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Semiglobal Observer-Based Leader-Following
Consensus With Input Saturation

Housheng Su, Michael Z. Q. Chen, Member, IEEE, Xiaofan Wang, Senior Member, IEEE, and
James Lam, Fellow, IEEE

Abstract—This paper studies the observer-based leader-
following consensus of a linear multiagent system on switching
networks, in which the input of each agent is subject to satura-
tion. Based on a low-gain output feedback method, distributed
consensus protocols are developed. Under the assumptions that the
networks are connected or jointly connected and that each agent
is asymptotically null controllable with bounded controls and
detectable, semiglobal observer-based leader-following consensus
of the multiagent system can be reached on switching networks.
A numerical example is presented to illustrate the theoretical
results.

Index Terms—Consensus, input saturation, low-gain feedback,
multiagent systems, state observer.

I. INTRODUCTION

HE CURRENT study of multiagent systems pervades a

wide range of sciences, including physical, biological, and
even economical sciences [1], [2]. Its impact on modern engi-
neering and technology is prominent and will be far reaching.
Typical cooperative protocols of multiagent systems include
consensus [3], [4], synchronization [5], flocking [6]-[8], forma-
tion control [9]-[11], and containment control [12]. In particu-
lar, the purpose of consensus of multiagent systems is to make
a group of agents to reach a common state value, relying only
on their neighbors’ local information. Many different agent dy-
namics have been investigated for the consensus problem, such
as single-integrator kinematics [3], double-integrator dynamics
[13], [14], linear dynamics [15]-[18], and nonlinear dynamics
[19]. In particular, the multiagent systems with agents described
by general linear dynamics can be regarded as a generalization
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of those with agents described by single-integrator kinematics
and double-integrator dynamics and can also be considered
as the linearized multiagent systems with agents described by
nonlinear dynamics.

It is well known that saturation nonlinearities are ubiquitous
in physical and engineering systems, and agents in multia-
gent systems should be subject to input saturation [20], [21].
Therefore, consensus of multiagent systems with saturation
constraints is not only theoretically challenging but also more
practical. However, there are only a few works on multiagent
systems concerning with saturation constraints [22]-[28].

In this paper, we will address the observer-based leader-
following consensus of agents described by general linear
systems subject to input saturation. By utilizing low-gain de-
sign technique [29], we will design consensus algorithms that
achieve semiglobal leader-following consensus of such agents
on switching networks. The contributions of this paper are
threefold. First, this work extends the existing results on the
consensus of linear multiagent systems in [15]-[18] to the case
with input saturation and extends the existing results on the
consensus with saturation constraints [22]—-[27] to the case of
agents described by more general linear dynamics. Second, this
work relaxes the convergence condition on the output feedback
consensus of linear multiagent systems in [15]-[17] to jointly
connected networks and extends state feedback consensus in
[18] and [28] to output feedback one. Compared with the low-
gain state feedback consensus of linear multiagent systems in
[28], the proof method for the output feedback case is different,
which is more difficult than the state feedback one. Specifically,
a novel output feedback consensus algorithm is proposed, and a
new Lyapunov function is constructed to analyze the stability of
multiagent systems. In particular, the negative semidefiniteness
of the derivative of the Lyapunov function is naturally guaran-
teed in [28], which is no longer guaranteed for the output feed-
back case due to the presence of some cross terms. A careful
examination of the negative semidefiniteness of the derivative
of the Lyapunov function is therefore required. For the case
of jointly connected networks, it is more complicated since
only parts of the cross terms in the derivative of the Lyapunov
function can be dealt with. Furthermore, the construction of
the output feedback consensus algorithm is different from the
existing output feedback consensus algorithms in [15] and [16].
Finally, compared to the existing results on the consensus of
linear multiagent systems in [15]—[18], the proposed algorithms
do not require any global information on the underlying un-
weighted network, i.e., the knowledge of eigenvalues of the
coupling matrix of the unweighted network.

