
Title Joint online transcoding and geo-distributed delivery for
dynamic adaptive streaming

Author(s) Wang, Z; Sun, L; Wu, C; Zhu, W; Yang, S

Citation
The 33rd IEEE Conference on Computer Communications (IEEE
INFOCOM 2014), Toronto, ON., 27 April-2 May 2014. In IEEE
Infocom Proceedings, 2014, p. 91-99

Issued Date 2014

URL http://hdl.handle.net/10722/201092

Rights IEEE Infocom. Proceedings. Copyright © IEEE Computer
Society.

Joint Online Transcoding and Geo-distributed
Delivery for Dynamic Adaptive Streaming

Zhi Wang, Lifeng Sun, Chuan Wu∗, Wenwu Zhu, and Shiqiang Yang
Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University

∗Department of Computer Science, The University of Hong Kong

Abstract—Dynamic adaptive video streaming has emerged as a
popular approach for video streaming in today’s Internet. To date
the two important components in dynamic adaptive streaming,
video transcoding which generates the adaptive bitrates of a video
and video delivery which streams the videos to users, have been
separately studied, resulting in a huge waste of computation and
storage resource due to transcoding useless videos and suboptimal
streaming quality due to homogeneous video replication. In this
paper, we propose to jointly perform video transcoding and video
delivery for adaptive streaming in an online manner. We conduct
extensive measurement studies of a video sharing system and a
CDN to motivate our design. We formulate and solve optimization
problems to enable high streaming quality for the users, and low
computation and replication costs for the system. In particular,
our design connects video transcoding and video delivery based
on users’ preferences of CDN regions and regional preferences
of video versions. Extensive trace-driven experiments further
confirm the superiority of our design.

I. INTRODUCTION

Dynamic adaptive streaming over HTTP (DASH) has
emerged as a popular video streaming method [1], in which
content providers can leverage the largely-deployed CDN
servers to cache and deliver the video segments [2]. Adaptive
streaming has been widely implemented and supported by the
industry, including Apple HTTP Live Streaming, Microsoft
Live Smooth Streaming, and Adobe Adaptive Streaming. It
allows users with heterogeneous and dynamically changing
network conditions to receive an adaptive bitrate, achieving
the best video streaming experience in different contexts [3].
In adaptive streaming, video service providers have to not

only deliver the video segments (data blocks in a video that
can be downloaded over HTTP and played independently),
but also transcode the videos to different versions (i.e., videos
with different bitrates of the same content) for the users. In
this paper, we refer to transcoding as transcoding a video to

Zhi Wang has graduated and is now with Graduate School of Shenzhen,
Tsinghua University. We thank BesTV and Tencent for providing the traces
used in our study. We acknowledge Alan Zhuang from Tencent for the
insightful discussions. This work is supported in part by the National Basic Re-
search Program of China (973) under Grant No. 2011CB302206, the National
Natural Science Foundation of China under Grant No. 61133008, 61210008,
and 61272231, “1000 People Plan” grant under Grant No. 553360001, the
research fund of Tsinghua-Tencent Joint Laboratory for Internet Innovation
Technology, Beijing Key Laboratory of Networked Multimedia, and a grant
from Hong Kong RGC under the contract HKU 717812E.

different bitrates, which may consume a lot of computation re-
source [4]. To date, traditional approaches separately perform
the video transcoding and delivery — being unaware of which
segments users will request, they have to transcode every video
published to a set of fixed versions, and replicate segments of
different versions using the same strategy.
Problems of the traditional approaches for adaptive stream-

ing are as follows: (1) Prefixed versions only allow users to
choose from a small set of candidate bitrates, which cannot
effectively adapt to the changing network conditions. (2) To
address this problem, video providers increase the number
of adaptive versions — as both the number of uploaded
videos and the number of versions are increasing, a huge
amount of computation resource is required to transcode all
the videos to all the versions [5]. As the popularity distribution
of video segments is becoming significantly heavy-tailed, i.e.,
a substantial fraction of video segments are not requested
at all — pre-transcoding them could be a huge waste of
valuable computation resource. The situation is exacerbated
by today’s user-generated-content (UGC)-based video sharing
services [6]. (3) On the other hand, traditional approaches are
not aware of the users’ preferences of different peering servers
(i.e., servers directly uploading the video segments to users)
when users receive segments of different versions, leading to
the mismatch between the download speed and the required
segment bitrate, e.g., a user being able to receive a high-bitrate
segment might be redirected to a peering server with a slow
connection to the user [7].
To address these problems, we propose to jointly schedule

segment transcoding and delivery in an online manner, using
geo-distributed computation and communication resources.
The new design philosophy allows us to jointly optimize the
streaming quality for users and minimize the computation
and bandwidth cost for transcoding and replicating the video
segments. To study the benefits of our proposal for real-world
video providers, we measure the user request patterns of adap-
tive video streams in a representative video streaming service
in China, BesTV [8] (an IPTV system serving over 16 million
users). We have made the following observations: (i) due to
the skewness of popularity distribution of the videos, segments
and versions, the online transcoding paradigm has the potential
to significantly reduce the demand for computation resource.
To demonstrate that our proposal can be implemented978-1-4799-3360-0/14/$31.00 c© 2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 91

