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Influence of inerter on natural frequencies of vibration systems
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aDepartment of Mechanical Engineering, The University of Hong Kong, Hong Kong
bSchool of Automation, Nanjing University of Science and Technology, Nanjing, China

cDepartment of Electronic Engineering, City University of Hong Kong, Hong Kong

Abstract

This paper investigates the influence of inerter on the natural frequencies of vibration
systems. First of all, the natural frequencies of a single-degree-of-freedom (SDOF) system
and a two-degree-of-freedom (TDOF) system are derived algebraically and the fact that the
inerter can reduce the natural frequencies of these systems is demonstrated. Then, to further
investigate the influence of inerter in a general vibration system, a multi-degree-of-freedom
system (MDOF) is considered. Sensitivity analysis is performed on the natural frequencies
and mode shapes to demonstrate that the natural frequencies of the MDOF system can
always be reduced by increasing the inertance of any inerter. The condition for a general
MDOF system of which the natural frequencies can be reduced by an inerter is also derived.
Finally, The influence of inerter position on the natural frequencies is investigated and the
efficiency of inerter in reducing the largest natural frequencies is verified by simulating a
six-degree-of-freedom system, where a reduction of more than 47% is obtained by employing
only five inerters.

Keywords: Inerter, natural frequency, vibration analysis.

1. Introduction

Inerter is a recently proposed concept and a device with the property that the applied
force at its two terminals is proportional to the relative acceleration between them [1, 2].
As a new passive mechanical element, the performance benefits of using inerters in vari-
ous mechanical systems have been well demonstrated [2]. In [3], improvements of about
10% or greater in performance benefits were obtained by incorporating an inerter in vehi-
cle suspension systems after comparing six simple suspension struts. An analytical solution
was given in [4] to confirm the performance benefits reported in [3] and a new simple strut
containing an inerter was also introduced (S5 in [4]). Inerter has also rekindled interest in
passive network synthesis [5, 6, 7, 8, 9, 10]. In particular, five different mechanical networks,
which cover all admittances that can be realized with one damper, one inerter and an arbi-
trary number of springs, were proposed in [8] and the performances of these five networks
as vehicle suspensions were studied in [11]. Other than these fix-structured mechanical net-
works, an approach to optimizing all passive transfer functions (positive-real admittances)
with fixed orders by the Linear Matrix Inequalities method was introduced in [12], which
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makes it possible to realize more complex mechanical networks employing inerters. In addi-
tion, the performance benefits of using inerters in motorcycle steering systems [13, 14], train
suspensions [15, 16, 17, 18] and building vibration control [19] were also reported.

Note that among these applications, inerter always appears in some mechanical networks
which possess more complex structures than the conventional networks consisting of only
springs and dampers. The networks with inerters will surely be better than or at least equal
to the conventional networks consisting of only springs and dampers as they can always reduce
to the conventional ones when the values of element coefficients (spring stiffness, damping
coefficient or inertance) become zero or infinity [11]. It is true that inerter can provide extra
flexibility in structure, but the basic functionality of inerter in vibration systems has not yet
been clearly understood and demonstrated.

It is well known that in a vibration system, spring can store energy, provide static support
and determine the natural frequencies, while viscous damper can dissipate energy, limit the
amplitude of oscillation at resonance and slightly decrease the natural frequencies if the
damping is small [20]. As shown in [1], inerter can store energy. However, for the other
inherent properties of vibration systems such as natural frequencies, the influence of inerter
has not been investigated before.

The objective of this paper is to study the fundamental influence of inerter on the natural
frequencies of vibration systems. The fact that inerter can reduce the natural frequencies of
vibration systems is theoretically demonstrated in this paper and the question that how to
efficiently use inerter to reduce the natural frequencies is also addressed. It is well known
that natural frequencies are inherent properties of a vibration system, where resonance may
occur when the frequency of the excitation is equal to one of the natural frequencies [21].
In practice, it is always desirable to adjust the natural frequencies of a vibration system to
avoid or induce resonance where appropriate. For example, for vibration-based self-powered
systems [22], the natural frequency of an embedded spring-mass system should be consistent
with the environment to obtain maximum vibration power by utilizing resonance, while for
the engine mounting systems [23], the natural frequency should be below the engine distur-
bance frequency of the engine idle speed to avoid excitation of mounting system resonance.
The traditional methods to reduce the natural frequencies of an elastic system are either
decreasing the elastic stiffness or increasing the mass of the vibration system. However, this
may be problematic; for example, the stiffness values of an engine mount that are too low will
lead to large static and quasi-static engine displacement and damage of some engine compo-
nents [23]. It will be shown below that other than these two methods, a parallel-connected
inerter can also effectively reduce natural frequencies.

Since the influence of damping on natural frequencies is well known, only the undamped
conservative systems are considered for simplicity. The organization of this paper is as follows.
In Section 2, Section 3 and Section 4, single-degree-of-freedom (SDOF) system, two-degree-
of-freedom (TDOF) system and multi-degree-of-freedom (MDOF) system are investigated,
respectively. The influence of the inerter position on the natural frequencies is investigated
in Section 5. A simple design procedure is given in Section 6 to demonstrate the efficiency
of inerter in reducing the largest natural frequency of a vibration system. Conclusions are
drawn in Section 7.
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2. SDOF system

A SDOF system with an inerter is shown in Fig. 1. The equation of motion for free
vibration of this system is

(m+ b)ẍ+ kx = 0. (1)

Transformation of the above equation into the standard form for vibration analysis yields

ẍ+ ω2
nx = 0,

where ωn =
√

k
m+b

is called the natural frequency of the undamped system.