0278-0046 © 2013 IEEE
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II. PRELIMINARIES
A. Graph Theory

This paper considers the problem of semiglobal observer-
based leader-following consensus on networks of switching
topology. Consider an undirected graph G(t) = {V, E(t)} with
N agents, where V' = {1,2,..., N} is a nonempty finite set of
agents in the systems and E(t) = {(i,5) € V. xV :i~j}is
a set of edges, in which an edge contains an unordered pair of
vertices representing neighboring relations among the agents.
Vertices ¢ and j are adjacent when (¢, j) € E(t). The adjacency
matrix A(t) = (a;;(t)) is defined as a;;(t) =1, if (i,j) €
E(t); otherwise, a;;(t) = 0. The Laplacian matrix of graph
G(t) is defined as L(t) = A(A(t)) — A(t), where A(A(t)) is
the degree matrix with ith diagonal elements Zjvzl i @i (1)
The eigenvalues of Laplacian matrix L(t) are denoted as
ML) < Ao(L(8)) < - < An(L(t)). Then, Ay(L(£)) = 0
with a corresponding eigenvector 1 =[1 1 --- 1]T € RV,
A2(L(t)) > 0 when undirected graph G(t) is a connected
graph. I,, is the identity matrix of order n, and ® stands for the
Kronecker product. In this paper, we use the notation M > 0
for a positive definite matrix M and M > 0 for a nonnegative
definite matrix M. We define that G(¢) is a graph consisting of
N agents and a leader, L) is the symmetric Laplacian of the
undirected graph G(t) consisting of N agents, and the matrix
Hyyy = diag(hy(t), ha(t),...,hn(t)), where 0 : [0,00) — T
is a switching signal whose value at time ¢ is the index of
the graph at time ¢ and I' is finite. In this paper, h;(t) =1
when agent ¢ is a neighbor of the leader at time ¢; otherwise,
h;(t) = 0.

Lemma 1 [14]: We define that L is the symmetric Laplacian
of an undirected graph G consisting of N agents and G is the
graph consisting of /N agents and a leader, which contains a
spanning tree with the leader as the root vertex. Then, we have
L+ H>0.

Lemma 2 [19]: Let Ly and Ly be the symmetric Laplacians
of graphs Gy and G with N agents, respectively. Moreover,
let G be a graph with N agents and a leader which contains a
spanning tree. After adding some edge(s) among the N agents
into the graph G4, we obtain a new graph G5. Then, we have
ANi(Le+ H) > N(L1+H)>0,i=1,2,...,N.

Remark 1: We define that G is a spanning tree consisting of
K agents and a leader and G, is a graph obtained by adding
edge(s) among the K agents into the graph G. Let L (K)
and L4 (K) be the corresponding symmetric Laplacians
of graphs G, and G4; with K agents, respectively. Then, we
have A1 (Ls(K) + H(K)) < M (Ls1(K) + H(K)). The num-
ber of possible spanning trees with K agents and a leader
is finite when the number of vertices of the spanning tree
is finite and fixed. By using an exhaustive search method,
one can obtain the minimum value of A\ (Ls(K) + H(K)),
ie., ming_n{\ (Ls(K)+ H(K))}, when the system con-
sists of N agents in the graph G5. We can also obtain the
minimum value of the least positive eigenvalues of the span-
ning trees mino<x<n{A1(Ls(K)+ H(K))}, in which the
number of the agents and the leader of the spanning trees
can be an integer 2 < K < N, using an exhaustive search
method.
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B. Problem Statement

Consider a group of N agents with general linear dynam-
ics, labeled as 1,2,..., N. The motion of each agent is des-
cribed by

yi:CCITZ‘, iZl,Q,...,N (1)

where z; € R"™ is the state of agent ¢, y; € RP is the mea-
surement output of agent ¢, u; € R™ is the control in-
put acting on agent ¢, and o : R”™ — R™ is a saturation
function defined as o (u;) = [sat(u;1)sat(u;z) - - - sat(uim )] T,
sat(u;;) = sgn(u;;) min{|u;;|, w}, for some constant @ > 0.
The dynamics of the leader, labeled as N + 1, is described by

ENt1 =ATN41
yn+1 =Crnyr. (2

The problem of semiglobal observer-based leader-following
consensus for the agents and leader described previously is
the following: For any bounded set X C R" given a priori,
construct a control law wu; for each agent 4, which only uses
the measurement outputs from neighbor agents, such that

lim ||Z’i(t)—$N+1(t)||:0, i:1,2,...,N
t—o0
aslong as z;(0) € X foralli =1,2,..., N, N + 1.