2

practically in today’s CDNs which are already widely used for
adaptive video streaming, we further measure the availability
of computation and bandwidth resources in Tencent CDN
[9], which serves over 70% of the traffic from one of the
largest content providers in China. We have further made
the following observations: (i) A substantial amount of idle
computation resource can be provided by the backend servers
(i.e., servers supporting the peering servers), and the idle
computation resource is relatively stable over time, indicating
that online transcoding can be effectively performed by these
backend servers; (ii) Since peering servers are deployed at
different geographic locations with different Internet Service
Providers (ISPs), and scheduled to serve different numbers of
user requests, the distribution of users’ download speeds dif-
fers across different CDN regions, i.e., (1) users have different
preferences of CDN servers in different regions from which
to receive segments, while (2) servers in different regions
have different preferences of versions of video segments to
transcode.
To the best of our knowledge, our study is the first to

explore the new design space of joint online transcoding and
geo-distributed delivery. Our contributions are summarized as
follows: (1) We conduct large-scale measurement studies to
motivate our approach, the feasibility of its implementation,
and the guidelines for our design; (2) To achieve good stream-
ing qualities, low computation resource consumption, and low
video segment replication cost, we connect video transcoding
and video delivery based on users’ region preferences and
regional version preferences — we use users’ preferences of
regions to redirect them to their ideal peering servers, and we
use the regional version preferences to schedule the transcod-
ing tasks; (3) We formulate the problems, design practical
algorithms to solve them, and demonstrate the performance
of our design.
The rest of the paper is organized as follows. We present

the measurement insights that motivate our design in Sec. II.
We present our detailed design in Sec. III. We verify the
effectiveness and evaluate its performance in Sec. IV. We
discuss related works in Sec. V. Finally, we conclude the paper
in Sec. VI.

II. MEASUREMENTS AND OBSERVATIONS

We conduct measurement studies to motivate our design,
and summarize design principles learnt.

A. Measurement Setup

To demonstrate the benefits and feasibility of our proposal,
we use large-scale measurement studies based on valuable
traces collected from BesTV and Tencent CDN.
1) Traces of Users’ Video Viewing Patterns: To study

the potential of using an online transcoding scheme to save
computation resource, we have collected real-world traces
on video access patterns in BesTV. In BesTV, videos are
published into 17 categories, and pre-transcoded into 4 ver-
sions (including 700 Kbps, 1300 Kbps, 2300 Kbps and 4000
Kbps). We collected viewing activities of users in Heilongjiang

province in November 2012, about how 190K videos were
watched by users from over 3 million IP addresses. For each
of the streaming sessions, the traces record which segments
were downloaded by which users, including the time stamp
when a segment was downloaded, the user ID, the video ID,
the size and version of the segment, and the time spent on
downloading the segment. Using these traces, we can show the
great potential of our joint transcoding and streaming paradigm
in Sec. II-B1.
2) Traces of CDN Characteristics: To study the feasibility

of online transcoding in a CDN system, which has already
been widely used for adaptive streaming [2], we collected
traces of the backend and peering servers from Tencent CDN,
as follows: (1) CPU load patterns. To study the computation
resource availability for segment transcoding, we collected the
CPU load traces from the backend servers in Tencent CDN. In
particular, the CPU load of 5, 441 servers was recorded every 5
minutes, for the whole month of March 2013. Each CPU load
trace item contains the following information: timestamp and
the CPU load recorded as the average number of processes
waiting on each CPU core, e.g., a CPU load greater than
1 indicates that the server is fully loaded. (2) Bandwidth
patterns. To study the users’ preferences of CDN regions,
and the regional preferences of versions to transcode, we have
collected traces including 3.39 billion TCP connections from
peering servers located at 55 regions in May 2013. These TCP
connections were established to download contents with sizes
varying from tens of bytes to 4.8 GB. Each of the trace items
contains the following information: the timestamp indicating
when a TCP connection was established, the client IP, the
number of downloaded bytes and the connection duration. In
Sec. II-B2, we use these traces to study the feasibility and
provide guidelines for our design.

B. Measurement Insights

1) Potential – Computation Resource to Be Saved: Based
on the video viewing records in BesTV, Fig. 1(a) illustrates the
popularity distribution of the videos. Each sample represents
the number of user requests of a video in one month versus
the rank of the video. We observe that over 53% of these
videos had no viewer in a month. This can be explained by
the fact of today’s video sharing services that the time users
spent on watching videos grows much slower than the growth
of the number of videos, and such skewness of the popularity
distribution is also prevalent in other UGC-based video sharing
systems, such as YouTube [6].
In Fig. 1(a), only 13% of the videos have a monthly view

number larger than 500. We further investigate how differ-
ent segments with different versions inside such a relatively
popular video (with about 1, 000 segments), are requested
by users. Fig. 1(b) illustrates the distribution of the requests
for segments of one of the most popular videos. Each curve
represents the number of segment requests versus the segment
index. We observe that (1) only a small range of segments are
requested by many users, e.g., the first tens of the segments;
(2) different versions receive different numbers of requests,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

92

3

0 1 2 3 4
x 10

4

0

0.5

1

1.5

2x 10
4

Rank of video

N
um

be
r

of
 v

ie
w

s

(a) Number of user views versus the rank
of video.

0 200 400 600 800 1000
0

2500

5000

7500

10000

Segment index

N
um

be
r

of
 r

eq
ue

st
s

700 Kbps
1300 Kbps
2300 Kbps
4000 Kbps

(b) Number of segment requests versus
segment index for different versions.