Proposition 1. The natural frequency ωn of an SDOF system is a decreasing function of
the inertance b. Thus, inerter can reduce the natural frequency of an SDOF system.

Remark 1. Note that in [1], one application of inerter is to simulate the mass by connecting a
terminal of an inerter to the mechanical ground. Observing (1), one concludes that the inerter
with one terminal connected to ground can effectively enlarge the mass which is connected at
the other terminal.

3. TDOF system

To investigate the general influence of inerter on the natural frequencies of a vibration
system, a TDOF system, shown in Fig. 2, is investigated in this section.

The equations of motion for free vibration of this system are

m1ẍ1 + k1(x1 − x2) + b1(ẍ1 − ẍ2) = 0,

m2ẍ2 − k1(x1 − x2)− b1(ẍ1 − ẍ2) + k2x2 + b2ẍ2 = 0,

or, in a compact form,
Mẍ+Kx = 0,

where M is called the inertia matrix and K the stiffness matrix [21], and

M =

[
m1 + b1 −b1
−b1 m2 + b1 + b2

]
, K =

[
k1 −k1
−k1 k1 + k2

]
.

Note that the inertances b1 and b2 only exist in the inertia matrix M, but the positions
of b1 and b2 are different as b1 exists in all the elements of M while b2 only appears in the
last element of M. Since one terminal of b2 is connected to the ground, b2 effectively enlarges
the mass m2, which is consistent with the conclusion made in Remark 1.

The two natural frequencies can be obtained by solving the characteristic equation [21]

∆(ω) =
∣∣K−Mω2

∣∣
= (m1m2 +m1(b1 + b2) +m2b1 + b1b2)ω

4 − ((m1 +m2)k1 +m1k2 + k1b2 + b1k2)ω
2

+k1k2 = 0, (2)
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which yields

ωn1 =

√
k1k2(f1 + f2 −

√
(f1 − f2)2 + 4d0)

2(f1f2 − d0)
, (3)

ωn2 =

√
k1k2(f1 + f2 +

√
(f1 − f2)2 + 4d0)

2(f1f2 − d0)
, (4)

where f1 = (m1 +m2 + b2)k1, f2 = (m1 + b1)k2, and d0 = k1k2m
2
1.

Proposition 2. For a TDOF system with two inerters, both natural frequencies ωn1 and ωn2

are decreasing functions of the inertance b1 and b2.

Proof. See Appendix A.

4. MDOF system

From the previous two sections, one sees that inerter can reduce the natural frequencies
of both SDOF and TDOF systems. To find out whether this holds for any vibration system,
a general MDOF system, shown in Fig. 3, is investigated in this section.

The equations of motion of the MDOF system shown in Fig. 3 are

Mẍ+Kx = 0,

where x = [x1, x2, . . . , xn]
T , and

M =


m1 + b1 −b1
−b1 m2 + b1 + b2 −b2

. . . . . . . . .

−bn−1 mn + bn−1 + bn

 ,

K =


k1 −k1
−k1 k1 + k2 −k2

. . . . . . . . .

−kn−1 kn−1 + kn

 .

It is well known that the free vibration of the MDOF system can be described by the
eigenvalue problem as follows [20, 27]

(K−Mλj)φj = 0, (5)

where j = 1, . . . , n, ωnj =
√

λj are the natural frequencies of this system, and φj is the jth
mode shape corresponding to natural frequency ωnj and is normalized to be unit-mass mode
shapes, i.e., φj

TMφj = 1.
Sensitivity analysis is performed on the eigenvalues and eigenvectors with respect to each

inertance and the following proposition is derived.
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Proposition 3. Consider the MDOF system shown in Fig. 3. For an arbitrary eigenvalue
λj, j = 1, . . . , n, and an arbitrary inertance bi, i = 1, . . . , n, the following equations hold:

∂λj

∂bi
= −λjΦij, (6)

∂Φij

∂bi
= 2Φij

(
−1

2
Φij +

n∑
l=1,l ̸=j

λj

λl − λj

Φil

)
, (7)

∂2λj

∂b2i
= 2λjΦij

(
Φij −

n∑
l=1,l ̸=j

λj

λl − λj

Φil

)
, (8)

where Φij, j = 1, . . . , n, is defined as

Φij = φj
T ∂M

∂bi
φj =


(
φ

(i)
j −φ

(i+1)
j

)2
, i ̸= n(

φ
(n)
j

)2
, i = n

Proof. See Appendix B.

It is clearly shown in (6) that
∂λj

∂bi
≤ 0,

and the equality is achieved if φj
(i) = φj

(i+1) for i ̸= n or φj
(n) = 0 for i = n. Since j and

i are arbitrarily selected, (6) holds for any natural frequency with respect to any inertance
bi, which means that the natural frequencies of the MDOF system can always be reduced by
increasing the inertance of any inerter.

Note that for a discrete vibration system, λj > 0, j = 1, . . . , n always holds (if λj = 0,
the vibration system reduces to a lower degree of freedom system), then the necessary and

sufficient condition for
∂λj

∂bi
≤ 0 is

∂M

∂bi
≥ 0. (9)

Thus, one obtains the following proposition:

Proposition 4. 1. The natural frequencies of the MDOF system shown in Fig. 3 can
always be reduced by increasing the inertance of any inerter.