Assumption 1: The pair (A, B) is asymptotically null con-
trollable with bounded controls (ANCBC), i.e., (A, B) is stabi-
lizable, and all the eigenvalues of A are in the closed left-half
s-plane.

Assumption 2: The pair (A, C') is detectable.

I1II. MAIN RESULTS
A. Consensus on Connected Switching Networks

Assumption 3: The graph G/(t) consists of N agents and a
leader, which contains a spanning tree rooted at the leader at all
times.

Lemma 3 [29]: By Assumption 1, for each ¢ € (0,1], it
follows that there exists a unique matrix P(g) > 0 satisfying
the algebraic Riccati equation (ARE)

ATP(e) + P(e)A — P(e)BBTP(¢) + eI = 0.

Moreover, lim._,o P(g) = 0.
The low-gain output feedback design for the multiagent
system (1) is carried out in two steps.
Low-gain-output-feedback-based consensus algorithm
Step 1) Solve the parametric ARE
ATP(e) + P(e)A—yP(e)BBTP(e) + eI =0,  £€(0,1]
3)
where v < ming_n{M\(Ls(K)+ H(K))} is a
positive constant. The existence of a unique positive
definite solution P(e) for the ARE (3) is established
in Lemma 3.
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Step 2) Construct a linear output feedback law for agent ¢ as

S.AC,L' :Ai‘zf ( '701/\7,')7 BTP(E)
Zalj 1’] +h ( )(Aifi'N%»l)
u;=—B"P( Za” —Z;)+hi(t)(Zi—Zng1)]

2—17 2, ..., N
iy =An—F(yn+1—Cing1)

4)

where 2; € R™ is the protocol state of agent ¢ and
F € R™"*P is the feedback gain matrix, which is
chosen such that (A 4+ F'C) is asymptotically sta-
ble. The existence of such an F' is guaranteed by
Assumption 2. The fact that lim. o P(¢) =0, as
established in Lemma 3, motivates the “low-gain
feedback.”

Remark 2: Note that the construction of the output feed-
back consensus algorithm is different from that of the existing
output feedback consensus algorithms in [15] and [16]. In
the algorithm (4), no information on the network topology is
needed, and each agent only acquires the state information of its
neighbors. The value of v can be calculated when the number
of agents IV is known.

Lemma 4 [23]: For any T € R"*" and any g;, £ € R™,
i1=1,2,...,N

1 N N
5 ZZ%‘(@(G

Theorem 1: Consider a multiagent system of N agents with
general linear dynamics (1) and a leader with dynamics (2).
Suppose that Assumptions 1, 2, and 3 hold. The control inputs
u; for the agent (4) achieve semiglobal consensus of the multia-
gent system. That is, for any given bounded set X C R", there
is an £* > 0 such that, for each ¢ € (0,£*]

tlirn ||$Z(t) _xN—&-l(t)H = 0, 1= 1,2,...,N
—00
as long as z;(0) € X foralli = 1,2,..., N, N + 1.

Proof: Let T; = x; — TN41, Ty = & — IN41, and e; =
T; — Z;. Then, we have

T =AF;— BO’(BTP Za” —Zj+ej—e;)
) N
t;=Ai; — BBTP(e (Z

+ hl(t)<.’f?l — 6i>> — FCe

—T;+e;—e;)
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éi=(A+FC)e;—Bo (BTP Zam Ti—Tjtej—e;)
+ BBTP(e (Za”

—Tjtej—e)

for which let us consider the common Lyapunov function

N
V(#,e) =Y i} P(e)¥i + Amax (P(e)BBT P(¢))

i=1
2 ol
X ( +1> > el Pee; (6)

v i=1
where P, > 0 satisfies (A + FC)TP. + P.(A+ FC) = —
and 6 is a positive constant chosen such that 6 > Ay (L(¢) +

H(t)). Since (A + FC) is asymptotically stable, the existence
of such a P, can be guaranteed. For notational convenience, we

have defined 7 = [7] 73 --- 25, 2 =[2T 23 --- 2%,
ande = [e] ed --- e%]T.