Fig. 1. Popularity of videos, segments and versions in BesTV (Heilongjiang,
November 2012).

e.g., the version of 4000 Kbps is requested by much more
users; and (3) a large fraction of segments are requested by
nobody for some versions, e.g., the last segments of the 700
Kbps and 1300 Kbps versions.
These observations indicate that as more and more videos

are published, by both the professional content providers and
individuals, pre-transcoding every segment of all videos into
an increasing number of versions can be a huge waste of
computation resource, motivating our segment-based online
transcoding.
2) Possibility – Computation Resource Available in CDN:

Inspired by Akamai’s realtime monitoring [10] that the CPU
load of CDN servers not only can be efficiently measured but
also is diverse across different servers, we explore to perform
video transcoding using idle computation resource on the CDN
servers.
First, we demonstrate the availability of idle computation

resource in the CDN. Fig. 2(a) plots the CPU load — the
average number of processes waiting on each CPU core of
the backend servers in a time slot of 15 minutes. We observe
that in a particular time slot, the CPU load of the 5, 441
backend servers is varying from around 0 to 8.6, and as
many as 72.4% (resp. 55.9%) of backend servers have a CPU
load smaller than 1.0 (resp. 0.5), indicating that a substantial
amount of available computation resource in the CDN can
be allocated for video transcoding. The reason for the high
availability of the computation resource in a CDN is that
many backend servers are only assigned with simple I/O tasks,
e.g., loading data from the distributed storage system for the
peering servers.
We further study the availability of computation resource

in a region of the CDN. We use a city-ISP pair to identify
a region. Fig. 2(b) illustrates the regional CPU load, i.e., the
average CPU load of all the backend servers in that region.
In this figure, each curve represents the CPU load of the four
largest regions, i.e., Xian, Tianjin, Chengdu and Beijing, in one
day. We also observe the existence of available computation
resource at the region level; meanwhile, we observe that the
CPU load differs across different regions, e.g., the CPU load
of Xian is much lower than that of Beijing on that day.
To make use of the idle CPU resource from the backend

servers in the CDN for segment transcoding, we also need
to investigate the stability of the idle computation resource
on the backend servers. Since these servers can be scheduled
to run different tasks, the available computation resource
provided by these servers may vary over time. We use an

0 2000 4000 6000
0

5

10

Rank of server

C
P

U
 lo

ad

(a) Average CPU load in 15 minutes ver-
sus the rank of the server (8PM, March 5,
2013).

0:00 8:00 16:00 24:00
0

1

2

3

Time

C
P

U
 lo

ad

Xian
Tianjin
Chengdu
Beijing

(b) Average CPU load on servers of differ-
ent regions over time (March 5, 2013).

Fig. 2. Average CPU load of backend servers.

0:00 8:00 16:00 24:00
0

20

40

Time

C
P

U
 lo

ad

CV=0.07
CV=0.47
CV=0.69

(a) Examples of server CPU load over
time.

0 0.5 1 1.5 2 2.5
0

0.5

1

Coefficient of variation

C
D

F

(b) The CDF of the coefficient of variation
of the server CPU load.

Fig. 3. Variation of server CPU load over time.

average coefficient of variation to evaluate the daily churning
level of the CPU load of a backend server, calculated as
follows: CV = 1/24

∑23
h=0

√
E[(Xh − X̄h)2]/X̄h, whereXh

represents a set of CPU load records of a particular server in
one hour h, i.e., there are 12 samples in an hour, as CPU load
is recorded every 5 minutes. A large CV implies a highly
churning CPU load over time. In Fig. 3(a), we sample 3
servers with different CV ’s on March 5, 2013. Each curve
represents the CPU load of the server over time. We observe
that servers with CV = 0.07 and CV = 0.47 have a stable
CPU load over time; while the server with CV = 0.69 has
a relatively churning CPU load, varying from 0.17 to 31.5 in
several minutes.
We investigate the distribution of CV s of all the backend

servers in the CDN. In Fig. 3(b), the curve represents the CDF
of CV s of all the servers on the same day. We observe that
over 70% of the servers have a CV smaller than 0.5, indicating
that the CPU load of many backend servers is relatively stable
— their capacity for performing video transcoding in the near
future can be predicted. We use such information in our design
of transcoding task scheduling.
3) Connections – Users’ Region Preferences and Regional

Version Preferences: In the context of online transcoding,
we are allowed the degree of freedom that segments can be
transcoded by different CDN regions. Next, we explore the
guidelines for such transcoding schedule.

� Users’ preferences of different CDN regions. Which
version of a video segment is requested by a user depends
on the user’s download speed. Based on the TCP traces of the
peering servers, we compare the download speed of about 150
users who downloaded from different peering servers in the
same 10 minutes on May 4, 2013. In Fig. 4, each sample is the
average download speed of a user downloading from a peering
server deployed in Shanghai, versus the average download
speed of the same user downloading from a Shenzhen peering
server, both with the same ISP. We observe that for over
79% of the users, their download speeds differ over 2 times
when they download from servers located at different regions,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

93

4

0 0.5 1 1.5 2 2.5
x 10

4

0

0.5

1

1.5

2x 10
4

From Shenzhen Server in Kbps (X)

F
ro

m
 S

ha
ng

ha
i S

er
ve

r
in

 K
bp

s
(Y

)

X/Y in [0.5, 2]
Otherwise

Fig. 4. Comparison of average
download speed of users download-
ing from different peering servers in
the same 10 minutes on May 4, 2013.

0 50 100 150 200 250
0

200

400

600

800

1000

1200

Rank of CDN server

A
vg

. d
ow

nl
oa

d
sp

ee
d

(K
bp

s)

Fig. 5. Average user download speed
of different peering servers on May 4,
2013.

indicating that redirecting users to their ideal peering servers
can help users receive a better streaming quality.

� Regional preferences of different versions to transcode.
On the other hand, to study the regional preference of versions
to transcode, we calculate the average download speeds of
users downloading from the peering servers. In Fig. 5, each
sample represents the average download speed in one day, of
all users served by a server versus the rank of the server.
We observe that the average download speed varies quite
significantly across these peering servers, from 170 Kbps to
1.1 Mbps.
We further study the download speeds from servers in

different regions, i.e., the download speeds from servers in
different regions to users. In Fig. 6, each bar represents the
minimal, average and maximal download speeds from the
peering servers in a region. We observe that the average
download speeds across different regions vary from 180 Kbps
(region BJT, i.e., Beijing, China Telecom) to 512 Kbps (region
ZJM, i.e., Zhejiang, China Mobile). Different regions “cover”
users with quite different speeds, e.g., BJT serves most of
the low-bitrate users while ZJM serves hit-bitrate users. The
rationale behind these observations is as follows: (1) Peering
servers are physically deployed at different locations and with
different ISPs, so that the Internet connectivity and average
bandwidth capacity are different; and (2) Peering servers at
different regions are generally scheduled to serve different
numbers of user requests, leading to the different server load.
These observations indicate that servers in different regions

have different preferences of versions to transcode, e.g., a
region with a low CDN-to-user download speed may prefer to
produce low-bitrate segments. Satisfying such preferences of
regions can reduce the cost of replicating transcoded segments,
since segments are already transcoded where they are to be
requested.