2. The natural frequencies of any MDOF system can be reduced by an inerter if the inertial
matrix satisfies (9).

Remark 2. The second conclusion in Proposition 4 means that the vibration systems of
which the natural frequencies can be reduced by using an inerter are not restricted to the
“uni-axial” MDOF system shown in Fig. 3, but any MDOF system satisfying (9), such as
full-car suspension systems [3], train suspension systems [16, 17, 18], buildings [19], etc.

Remark 3. Proposition 4 is easy to interpret physically: for a small increment of inertance
εbi of a particular inerter bi, one obtains

M = M0 + εbi
∂M

∂bi
, (10)
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where M0 is the original inertial matrix. Sine ∂M
∂bi

is positive semidefine, (10) can be inter-
preted as increasing the mass of the whole system, which will surely result in the reduction of
natural frequencies.

Note that from Proposition 4, it seems that any natural frequency of an MDOF system
will be reduced if an inerter with a relatively large value of inertance is inserted, since the
added inertance can always be viewed as an integration of small increments. However, this
is not always true since there exist permutations of two particular natural frequencies if the
divergence between two eigenvalues of the original system is not large enough or the increment
of inertance εbi is not small enough. Fig. 5 shows the permutation of the natural frequencies
of a three-degree-of-freedom system. As shown in Fig. 5, if one denotes the eigenvalues in
the order of λ1 ≥ λ2 ≥ . . . ≥ λn all the time, the λi, i = 1, . . . , n, will always decrease when
the inertance increases. Hence, in the following sections, the eigenvalues are always sorted in
a descend order unless otherwise stated.

5. Influence of the inerter position on the natural frequencies

The fact that inerter can reduce the natural frequencies of any MDOF system satisfying
(9) has been demonstrated. However, for an MDOF system such as the “uni-axial” MDOF
system shown in Fig. 3, the influence of inerter position on a specific natural frequency is
still unknown. In particular, a practical problem in using inerters to reduce system natural
frequencies is: for a specific natural frequency such as the largest natural frequency, where is
the most efficient position to insert an inerter so that the largest reduction will be achieved?
A TDOF system shown in Fig. 2 will be investigated in detail and analytical solutions will
be derived for the TDOF system.

Considering (B.4) with n = 2, one obtains

∂λj

∂b1
= −λj

(
φ

(1)
j −φ

(2)
j

)2
, (11)

∂λj

∂b2
= −λj

(
φ

(2)
j

)2
, (12)

where j = 1, 2.
For a small increment of inertance, to compare the efficiency of reducing natural frequen-

cies in terms of b1 and b2, it is equivalent to compare the absolute values of the derivatives
in (11) and (12). Then, the following proposition can be derived.

Proposition 5. For a small increment of inertance and for a specific λj, j = 1, 2, it is more
efficient to increase b1 than b2 if

k1
2m1 + b1

< λj0 <
k1
b1
, (13)

or

λj0 >
k2

m2 + b2
, or λj0 <

k2
m2 + b2 + 2m1

; (14)

It is more efficient to increase b2 than b1 if

λj0 >
k1
b1
, or λj0 <

k1
b1 + 2m1

, (15)
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or
k2

m2 + b2 + 2m1

< λj0 <
k2

m2 + b2
. (16)

where λj0, j = 1, 2 denote the eigenvalues of the original system.

Proof. See Appendix C.

Note that (13) and (14), (15) and (16) are equivalent, because (C.1) and (C.2) are equiv-
alent. Proposition 5 is only applied to the case that the increment of inertance is small, as it
is obtained by comparing the slopes of the tangent lines as shown in Appendix C. If large
increments of inertance are allowed for a given system that can be modeled as Fig. 2 and no
inerter is employed in the original system, the question that which is more efficient in terms
of b1 and b2 will be investigated as follows.

To answer this question, one needs to check two situations, where b2 = 0 or b1 = 0,
respectively. If b2 = 0, b1 = b, from (3) and (4), one has

ωn1 =

√
(m1 +m2)k1 +m1k2 + k2b1 −

√
((m1 +m2)k1 −m1k2 − b1k2)2 + 4k1k2m2

1

2(m1m2 + (m1 +m2)b1)
,

ωn2 =

√
(m1 +m2)k1 +m1k2 + k2b1 +

√
((m1 +m2)k1 −m1k2 − b1k2)2 + 4k1k2m2

1

2(m1m2 + (m1 +m2)b1)
.

If b1 = 0, b2 = b, one has

ω′
n1 =

√
(m1 +m2)k1 +m1k2 + k1b2 −

√
((m1 +m2)k1 −m1k2 + b2k1)2 + 4k1k2m2

1

2(m1m2 +m1b2)
,

ω′
n2 =

√
(m1 +m2)k1 +m1k2 + k1b2 +

√
((m1 +m2)k1 −m1k2 + b2k1)2 + 4k1k2m2

1

2(m1m2 +m1b2)
.

The above question can be answered by comparing ωn1 and ωn2 with ω′
n1 and ω′

n2, respectively.
Thus, one has the following proposition.

Proposition 6. Denote

b0 =
k1m2(2m1k2 − (2m1 +m2)k1)

(k2 − k1)(m1k2 − (m1 +m2)k1)
.