For a constant ¢ > 0, we can find the following inequality:

N
c> sup ] (0)P(e)Z;(0)
€(0,1],(2:(0),24(0))eX ;=

2

+ Amax (P()BBT P(¢)) x <97

+ 1) ei(O)TPeei(O)} (7
foralli =1,2,..., N + 1, which is guaranteed by the fact that
X is bounded and lim._,o P(¢) = 0 by Lemma 3.
Let Ly(c) := {2 € R¥", e e RV : V(Z,¢) < ¢}, and let
€ (0,1] be such that, for each ¢ € (0,¢*], (Z,e) € Ly (c)
implies that

BYP(e

Zau & — &) +hi() (@i —dna) ||| <o,

i=1,2....N (8
where ||zl = max; |z;| for z € R™. The existence of such an
€* is also due to the fact that lim._,o P(g) = 0.

Thus, for any e € (0, e*], the dynamics of (5) remains linear
within Ly (c). Thus, by Lemma 4, we can derive the derivative
of V along the trajectories of the agents within the set Ly (c) as

<
—
&
(4]
S—
I
[]=
e
<3
3
&
NH!
+
[]=
2
|
e
—
(O}
S—
§r

N
x> (6] Peei + €] Peé;)

i=1



SU et al.: SEMIGLOBAL OBSERVER-BASED LEADER-FOLLOWING CONSENSUS WITH INPUT SATURATION

i} P(e)BBYP(¢)e;

~Amax (P(e)BBTP(¢) < +1>Ze e

From the definition of the Laplacian of graph, for any &; €

R™ and C- eR™,

*Zzaw (C CJ)

i=1 j=1

where £ = [€1 & -+ En]T and ¢ =
the identity (A ® B)(C ® D)
(9) as follows:

i=1,2,...,N
T (L) © Im) ¢

[CRCREENeR

V(#) =&" (In @ (P(e)A + ATP(e))) &

|
[\
S
H
=
®
e}
)
Sy
=
-~ =
®
~
=
®
=
H
=
=

+&" ((L(t) + H(t)) ® (2P(e)BBTP(e))) e

2
- >\max (P(é‘)BBTP(g)) (: + 1> 6T€ (10)

, and using
= AC ® BD, we can continue
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The symmetry of matrix L(t) + H(t) implies that there
exist orthogonal matrices T'(t) € RN, & = (T(t) ® I,,)7,
and é = (T'(t) ® I,,)e, such that

L(t) + H(t)
=T (t)diag {>\1 (L(t) + H(t) , Ao (L(E) + H(2) ,
N (L(t) + H(t ))}T(t)
=T (t)diag {/\1(15), Aa(t), - An ()} T(2).

Thus, (10) can be further continued as

(T (t)® I,) (In ® (P(e) A+ AT P(e)))
(T(t) ® )96—9?“T (TH () ® 1)

(diag {/\1 An(t )} ® (2P(a) BTP(e)))
(T(t) ® )w + ( I,)

(diag {\ (1), ... An(t )} ® ( P(e)BBYP(e)))
X (T(t)®1,,) e—Amax (P(e)BBTP(e)) <7+1> et
X (TT(t) ® In) (Tt)eI,)e

V(z) =zT

F(P(e)A+ATP(e)—2X;(t)P(e) BB P(e)) s

+Z (2X\i()P() BB P(e)) &;
N
~ Amax (P(e)BBTP(¢)) (9; + 1> ; ele;