III. JOINT ONLINE TRANSCODING
AND GEO-DISTRIBUTED DELIVERY

A. Framework

Fig. 7 illustrates our design, where segments in different
versions of videos are transcoded upon users’ requests. In
this example, s1, s2, s3, s4 represent segments of different
versions, which are requested by a user during her streaming
session. R1, R2 and R3 are CDN regions (each is represented

BJT ZJT GDT SXT JST BJU GDU JSU ZJM
0

200

400

600

800

CDN Region

D
ow

nl
oa

d
sp

ee
d

(K
bp

s)

Fig. 6. Average user download speed in different CDN regions on May 4,
2013.

Fig. 7. Joint online transcoding and geo-distributed streaming: an illustration

by a pair of a geographical location and ISP) where servers are
deployed with backend servers and peering servers deployed.
Segments can be transcoded by selected regions (e.g., s2 is
transcoded by region R1), replicated between regions (e.g., s1
is replicated from region R3 to R1), and delivered to users,
all in an online manner.
Fig. 8 further illustrates the framework of our online

transcoding and delivery scheme, which schedules segment
transcoding and replication periodically: based on the recent
information collected in time slot T −1, we perform transcod-
ing and replication of segments that are likely to be requested
in time slot T . The collected information includes: (1) Users’
preferences of different regions to receive segments. In our
design, we allow users to use a bandwidth estimation approach
(e.g., abget [11] which uses little bandwidth to measure the
end-to-end bandwidth) to rank a set of candidate peering
servers, in the descending order of the estimated download
speed. (2) The number of requests for a particular segment,
which can be predicted according to users’ segment requests
in previous time slots. Based on the estimation of CDN-to-
user bandwidth and users’ segment requests, we are able to
estimate which segments will be requested by users in the next
time slot, and the request level of each segment. (3) The idle
computation resource. As many backend servers have stable
CPU load over time according to our measurement study, we
use the level of computation resource in the current time slot as
the available computation resource in the next time slot. Other
regression models (e.g., ARIMA [12]) can also be explored to
achieve better prediction accuracy, which we will investigate
in the future.
Using such information, we perform the following: (1)

User redirection. To enable high-quality streaming, our design
redirects users to their ideal regions so that they can receive
segments at high bitrates. We redirect users at a region level,
i.e., a region with the highest CDN-to-user bandwidth will
be selected serve a user’s request, and peering servers in the

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

94

5

Fig. 8. Framework of our joint online transcoding and delivery mechanism.

same region are assigned to serve user requests in a round-
robin manner. (2) Transcoding segment selection. Backend
servers with idle CPU resource performs video transcoding,
by slicing a video into multiple closed groups of pictures
(GoPs), each of which can be transcoded independently [13].
To allow a smooth playback, when a segment request of a
particular version is not transcoded timely, we send the user the
segment of an alternative version, whose bitrate is closest to
that of the requested version. We prioritize more “important”
segments that are more critical to users’ streaming quality, to
be transcoded when computation resource is not sufficient.
(3) Transcoding task assignment. A transcoded segment is
cached by the backend servers and replicated to other regions,
according to our replication strategy. Transcoding is performed
by strategically selected regions, so that the cost of replicating
the transcoded segments to other regions can be minimized.
Before we present the design details, Table I gives important

notation used in this paper.

B. Quality-Driven Redirection

In our design, taking the advantage of online transcoding,
a user can be redirected to her ideal region where segments
are generated on the fly. This design principle allows users
to choose a CDN region with the largest download speed
to receive the segments, without considering the segment
availability.
We first formulate this problem in a centralized manner. We

denote U
(T) as the predicted set of users requesting different

segments in the system in time slot T , and R as the set of
CDN regions where a user can be redirected. We use D(T)

to denote a redirection strategy, where the binary variable
D(T)(u, r) = 1 (resp. 0) indicates that user u will (resp. will
not) be downloading from region r in the next time slot T .
In the context of adaptive video streaming, we assume that

users expect to receive a large bitrate for good streaming
quality whenever possible. Thus, we use H(u, r) to denote
user u’s preference to download from a CDN region r.
H(u, r) can be defined as a concave increasing function of the
estimated download speed achieved when user u downloads
from peering servers in region r. We formulate the region-level
user redirection as an optimization problem, as follows:

max
D(T)

∑
u∈U(T),r∈R

H(u, r)D(T)(u, r), (1)

subject to: ∑
r∈R

D(T)(u, r) ≤ 1,∀u ∈ U
(T),

TABLE I
IMPORTANT NOTATIONS.