For the larger natural frequency ωn2:
If k2 ≤ (1 + m2

m1
)k1, b1 is more efficient than b2;

If k2 > (1 + m2

m1
)k1, b1 is more efficient in [0, b0]; b2 is more efficient in [b0,+∞).

For the smaller natural frequency ωn1:
If k2 > (1 + m2

2m1
)k1, b1 is more efficient than b2;

If k1 ≤ k2 ≤ (1 + m2

2m1
)k1, b2 is more efficient in [0, b0]; b1 is more efficient in [b0,+∞);

If k2 < k1, b2 is more efficient than b1.

Proof. See Appendix D.
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Proposition 6 has addressed four cases, which are k2 > (1+m2/m1)k1, (1+m2/(2m1))k1 ≤
k2 ≤ (1+m2/m1)k1, k1 ≤ k2 < (1+m2/(2m1))k1, k2 ≤ k1. A numerical example is performed
with m1 = m2 = 100 kg, k1 = 1000 N/m and k2 chosen as 2500, 1800, 1300, 500 N/m
corresponding to the four cases in Proposition 6. The results are shown in Fig. 4, where from
Fig. 4(a), one sees that in terms of the larger natural frequency, although for small increment
of inertance (about 0− 250 kg) b1 is more efficient than b2, for large increment of inertance,
b2 tends to be more efficient than b1.

Note that the above discussion is based on TDOF systems. For a general MDOF system,
a similar argument as in Proposition 5 can be employed to determine the efficiency of the
position of inerter by comparing the absolute values of the derivatives. For example, consider
a six-degree-of-freedom system withmi = 100 kg, i = 1, . . . , 6, and k1 = 1000 N/m, k2 = 1000
N/m, k3 = 2000 N/m, k4 = 2000 N/m, k5 = 3000 N/m, k6 = 3000 N/m. The objective is to
find out the most efficient position to insert an inerter so that largest reduction of the largest

natural frequency will be achieved. By direct calculation, one obtains
∣∣∣∂λ1

∂bi

∣∣∣, i = 1, . . . , 6 as

2.759× 10−4, 0.0134, 0.1559, 0.8571, 1.5999, 0.4043, respectively. Note that
∣∣∣∂λ1

∂b5

∣∣∣ possesses
the largest value. Hence, the position betweenm5 andm6 would be the most efficient position
to insert an inerter, which is consistent with the simulation shown in Fig. 6. Another method
to find the most efficient position is by using Gershgorin’s Theorem [24], which shows that
the largest absolute row sums is an upper bound of the largest eigenvalue. Hence, an efficient
way to reduce the largest natural frequency is to insert the inerter between the mass mj and
mj+1 or mj−1 and mj, where the jth absolute row sum of M−1K is the largest absolute row
sum of M−1K. Taking the same six-degree-of-freedom system as an example, one obtains

M−1K =


10 −10 0 0 0 0
−10 20 −10 0 0 0
0 −10 30 −20 0 0
0 0 −20 40 −20 0
0 0 0 −20 50 −30
0 0 0 0 −30 60

 .

The absolute row sums of M−1K are 20, 40, 60, 80, 100, and 90. Thus, one concludes that
the optimal way is to insert an inerter between m5 and m6, which is consistent with the
simulation shown in Fig. 6 as well.

6. Design procedure and numerical example

The problem of reducing the largest natural frequency of a vibration system is consid-
ered in this section, where the efficiency of inerter in reducing natural frequencies will be
quantitatively shown.

For the largest natural frequency, considering (7) and (8), one obtains

∂Φij

∂bi
≤ 0, and

∂2λj

∂b2i
≥ 0.

Note that Φij ≥ 0 and the equality is achieved with φ
(i)
j = φ

(i+1)
j when i ̸= n, or φ

(n)
j = 0

when i = n, which means that for a specific inerter bi, i = 1, . . . , n, the largest natural
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Table 1: Structure Model Parameters.

Floor masses (kg) Stiffness coefficients (kN/m)
m1 = 5897 k1 = 19059
m2 = 5897 k2 = 24954
m3 = 5897 k3 = 28621
m4 = 5897 k4 = 29093
m5 = 5897 k5 = 33732
m6 = 6800 k6 = 232

Table 2: Procedures and results.

Steps Inertance (kg) ωmax (rad/s) Percentages
1st b4 = 5000 118.89 (11.22%)
2th b4 = 5000 b2 = 5000 100.19 (25.18%)
3th b4 = 5000 b2 = 5000 b5 = 5000 90.49 (32.43%)
4th b4 = 5000 b2 = 5000 b5 = 5000 b3 = 3000 78.15 (41.64%)
5th b4 = 5000 b2 = 5000 b5 = 5000 b3 = 3000 b1 = 1000 70.95 (47.02%)
6th b4 = 5000 b2 = 5000 b5 = 5000 b3 = 3000 b1 = 1000 b6 = 1× 105 70.91 (47.05%)

frequency will always be reduced by increasing the inertance until the two masses connected
by inerter bi are rigidly connected.

In what follows, an intuitive and simple approach to lowering the largest natural frequency
for a given structure is illustrated by inserting the inerters one by one, where the inerter in
each step is placed at the most efficient position. Here, a procedure is presented to reduce
the largest natural frequency of a structure discussed in [25, 26] with parameters given in
Table 1. Note that the largest natural frequency ωmax of this structure is 133.91 rad/s. The
procedure to reduce ωmax is shown in Fig. 7 and Table 2.