N
e (POBETPE) (£ 41) ST,

V(LZ'“ ei) S Lv(C) \ {0}

This implies that the trajectory of (&, ¢;) starting from the
level set Ly (c) will converge to the origin asymptotically as
time approaches infinity, which, in turn, implies that

tl;r£10||xz( )—an+1()]| =0, 1=1,2,...,N.
This completes the proof. (]
Remark 3: Since the ARE-based method is adopted in this
paper, the resulting feedback gain is indirectly dependent on
the low gain parameter ¢. For a different value of ¢, the solution
of a parameterized ARE is required. Therefore, we can use
the following bisectioning method to compute the parameter
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€* without using any global information of multiagent systems.
First, we choose an ¢* € (0, 1]. From (3), we can compute the
corresponding P(*). Note that the calculation of - in (3) only
depends on the number of agents N. For a given bounded set
X c R", we can find the maximum value of | u|/~, where
Il = max; |u| for 4 € X. Let the maximum value of || 14|
be a and (z;(0),#;(0)) € X; we have [|z;(0)|| < a and
[#:(0)]oc < a.Letl=[1,1,...,1]" Since &; = x; — TN 41,

)
T; = &; — Tn+1,and e; = x; — &4, from (6), we have

02 N
% ( + 1) > 1"P1.

i=1

From Lemma 2, we have Ay (L.+H (t)) > An(L(t)+H(t)),
where L, is the corresponding symmetric Laplacian of com-
plete graph consisting of the N agents. We can choose 0 =
max - n{An(L(K) + H(K))}, which can be calculated via
an exhaustive search method, when the number of agents N is
known. Therefore, from (7), we can design c = 4a®
SN, 1TP(%) 1+ 1602 Amax(P(e7) BBTP(£")) ((63/7) +

1) SN 1TP,1. From (6) and V < 0, we have 7] P(¢*)#; < ¢
and Apmax(P(e*)BBTP(¢%))((0*/7) + 1)ef P.e; < c. Thus,
we can obtain the maximum values of H-izHoo and [/&;]]oos
i=1,2,...,N.Let the maximum value of ||Z; ||, be g and the
maximum value of ||e;|| be f; we have

Z ai; (t

BTP — &)+ hi(t)(Z

i — EN41)
(o)

< [N = 1)(g+ HBTPEL

If [[(2N —1)(g + f)BTP(¢*)1|| < @, then the parameter
e* is feasible. Otherwise, we use */2 to repeat the afore-
mentioned calculation process until the saturation constraint

(2N —1)(g + f)BTP(e*)1||o < w is satisfied.

B. Consensus on Jointly Connected Switching Networks

In this section, we will investigate the consensus problem in
a more practical scene, in which the agents get in touch, directly
or indirectly, with the leader from time to time.

Assumption 4: There exists an infinite sequence of con-
tiguous, nonempty, and uniformly bounded time intervals
[tkytr+1), K =0,1,..., and there are my, switching topologies
in each uniformly bounded time intervals [ty, t;+1) (i.e., there
exists a finite sequence of contiguous and nonempty time subin-
tervals [ti, ]H) J=0,1,...,my, with t, =9, tpp1 = )",
R

and 1 > 7 for some constant 7 > 0, and the intercon-
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nection topology does not change during each of such time
subintervals) such that, across each time interval, there exists
a joint path from the leader to every agent. In other words,
the neighboring graph G(t) has a jointly spanning tree across

each uniformly bounded interval [ty, tx11), K = 0,1,..., with
to = 0and ty41 — t; < T for some constant 7" > 0.
Assumption 5: There exists a P(¢) > 0 that satisfies
ATP(e)+P(e)A—~3P(¢)BBY P(¢)+el =0, € (0,1]
(11)

where ¥ < mino<g<n{A(Ls(K)+ H(K))} is a positive
constant and ming< <y {1 (Ls(K)+ H(K))} denotes the
minimum value of the least positive eigenvalues of the spanning
trees, in which the number of the agents and the leader of the
spanning trees can be an integer 2 < K < N and

ATP(e)+ P(e)A<0. (12)