Symbol Definition

U(T) Set of users requesting segments in time slot T

D(T)(u, r) Binary variable indicating whether user u will download
from region r in time slot T

H(u, r) Preference level for user u to receive video stream from
region r

Wr Bandwidth capacity of region r

e
(T)
(s,v)

Importance level of a particular segment (s, v) in time slot
T

Q
(T)
(s,v)

Number of requests of segment (s, v) from all regions in
time slot T

Y
(T)
(s,v)

Quality gain if segment (s, v) is transcoded in time slot
T

B(v) Bitrate of a particular version v

G(T)(s) The set of transcoded versions of segment s

R Set of CDN regions

E(T) Set of segments to be transcoded in time slot T

L(u, r) Highest version that u can receive when she downloads
from region r

C(s, v) Computation resource required to perform the transcoding
task to generate a segment s of version v

I(T)(r) Available computation resource that can be allocated for
video transcoding from region r in time slot T

F [(s, v), r] Overall replication cost when segment (s, v) is transcoded
in region r

A
(T)
(s,v)

Region assigned to transcode segment (s, v) in time slot
T

∑
u∈U(T)

D(T)(u, r)B(L(u, r)) ≤ Wr,∀r ∈ R,

where B(v) is the bitrate of version v, L(u, r) is the version
with the highest bitrate that u can receive when she downloads
from region r, and Wr is the bandwidth capacity of CDN
region r. The rationale of the optimization is to maximize the
streaming quality for users by the redirection.
This problem is generally NP-hard, since we can reduce

a conventional 0-1 knapsack problem which is NP-hard to
it. We design an algorithm to heuristically solve it in a
distributed manner: (1) When a user starts to watch a video,
the system assigns her a list of candidate peering servers
from regions with the lowest load. (2) The user ranks these
servers in descending order of the estimated download speeds
as discussed in Sec. III-A, and sends connection requests to
these servers. (3) On the other hand, a peering server may
receive connection requests from many users, and can only
accept a limited number of users according to its available
bandwidth Wr. User u is prioritized to be accepted if she has
a larger H(u, r)/B(L(u, r)) with the CDN region r — this
value reflects a marginal “gain” in streaming quality by a unit
of bandwidth allocated. (4) The user selects the best peering
server from the ones accepting her request according to the
ranked list. In a real system, this algorithm can be effectively
implemented and executed in a distributed manner.

C. Region-Preference-Aware Transcoding Schedule

After users are redirected to the CDN regions, they send
requests for video segments of different versions. Based on

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

95

6

Fig. 9. Segment importance in the context of online transcoding.

the segment request prediction, we perform the transcoding
task schedule, which works in two steps: (1) we prioritize the
segment transcoding tasks such that important segments are
transcoded more urgently; and (2) we distribute the transcod-
ing tasks to CDN regions, such that segments are transcoded
where they are more likely to be requested.
1) Prioritizing Segment Transcoding Tasks: We prioritize

the segment transcoding tasks according to the importance of
these segments. We denote e

(T)
(s,v) as the importance level of

segment s of version v in time slot T . e
(T)
(s,v) depends on the

following factors: (1) the estimated number of user requests for
the segment, discussed in Sec. III-A; and (2) the quality-wise
importance of the segment, which depends on the existing
versions of the same segment. In particular, e

(T)
(s,v) can be

calculated as follows:

e
(T)
(s,v) = Q

(T)
(s,v)Y

(T)
(s,v),

where Q
(T)
(s,v) denotes the predicted number of requests of the

particular segment (s, v) in the next time slot T , and Y
(T)
(s,v)

is the quality gain if the segment is transcoded to version v.
Fig. 9 illustrates an example of the importance of a segment:
a solid block represents a segment transcoded, and a dashed
block represents one that is not transcoded yet. When segment
(s1, v3) and (s2, v3) are both requested by the same number
of users, (s1, v3) is prioritized to be transcoded over (s2, v3),
since users requesting (s2, v3) can be served by an alternative
version (s2, v2), which has a close bitrate to the original
requested one, and no version of segment s1 exists in the
system.
In our design, Y

(T)
(s,v) is calculated as the “mismatch” level

of the bitrate if v is not transcoded as follows:

Y (T)
s,v =

{
minw(B(v)−B(w))/B(v), ∃w ∈ G

(T)(s), w < v

γ, otherwise
,

where G
(T)(s) is the set of all the versions of the segment

existing in the system. When there is a lower-version replace-
ment, a large Y

(T)
(s,v) indicates that users will receive a highly

mismatched bitrate if the version v is not transcoded, such
that version v is important to segment s quality-wise. When
there is no lower-version replacement, Y (T)

(s,v) is assigned with
a large value γ, indicating that no replacement version of the
segment has been transcoded.
Based on the definition of the importance level of segments,

we determine which segments to be transcoded by formulating

it as an optimization problem, as follows:

max
E(T)

∑
(s,v)∈E(T)

e
(T)
(s,v), (2)

subject to: ∑
(s,v)∈E(T)

C(s, v) ≤
∑

r

I(T)(r),

where E
(T) is the set of segments to be transcoded in time

slot T , C(s, v) is the amount of computation resource required
to transcode a segment (s, v), and I(T)(r) is the aggregated
idle computation resource from the CDN region r. According
to [13], it takes different CPU times to generate different
segments in the same video. In our design, we use the
average CPU time spent on generating historical segments
of a particular version and size, to estimate the computation
resource required to transcode any segment with that version
and size.
The rationale of the optimization that is also a 0-1 knapsack

problem is to select a set of segments that are the most
important ones in the next time slot T . We design the
following algorithm to solve this problem: (1) We collect
the information for prediction in a centralized manner, e.g.,
users (resp. backend servers) report which segments they are
downloading (resp. the CPU load information) to a centralized
server, which will carry out the prediction; (2) Based on the
prediction, we rank the requested segments in descending
order of e(T)

(s,v)/C(s, v); (3) We iteratively select segments from
the ranked list to transcode, and update computation resource
consumption, until the available idle computation resource is
used up.
2) Scheduling Transcoding Tasks across Regions: After the

tasks are selected, they are to be scheduled to different regions
where backend servers can provide the computation resource.
Without lose of generality, we use A