Procedure description :

Step 1 Fig. 7(a) shows that b4 is the most efficient regarding the original system and for
b4 > 5000 kg, ωmax decreases slightly, hence b4 = 5000 kg is selected;

Step 2 Fig. 7(b) shows that b2 is the most efficient regarding the original system and b4 and
b2 > 5000 kg, ωmax decreases slightly, hence b2 = 5000 kg is selected;

Step 3–Step 6 Similarly, from Fig. 7(c) to Fig. 7(f), b5 = 5000 kg, b3 = 3000 kg, b1 = 1000
kg and b6 = 1× 105 kg are selected, respectively.

Note that the above-illustrated approach is not optimal as the natural frequencies of a
system can always be reduced by enlarging the inertances until the inertial matrix M became
singular, where all the natural frequencies become zero. However, the efficiency of inerter
in reducing natural frequencies can be clearly demonstrated by this approach. As shown
in Table 2, attenuation about 47.05% has been obtained. It is worth pointing out that the
required inertance for b6 is 1× 105 kg, which is quite large. However, the reduction of largest
natural frequency is only improved by 0.03%. If the cost factor is considered in practice, b6
can be omitted. In this way, only five inerters are employed.
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7. Conclusion

This paper has investigated the influence of inerter on the natural frequencies of vibration
systems. By algebraically deriving the natural frequencies of a SDOF system and a TDOF
system, the fact that inerter can reduce the natural frequencies of these systems has been
clearly demonstrated. To reveal the influence of inerter on the natural frequencies of a general
system, an MDOF system has been considered. Sensitivity analysis has been performed on
the natural frequencies and mode shapes to demonstrate that any increment of the inertance
of any inerter in an MDOF system results in a reduction of the natural frequencies. To
that end, the effectiveness of inerter in reducing natural frequencies of a general vibration
system has been clearly demonstrated. Finally, the influence of the inerter position has
been investigated and a simple design procedure has been proposed to verify the efficiency of
inerter in reducing the largest natural frequencies of vibration systems. The simulation result
has shown that more than 47% reduction can be obtained with only five inerters employed
in a six-degree-of-freedom vibration system.
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Appendix A. Proof of Proposition 2

The monotonicity of ωn1 and ωn2 can be proven by checking the signs of the first-order
derivatives of ω2

n1 and ω2
n2 in terms of f1 and f2, respectively.

∂ω2
n1

∂f1
= − k1k2(q1 − q2)

2(d0 − f1f2)2
√
(f1 − f2)2 + 4d0

,

∂ω2
n2

∂f1
= − k1k2(q1 + q2)

2(d0 − f1f2)2
√
(f1 − f2)2 + 4d0

,

where q1 = (d0 + f 2
2 )
√
(f1 − f2)2 + 4d0 and q2 = f1(d0 − f 2

2 ) + 3f2d0 + f 3
2 .

Note that q1 > 0 and
q21 − q22 = 4d0f

2
2 (f1 − d0/f2)

2,

so one obtains |q1| > |q2|, which implies
∂ω2

n1

∂f1
< 0 and

∂ω2
n2

∂f1
< 0, that is, both ωn1 and ωn2 are

decreasing functions of inertance b2.
Similarly,

∂ω2
n1

∂f2
= − k1k2(q3 − q4)

2(d0 − f1f2)2
√
(f1 − f2)2 + 4d0

,

∂ω2
n2

∂f2
= − k1k2(q3 + q4)

2(d0 − f1f2)2
√
(f1 − f2)2 + 4d0

,
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where q3 = (d0 + f 2
1 )
√
(f1 − f2)2 + 4d0 and q4 = f2(d0 − f 2

1 ) + 3f1d0 + f 3
1 .

Since q3 > 0 and q23 − q24 = 4d0f
2
1 (f2 − d0/f1)

2 > 0, one has |q3| > |q4|, ∂ω2
n1

∂f2
< 0, and

∂ω2
n2

∂f2
< 0, that is, both ωn1 and ωn2 are decreasing functions of inertance b1.

Appendix B. Proof of Proposition 3

The proof is inspired by the sensitivity analysis on natural frequencies (eigenvalues) and
model shapes (eigenvectors) with respect to structure parameters in [27, 28, 29].

Sensitivity on natural frequencies:
Considering the influence of the ith inertance bi on the jth natural frequency ωnj, the deriva-
tive of (5) with respect to bi is(

∂K

∂bi
− ∂λj

∂bi
M− λj

∂M

∂bi

)
φj + (K− λjM)

∂φj

∂bi
= 0. (B.1)

Premultiplying both sides of (B.1) by φj
T and considering the relations that ∂K

∂bi
= 0 (K is

independent of bi), φj
T (K− λjM) = 0, and φj

TMφj = 1, one obtains

∂λj

∂bi
= −λjφj

T ∂M

∂bi
φj . (B.2)

Note that

∂M

∂bi
=





0
. . .

1 −1
−1 1

. . .

0


, i ̸= n


0

. . .

0
1

 , i = n

(B.3)

where the nonzero elements for the case i ̸= n locate on the ith, i+1th rows and ith, i+1th
columns.

Thus, one obtains

∂λj

∂bi
=

{
−λj

(
φj

(i) −φj
(i+1)

)2
, i ̸= n

−λj

(
φj

(n)
)2

, i = n
(B.4)

where φj
(i), i = 1, . . . , n, denotes the ith element of φj .

