are planned to better understand the tradeoff between I/O and
computational performance limitations.
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