(T)
(s,v) to denote the region

where segment (s, v) will be transcoded — the segment will
be replicated from this region which originally stores the
transcoded version, to other regions where users request it .
According to our measurement studies in Sec. II, heteroge-

neous preferences of video versions exist at different regions,
due to the different download speeds from the servers at
different regions. As a result, it is promising to strategically
assign transcoding tasks for different segments to backend
servers at different CDN regions for a minimized replication
cost.
We use F [(s, v), r] to denote the overall replication cost if

segment (s, v) is transcoded in region r. It can be calculated
as follows:

F [(s, v), r] =
∑

r′ �=r,J
(T)

(s,v),r′
>β

Zr,r′(s, v),

where J
(T)
(s,v),r′

is the number of requests of segment (s, v) to
be served by a region r′, Zr,r′(s, v) represents the replication
cost when segment (s, v) is replicated from region r to region
r′, depending on the size of the segment and the bandwidth

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

96

7

between CDN regions r and r′ [14]. β is a threshold of
the number of requesting users from a region to trigger a
replication. J(T)

(s,v),r′
can be derived from the optimization in

(1), which determines the redirection of users. The rationale
of this definition is that, in our design, a transcoded segment
can be replicated from where it is transcoded to other regions
where it is substantially requested (i.e., J

(T)
(s,v),r′

> β) — a
large F [(s, v), r] indicates a large replication cost between
CDN regions if segment (s, v) is transcoded by region r. The
task assignment problem is then formulated as follows:

min
A(T)

∑
(s,v)∈E(T)

F [(s, v), A
(T)
(s,v)], (3)

subject to: ∑
(s,v)∈E(T)

C(s, v) ≤ I(T)(r),∀r ∈ R.

The rationale of the optimization is to schedule the segment
transcoding tasks to different CDN regions, so that the overall
replication cost can be minimized. In our implementation,
we also design a practical algorithm to heuristically solve
the problem, as follows: (1) We first rank all the pairs of
the CDN regions and segments (i.e., |R|

∣∣E(T)
∣∣ elements), in

ascending order of F [(s, v), r]; (2) we pick the region-segment
pair “r − (s, v)” with the smallest F [(s, v), r] and assign the
transcoding task of segment (s, v) to region r; (3) we update
the available computation resource of the selected region, and
iteratively perform (2) until all computation resource in all the
regions is fully used up. This algorithm can be implemented
in a centralized manner, where a central server is deployed
to collect the request information from streaming servers
and make the decisions. Such implementation has been well
applied in peer-assisted on-demand streaming systems [15],
where a central server tracks the storage status of peers to
help them find each other.
In our design, regions with a request number of a segment

larger than β will serve a replication of the segment; while for
other regions with numbers of requests smaller than β, they
will further redirect the users to other regions with the segment
transcoded or replicated, according to the users’ preferences.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

We develop an event-driven simulation platform which takes
users’ viewing activities, and the transcoding and redirection
decisions as events to drive the experiments. We compare our
design with a pre-transcoding baseline scheme. Details are as
follows.

� Users. According to models summarized from user
viewing traces in BesTV, we simulate 10, 000 users, each
of whom repeatedly joins different video sessions. After a
user joins the system, she selects a video to watch according
to the video popularity distribution. The indices of the first
segments users start to view also follow a zipf distribution,
with a shape parameter 1.29. When playing a video, a user

plays (downloads) sequentially the segments, and may jump to
a rand segment ahead with a probability of 0.05. The rationale
is that in a video session, how users request segments follow
a pattern that users generally play forward and issue a few
seeks, most of which are forward seeks [16]. Before leaving
a video session, the number of segments a user downloads
follows a zipf distribution with a shape parameter 1.12.

� Video Provider. New videos are published every 10, 000
time slots. The popularity of videos follows a zipf distribution
with a shape parameter 1.76. In our experiments, the default
number of segments in each video is 200, and the default num-
ber of versions is 4, if not specified otherwise. The bitrates of
the versions are uniformly distributed between the lowest user
download speed, and the highest user download speed. The
segment length is 10 seconds, and the computation resource
required to transcode a segment is randomly distributed within
[5, 10] CPU seconds [17].

� CDN Regions. We simulate 30 regions. We set a region-
to-user average download speed according to the download
speed of 10, 000 IP prefixes randomly selected from the CDN
traces, i.e., the download speed of an IP prefix is the average
download speed of users with the same prefix in a one-
week time span, varying from 70 Kbps to 2.2 Mbps. In
our experiments, the aggregated CDN bandwidth is sufficient
for all the users to stream at their ideal bitrates, and we
randomly divide the bandwidth allocation across the regions.
We assign the replication cost between each pair of regions
within [0, 1], and a replication parameter β = 10. A region
has a varying idle computation resource over time with CV
randomly selected in [0, 0.5], and the average amount of
computation resource will be presented in the experiments.
Baseline Algorithm. We compare our design with a general

pre-transcoding and load-based redirection strategy: (1) For
segment transcoding, all versions of the videos are transcoded
before publication, and each transcoded segment is replicated
to 3 initial regions randomly selected (i.e., the pre-transcoding
scheme); (2) For user redirection, when requesting a segment,
a user is redirected to a region which currently has the highest
available upload bandwidth (i.e., the load-based redirection
scheme).

B. Experiment Results

1) Saving of Computation Resource: In this experiment,
we assume that the CDN can provide unlimited computation
resource when transcoding is performed, such that we can
satisfy all the segment requests of users. In Fig. 10, the
curves represent computation resource saved by our design
under different number of versions, compared with the pre-
transcoding scheme. In particular, each sample is the fraction
of computation resource that has been saved over the compu-
tation resource required to transcode videos to all the versions
till a simulation round. We observe that as the number of
versions increases, the computation resource saved by online
transcoding increases, e.g., over 90% of the computation
resource can be saved when the number of versions is over
8. The reason is that transcoding segments with no viewer to

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

97

8

0 0.5 1 1.5 2
x 10

5

0.2

0.4

0.6

0.8

1

Round

C
om

pu
ta

tio
n

re
so

ur
ce

 s
av

in
g

Version = 1
Versions = 2
Versions = 4
Versions = 8

Fig. 10. Computation resource saved
by online transcoding under different
number of versions.