Denoting

Φij = φj
T ∂M

∂bi
φj =


(
φ

(i)
j −φ

(i+1)
j

)2
, i ̸= n(

φ
(n)
j

)2
, i = n
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where j = 1, . . . , n, one obtains (6).
Sensitivity on mode shapes:

The method in [27] is adopted. Note that the total behavior of the vibration system can be
defined by using the n independent eigenvectors (mode shapes) in an n-dimensional vector
space. Hence, the derivative of the jth mode shape can be defined by using the n independent
eigenvectors as follows:

∂φj

∂bi
=

n∑
l=1

αlφl, (B.5)

where αl, l = 1, . . . , n is the weight of the lth mode shape to be determined.
Two cases exist for αl. For the first case, that is, l ̸= j, premultiply φl

T on both sides of
(B.1). Since mode shapes are orthogonal, it can be shown that φl

TMφj = 0, if l ̸= j, and
φj

TMφj = 1; φl
TK = λlφl

TM. Then, one obtains

αl =
λj

λl − λj

φl
T ∂M

∂bi
φj .

Furthermore, considering (B.3), one obtains

αl =
λj

λl − λj

Φil. (B.6)

For the second case where l = j, since the mode shapes have been normalized to unit-
masses, that is

φj
TMφj = 1, (B.7)

where j = 1, . . . , n. Taking the derivative of (B.7) with respect to bi results in

∂φj
T

∂bi
Mφj +φj

T

(
∂M

∂bi
φj +M

∂φj

∂bi

)
= 0.

Considering the symmetry property of the inertial matrix, one obtains

2φj
TM

∂φj

∂bi
= −φj

T ∂M

∂bi
φj . (B.8)

Substituting (B.5) into (B.8), one obtains

αj = −1

2
φj

T ∂M

∂bi
φj = −1

2
Φij. (B.9)

Substituting (B.9) and (B.6) into (B.5), one obtains

∂φj

∂bi
= −1

2
Φijφj +

n∑
l=1,l ̸=j

λj

λl − λj

Φilφl. (B.10)

Considering the ith and (i + 1)th elements of
∂φj

∂bi
if i ̸= n, or nth element if i = n, and

knowing that

∂Φij

∂bi
=

 2
(
φ

(i)
j −φ

(i+1)
j

)
∂
(
φ

(i)
j −φ

(i+1)
j

)
∂bi

, i ̸= n

2
(
φ

(n)
j

)
∂
(
φ

(n)
j

)
∂bi

, i = n
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one obtains (7).
Since

∂2λj

∂b2i
= −∂λj

∂bi
Φk − λj

∂Φij

∂bi
, (B.11)

one obtains (8) by substituting (6) and (7) into (B.11).

Appendix C. Proof of Proposition 5

Considering (5), one obtains

φj
(1) −φj

(2) =
λjm1

k1 − λj(m1 + b1)
φj

(2), (C.1)

=
k2 − λj(m1 +m2 + b2)

λjm1

φj
(2), (C.2)

where j = 1, 2, and (C.1) is obtained by checking the first row of (5) and (C.2) is obtained
by summing the first and second rows of (5).

Note that ∣∣∣∣∂λj

∂b1

∣∣∣∣− ∣∣∣∣∂λj

∂b2

∣∣∣∣ = λj

(
(φj

(1) −φj
(2))2 − (φj

(2))2
)
.

Substituting (C.1) and (C.2), separately, one obtains the conditions in Proposition 5.

Appendix D. Proof of Proposition 6

Denote b1 = b2 = b,

d1 = 2(m1m2 +m1b),

d2 = 2(m1m2 + (m1 +m2)b),

d3 = (m1 +m2)k1 +m1k2 + k2b,

d4 = (m1 +m2)k1 +m1k2 + k1b,

d5 =
√
(bk2 +m1k2 − (m1 +m2)k1)2 + 4k1k2m2

1,

d6 =
√
(bk1 −m1k2 + (m1 +m2)k1)2 + 4k1k2m2

1,

and

F1(b) = ω2
n1 − ω′2

n1 =
d1d3 − d2d4 − d1d5 + d2d6

d1d2
,

F2(b) = ω2
n2 − ω′2

n2 =
d1d3 − d2d4 + d1d5 − d2d6

d1d2
.

Also denote

b0 =
k1m2(2m1k2 − (2m1 +m2)k1)

(k2 − k1)(m1k2 − (m1 +m2)k1)
.

By direct calculation, it can be easily verified that both F1(b) = 0 and F2(b) = 0 have
solutions at 0 and b0. However, note that F1(b) and F2(b) cannot be zero at the same
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time if b ̸= 0, thus F1(b0) = 0 and F2(b0) = 0 cannot hold simultaneously. Particularly,
since b > 0, one is more interested in the cases that k2 ∈ [k1, (1 + m2/(2m1))k1] and k2 ∈
[(1 +m2/m2)k1,∞), where b0 ≥ 0.

Next, it is shown that the positive value of b0 in k2 ∈ [(1 + m2/m2)k1,∞) belongs to
F2(b) = 0 and the other one belongs to F1(b) = 0. Denote

∆2 = m1k2 − (m1 +m2)k1,

∆2
1 = ∆2

2 + 4k1k2m
2
1.