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Segment number

C
om

pu
ta

tio
n

re
so

ur
ce

 s
av

in
g

Videos = 20
Videos = 40
Videos = 80
Videos = 160

Fig. 11. Computation resource saved
by online transcoding under different
numbers of videos and segments.

many versions costs a large amount of computation resource.
We also observe that the amount of computation resource
saving decreases in the first several rounds when new videos
are published, and becomes stable afterwards. The reason
is that in our design, computation resource is mainly used
to transcode the most popular segments after the videos are
published, and users who watch videos later largely request
the segments that have already been transcoded.
Then, we investigate the impact of the number of videos

published each time and the number of segments in each video.
In this experiment, we fix the number of versions to 4. In
Fig. 11, each bar represents the computation resource saving
when a particular number of videos are published each time.
We observe that publishing a large number of videos per time
slot generally leads to larger computation resource saving. The
reason is that the popularity distribution of the videos is heavy-
tailed, and more videos with no viewer cause more waste of
computation resource with the pre-transcoding scheme.
2) Streaming Bitrates at Users: Taking advantage of online

transcoding, users are redirected to their ideal regions to
download the videos. We compare our redirection strategy
with the load-based redirection scheme. In Fig. 12, each curve
plots the average download speed achieved at users versus the
rank of users. We observe that our strategy can effectively
schedule users to their ideal regions, with an average 181
Kbps improvement of download bandwidth than the load-
based redirection scheme. The reason is that the load-based
redirection scheme only considers segment replication and
available bandwidth of the regions, while our strategy allows
users to choose their ideal regions.
Furthermore, we compare the best versions users receive

under different redirection strategies. Again, we fix the number
of versions to 4. As illustrated in Fig. 13, each curve represents
the version downloaded versus the user rank. We observe
that as many as 44.8% of the users receive a version of a
higher bitrate with our strategy than that with the load-based
redirection scheme. In particular, over 4.5x users receive the
version with the highest bitrate with our redirection strategy
than with the load-based redirection scheme.
3) Fitness of the Transcoded Segments: In the following

experiment, we will evaluate the effectiveness of our transcod-
ing task schedule, in how well the transcoded segments match
the users’ requests. We compare our transcoding scheduling
scheme with an FIFO-based scheme, where the transcoding

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3x 10
5

Rank of user

D
ow

nl
oa

d
sp

ee
d

ac
hi

ev
ed

Our design
Load−based redirection scheme

Fig. 12. Comparison of download
speed achieved at users under differ-
ent redirection strategies.

0 1000 2000 3000 4000 5000

1

2

3

4

Rank of user

S
eg

m
en

t v
er

si
on

 a
ch

ie
ve

d

Our design
Load−based redirection scheme

Fig. 13. Comparison of best versions
achieved at users under different redi-
rection strategies.

tasks are performed according to request arrivals in an FIFO
manner. For a fair comparison, we assume that users have
already been redirected to regions according to our redirection
strategy for both schemes. By varying the average computa-
tion resource in the regions, we evaluate the fitness of the
transcoded segments. In Fig. 14, each sample represents the
average bitrate difference between the bitrates of the received
version and the requested version at all users versus the
average computation resource of the region, calculated as
the average number of segments that can be generated by
the region. Note that the real computation resource may be
different across the regions as it takes different amount of
computation resource to transcode different versions. A larger
difference indicates a larger streaming quality degradation, as
users have to receive a replacement segment with a much
smaller bitrate. We observe that the average bitrate difference
is much smaller with our design. In particular, our strategy can
reduce the number of users who have to receive a segment of
a mismatched version by over 42.2%.
4) Replication Cost: Our design utilizes regional prefer-

ences of versions when assigning transcoding tasks. Next, we
evaluate the replication cost under different numbers of video
versions. In Fig. 15, each curve represents the replication cost
versus the number of versions, with a particular number of
segments in each video. We observe that a larger number of
versions leads to a smaller replication cost. The reason is that
when more versions are available, our design can effectively
allow regions to transcode heterogeneous versions that best
meet their users’ demand. We also observe that the number
of segments has little impact on the replication cost, implying
that we can use a small amount of time for adaptive scheduling
without incurring increased replication cost. As more and more
versions are used in today’s adaptive streaming systems, our
design reduces not only the waste of computation resource
for transcoding, but also the replication cost of the transcoded
segments.

V. RELATED WORKS

Many architectures have been proposed to implement large-
scale video streaming services including the CDN-based ar-
chitecture [18]. After HTTP has become the norm for users
to access online contents, multimedia applications including
video streaming, have been largely deployed over HTTP.
CDNs can significantly assist in HTTP-based streaming with

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

98

9

50 100 150 200 250 300
0

1

2

3

4

5

6x 10
4

Average computation resource of a region

A
ve

ra
ge

 b
itr

at
e

di
ffe

re
nc

e
(B

ps
)

Our transcoding schedule
FIFO transcoding schedule

Fig. 14. Comparison of bitrate
mismatch under different transcoding
schedules.