Then

d5 =
√

bk2
2 + 2∆2k2b+∆2

1 = k2b+∆2 +
2k1m

2
1

b
+O

(
1

b2

)
,

d6 =
√

bk2
1 − 2∆2k1b+∆2

1 = k1b−∆2 +
2k2m

2
1

b
+O

(
1

b2

)
.

Hence, one has

F2(b) =
d1d3 − d2d4 + d1d5 − d2d6

d1d2
,

=
∆2(4b

2 + 4(m1 +m2)b+ 4m1m2)− 4m1(m2k1 −m1(k1m1 − k2(m1 +m2))) +O
(
1
b

)
d1d2

.

Note that if ∆2 < 0 and k2 > k1, or k1 < k2 < (1 +m2/m1)k1, F2(b) is always negative
by omitting the higher-order item O

(
1
b

)
. This indicates that if k2 < (1 + m2/m1)k1, then

F2(b) = 0 only has the trivial solution 0, while if k2 ≥ (1 + m2/m1)k1, then F2(b) = 0 has
solutions at 0 and b0. Consequently, if k2 < (1 + m2/m1)k1, then F1(b) = 0 has roots at 0
and b0, while if k2 ≥ (1 +m2/m1)k1, then F1(b) = 0 only has a trivial solution 0.

Besides, since

F1(b) =
d1d3 − d2d4 − d1d5 + d2d6

d1d2
,

=
4m1(m1 +m2)(k1 − k2)b− 4m1(m

2
1(k1 − k2)−m2k1(m1 +m2))−O

(
1
b

)
d1d2

,

by the relationship of the coefficients and the roots of F1(b) and F2(b), one has:
If k2 > (1 +m2/m1)k1, F1(b) ≤ 0 and F2(b) ≤ 0 for b ∈ [0, b0], F2(b) > 0 for b ∈ (b0,∞);
If (1 +m2/(2m1))k1 ≤ k2 ≤ (1 +m2/m1)k1, F1(b) < 0 and F2(b) < 0;
If k1 ≤ k2 < (1 + m2/(2m1))k1, F1(b) ≥ 0 for b ∈ [0, b0], F1(b) < 0 for b ∈ (b0,∞), and
F2(b) < 0;
If k2 < k1, F1(b) > 0 and F2(b) < 0.

Thus, Proposition 6 and the four cases shown in Fig. 4 haven been proved.

References

[1] M.C. Smith, Synthesis of mechanical networks: The inerter, IEEE Transactions on
Automatic Control 47 (10) (2002) 1648–1662.

14



[2] M.Z.Q. Chen, C. Papageorgiou, F. Scheibe, F.C. Wang, M.C. Smith, The missing me-
chanical circuit element, IEEE Circuits and Systems Magazine 9 (1) (2009) 10–26.

[3] M.C. Smith, F.C. Wang, Performance benefits in passive vehicle suspensions employing
inerters, Vehicle System Dynamics 42 (4) (2004) 235–257.

[4] F. Scheibe, M.C. Smith, Analytical solutions for optimal ride comfort and tyre grip for
passive vehicle suspensions, Vehicle System Dynamics 47 (10) (2009) 1229–1252.

[5] M.Z.Q. Chen, Passive Network Synthesis of Restricted Complexity, Ph.D. Thesis, Cam-
bridge University Engineering Department, U.K., 2007.

[6] M.Z.Q. Chen, M. C. Smith, Electrical and mechanical passive network synthesis, in
Recent Advances in Learning and Control, New York: Springer-Verlag, 371 (2008), pp.
35–50.

[7] M.Z.Q. Chen, M.C. Smith, A note on tests for positive-real functions, IEEE Transactions
on Automatic Control 54 (2) (2009) 390–393.

[8] M.Z.Q. Chen, M.C. Smith, Restricted complexity network realizations for passive me-
chanical control, IEEE Transactions on Automatic Control 54 (10) (2009) 2290–2301.

[9] M.Z.Q. Chen, K. Wang, Z. Shu, C. Li, Realizations of a special class of admittances
with strictly lower complexity than canonical forms, IEEE Transactions on Circuits and
Systems–I: Regular Papers, in press. DOI:10.1109/TCSI.2013.2245471

[10] M.Z.Q. Chen, K. Wang, Y. Zou, J. Lam, Realization of a special class of admittances
with one damper and one inerter for mechanical control, IEEE Transactions on Auto-
matic Control 58 (7) (2013) 1841–1846.

[11] M.Z.Q. Chen, Y. Hu, B. Du, Suspension performance with one damper and one inerter,
Proceedings of the 24th Chinese Control and Decision Conference (CCDC), Tainyuan,
China, 2012, pp. 3551–3556.

[12] C. Papageorgiou, M.C. Smith, Positive real synthesis using matrix inequalities for me-
chanical networks: application to vehicle suspension, IEEE Transactions on Control
Systems Technology 14 (3) (2006) 423–435.

[13] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Control of motorcycle steering
instabilities, IEEE Control Systems Magazine 26 (5) (2006) 78–88.

[14] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Mechanical steering compen-
sators for high-performance motorcycles, Journal of Applied Mechanics 74 (2) (2007)
332–336.

[15] F.C. Wang, M.K. Liao, B.H. Liao, W.J. Sue, H.A. Chan, The performance improvements
of train suspension systems with mechanical networks employing inerters, Vehicle System
Dynamics 47 (7) (2009) 805–830.

15



[16] F.C. Wang, M.K. Liao, The lateral stability of train suspension systems employing
inerters, Vehicle System Dynamics 48 (5) (2010) 619–643.

[17] F.C. Wang, M.R. Hsieh, H.J. Chen, Stability and performance analysis of a full-train
system with inerters, Vehicle System Dynamics 50 (4) (2011) 545–571.

[18] J.Z. Jiang, A.Z. Matamoros-Sanchez, R.M. Goodall, M. C. Smith, Passive suspensions
incorporating inerters for railway vehicles, Vehicle System Dynamics 50 (sup1) (2012)
263–276.

[19] F.C. Wang, M.F. Hong, C.W. Chen, Building suspensions with inerters, Proceedings
of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science 224 (8) (2010) 1605–1616.

[20] W.T. Thomson, Theory of Vibration with Applications, 4th edition, Englewood Cliffs,
NJ: Prentice-Hall, 1993.

[21] F.S. Tse, I.E. Morse, R.T. Hinkle, Mechanical vibrations, Maruzen Asian Edition, Allyn
and Bacon, 1979.

[22] S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsys-
tems applications, Measurement Science and Technology 17 (12) (2006) R175–R195.

[23] Y. Yu, N.G. Naganathan, R.V. Dukkipati, A literature review of automotive vehilce
engine mounting systems, Mechanism and Machine Theory 36 (1) (2001) 123–142.

[24] R.A. Horn, C.R. Johnson, Matrix Analysis, New York: Cambridge Univ. Press, 1988.

[25] J.M. Kelly, G. Leitmann, A.G. Soldatos, Robust control of base-isolated structures under
earthquake excitation, Journal of Optimization Theory and Applications 53 (1987) 159–
180.

[26] J.C. Ramallo, E.A. Johnson, B.F. Spencer, Smart base isolation systems, Journal of
Engineering Mechanics (ASCE) 128 (10) (2002) 1088–1099.

[27] J. Zhao, J.T. DeWolf, Sensitivity study for vibrational parameters used in damage de-
tection, Journal of structural engineering 125 (4) (1999) 410–416.

[28] J. Lin, R.G. Parker, Sensitivity of planetary gear natural frequencies and vibration
modes to model parameters, Journal of Sound and Vibration 228 (1) (1999) 109–128.

[29] I.W. Lee, D.O. Kim, Natural frequency and mode shape sensitivities of damped systems:
Part I, distinct natural frequencies, Journal of Sound and Vibration 223 (3) (1999) 399–
412.

16



Figure captions

Figure 1: SDOF system with an inerter.

Figure 2: TDOF system with two inerters.

Figure 3: MDOF system with inerters.

Figure 4: The natural frequencies of the TDOF system. (a) k2 > (1 + m2/m1)k1; (b)
(1 +m2/(2m1))k1 ≤ k2 ≤ (1 +m2/m1)k1; (c) k1 ≤ k2 < (1 +m2/(2m1))k1; (d) k2 ≤ k1. The
red solid line: ωn1; the blue dashed line: ω′

n1; the red dash-dot line: ωn2; the blue dotted line:
ω′
n2.

Figure 5: The permutation of natural frequencies of a three-degree-of-freedom system with
mi = 100 kg, ki = 1000 N/m, i = 1, 2, 3 and b1 = b3 = 0 kg, b2 ∈ [0, 600] kg.

Figure 6: The largest natural frequency of a six-degree-of-freedom system.

Figure 7: Procedures. (a) First step; (b) Second step: b4 = 5000 kg; (c) Third step:
b4 = 5000 kg, b2 = 5000 kg; (d) Fourth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg; (e)
Fifth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg, b3 = 3000; (f) Sixth step: b4 = 5000
kg, b2 = 5000 kg, b5 = 5000 kg, b3 = 3000, b1 = 1000 kg.
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Figure 1: SDOF system with an inerter.

Figure 2: TDOF system with two inerters.

Figure 3: MDOF system with inerters.
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Figure 4: The natural frequencies of the TDOF system. (a) k2 > (1 +m2/m1)k1; (b) (1 +m2/(2m1))k1 ≤
k2 ≤ (1 +m2/m1)k1; (c) k1 ≤ k2 < (1 +m2/(2m1))k1; (d) k2 ≤ k1. The red solid line: ωn1; the blue dashed
line: ω′

n1; the red dash-dot line: ωn2; the blue dotted line: ω′
n2.
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Figure 5: The permutation of natural frequencies of a three-degree-of-freedom system with mi = 100 kg,
ki = 1000 N/m, i = 1, 2, 3 and b1 = b3 = 0 kg, b2 ∈ [0, 600] kg.
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Figure 6: The largest natural frequency of a six-degree-of-freedom system.
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(a) First step
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(b) Second step
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(c) Third step
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(d) Fourth step
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(e) Fifth step
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(f) Sixth step

Figure 7: Procedures. (a) First step; (b) second step: b4 = 5000 kg; (c) third step: b4 = 5000 kg, b2 = 5000
kg; (d) fourth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg; (e) fifth step: b4 = 5000 kg, b2 = 5000 kg,
b5 = 5000 kg, b3 = 3000 kg; (f) sixth step: b4 = 5000 kg, b2 = 5000 kg, b5 = 5000 kg, b3 = 3000 kg, b1 = 1000
kg.
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