5 10 15
200

400

600

800

1000

1200

1400

Number of versions

R
ep

lic
at

io
n

co
st

Segment = 100
Segment = 200
Segment = 300

Fig. 15. Average replication cost
per time slot versus the number of
versions.

servers deployed in multiple geographical locations across
multiple ISPs [19]. Users experience higher-quality streaming
by receiving streams at more reliable bandwidth from the
CDN servers. Recently, Adhikari et al. [7] proposed a multi-
CDN scheme for real-world video systems to further improve
the streaming quality. Traditional studies on video streaming
have been focusing on improving the connectivity between
streaming servers and users from the network aspect.
Based on the CDN delivery backbone, DASH has re-

cently been proposed to provide adaptive video streaming
for heterogeneous networks and devices [1]. Compared with
the traditional video streaming paradigm, DASH enables a
much larger number of quality versions, requiring a huge
amount of computation resource to transcode these versions of
videos. Dedicated transcoders are developed to speed up video
transcoding [20]. There have also been works on using the
computation resource in a cloud cluster for video transcoding.
Lao et al. [5] designed a MapReduce-based video transcoding
scheme for distributing transcoding tasks. Huang et al. [13]
proposed CloudStream, which schedules the video transcoding
tasks inside a cluster according to properties of the videos.
Traditional studies on video transcoding have been exploiting
dedicated devices or computation resource, leading to the
decoupling of segment transcoding and delivery.
Most related works on adaptive streaming have investigated

video delivery and video transcoding separately, i.e., videos are
pre-transcoded centrally, and then replicated to CDN servers
for delivery using a same strategy, e.g., a full replication
scheme. In this paper, we explore the design space of joint
transcoding and delivery using geo-distributed computation
and network resources.

VI. CONCLUDING REMARKS

Transcoding and delivery have been separately studied for
adaptive video streaming, resulting in a significant waste
of computation resource to transcode useless segments, and
suboptimal streaming quality due to homogeneous replication
of segments of different versions. Motivated by extensive
measurement studies, we propose a joint online transcoding
and geo-distributed delivery strategy, which allows us to
explore a new design space for adaptive video streaming.
We connect video transcoding and video delivery based on
users’ preferences of CDN regions and regional preference of
versions to transcode. Aware of users’ preferences of CDN

regions, our design strategically performs user redirection so
that videos can be streamed at large bitrates to the users. Tak-
ing into consideration heterogeneous importance of segments
and regional preferences of versions to transcode, our design
carefully schedules the transcoding tasks so that segments are
transcoded to satisfy users’ demands in each region, with little
need of cross-region replication. Optimization problems are
formulated and efficiently solved to derive these strategies.
Our trace-driven experiments demonstrate that our design sig-
nificantly saves computation resource for segment transcoding,
improves streaming quality for users, and reduces replication
cost for video delivery.

REFERENCES

[1] I. J. S. W. . (MPEG), “Dynamic adaptive streaming over HTTP,” 2010.
[2] A. J. Cahill and C. J. Sreenan, “An Efficient CDN Placement Algorithm

for the Delivery of High-Quality TV Content,” in Proc. of ACM
Multimedia, 2004.

[3] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proc. of ACM Conference on Multimedia
Systems, 2011.

[4] Z. Li, Y. Huang, G. Liu, F. Wang, Z. Zhang, and Y. Dai, “Cloud
Transcoder: Bridging the Format and Resolution Gap between Internet
Videos and Mobile Devices,” in Proc. of ACM NOSSDAV, 2012.

[5] F. Lao, X. Zhang, and Z. Guo, “Parallelizing Video Transcoding Using
Map-Reduce-Based Cloud Computing,” in Proc. of IEEE International
Symposium on Circuits and Systems (ISCAS), 2012.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing the
Video Popularity Characteristics of Large-Scale User Generated Content
Systems,” IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp.
1357–1370, 2009.

[7] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-
L. Zhang, “Unreeling Netflix: Understanding and Improving Multi-CDN
Movie Delivery,” in Proc. of IEEE INFOCOM, 2012.

[8] Bestv, “http://www.bestv.com.cn/.”
[9] Tencent, “http://www.tencent.com/.”
[10] J. Cohen, T. Repantis, S. McDermott, S. Smith, and J. Wein, “Keeping

Track of 70,000+ Servers: the Akamai Query System,” in Proc. of
International Conference on Large Installation System Administration,
2010.

[11] D. Antoniades, M. Athanatos, A. Papadogiannakis, E. P. Markatos, and
C. Dovrolis, “Available Bandwidth Measurement As Simple As Running
wget,” in Proc. of Passive and Active Measurement Conference (PAM),
2006.

[12] G. P. Zhang, “Time Series Forecasting Using a Hybrid ARIMA and
Neural Network Model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[13] Z. Huang, C. Mei, L. Li, and T. Woo, “CloudStream: Delivering High-
Quality Streaming Videos Through a Cloud-Based SVC Proxy,” in
Proc. of IEEE INFOCOM, 2011.

[14] Y. Chen, R. H. Katz, and J. D. Kubiatowicz, “Dynamic Replica Place-
ment for Scalable Content Delivery,” in Proc. of International Workshop
on Peer-to-Peer Systems, 2002.

[15] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges, Design
and Analysis of a Large-Scale P2P-VoD System,” in Proc. of ACM
SIGCOMM, 2008.

[16] C. Zheng, G. Shen, and S. Li, “Distributed Prefetching Scheme for Ran-
dom Seek Support in Peer-to-Peer Streaming Applications,” in Proc. of
ACM Workshop on Advances in Peer-to-Peer Multimedia Streaming,
2005.

[17] L. Liang, “The Cloud Video Material Transfer Code System Design
in the Global Station Network Environment,” in IEEE International
Conference on Image Analysis and Signal Processing (IASP), 2012, pp.
1–3.

[18] G. Peng, “CDN: Content Distribution Network,” arXiv preprint
cs/0411069, 2004.

[19] A. Vakali and G. Pallis, “Content Delivery Networks: Status and Trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[20] N. Wu, M. Wen, W. Wu, J. Ren, H. Su, C. Xun, and C. Zhang, “Stream-
ing HD H.264 Encoder on Programmable Processors,” in Proc. of ACM
Multimedia, 2009.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