Theorem 2: Consider a multiagent system of /V agents with
general linear dynamics (1) and a leader with dynamics (2).
Suppose that Assumptions 1, 2, 4, and 5 hold. The control
inputs u; for the agent (4) achieve semiglobal consensus of the
multiagent system. That is, for any given bounded set X C R",
there is an e* > 0 such that, for each € € (0, &%

lim [|lzi(t) —an 1 (B =0, i=1,2,...,N

as long as z;(0) € X foralli =1,2,...,N,N + 1.
Proof: Let us consider the common Lyapunov function

=

=Y " @l P(e)%; + Amax(P(e) BB  P(e)

i=1

02 al

% ( + 1) > el Pee; (13)
v =1

for system (5), where P(¢) > 0 satisfies (11) and (12). Similar
to the analysis of Theorem 1, we will show that the set

Ly(c):={z e R"" e e RN" : V(i,e) < ¢} (14)

is positively invariant. The derivative of V' along the trajectories
of the agents in the set Ly (c) is given by

V(i,e) =" (In @ (P(e)A+ AT P(e))) 7
— @ ((L(t) + H(t)) ® (2P(e) BB P(¢))) &
+37 ((L(t) + H(t) ® (2P(e)BBTP(e))) e
”
gl

)
For the symmetry of matrix L(t) + H(t) > 0, there exist or-
thogonal matrices T'(t) € RV*N, 2 = (T(t) ® 1,,)%, and é =
(T'(t) ® Ip,)e. Without loss of generality, we assume that the
first M (1 < M < N) eigenvalues of matrix L(t) + H(t) are
zero, i.e., \;(t) = 0fori =1,2,..., M; then, one has

M
V(z,e) < Z@T[ (e)A+ ATP(e)] &

— Amax (P(e)BBTP(e ( +1>e e. (15)

— Amax (P(e)BBT P(¢)) <9; + 1)
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M N
AT A AT A
X €€ —¢ E T; T
i=1 i=M+1

1=M+1
N ) T
-y {ﬁBTP(s)il :}%BTP(E)&]
i=M+1
i
x |VABTP(e)i; — =BT P(e)é;
<0. [ Vi ] (16)

Therefore, the set (14) is positively invariant.

From (16), lim; . V(Z(t),e(t)) exists. Considering the
infinite sequences V (Z(ty),e(tx)), k=0,1,..., and using
Cauchy’s convergence criteria, one has that, for any ¢ > 0,
there exists a positive number My such that, Vk > My,

V(#(te) = V(E(teg)) = [ [V (@(E))de < 0.
Therefore,
19>/k[—V(5;(t)} di+ -+ / V@]

k

>—/{x [In ® (P(e)A+ AT P(e))]| 2} dy

'm.k 1
t,k
+ / (& ((Lsgme )+ Hygm )

my—1

b,

® (2P(e) BBY P(c)) )ﬁs}dt

~T
[ (g + )

® 2P()BBTP(e)) Je}d;

2847

1947

>—/{x [In @ (P

tz +7

(e)A+ ATP(e

gL

' ® (2P()BBY P(c)) )e}dt
+ t:jT{Amax (P(e)BB™ P(e)) (9; + 1> eTe} dy
. / {x Iy @ (Pe)A+ A™P(e))] &} d;
t;;k-lﬂ
* / 1 { ((La(t:w) * H(s(t::k-l))
k ® (2P(e)BB" P(¢)) )i}dt
tyk

- [ (s )

my—1

® (2P(e)BBTP(¢)) )e}dt

{)\max (P(e)BB" P(e)) x (e_jﬂ) eTe} dy.
17

From (12) and the symmetric matrices Lé(t]’—l) + H; s(ti1 >
k

0,7=1,...,mg — 1, one has
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Therefore,

t] 47

9> — / {z" [In® (P

(e)A+ ATP(e

(e))] #} ds

tfc—i-r
t / {7 (Lo + Hyr))
))&} di

- / 7 (Lo + Hyr))

j ) e} di

+ / {)\max (P(e)BB"P(e)) <9; + 1) eTe} dy

j
tk

® (2P(e)BB" P(e)

® (2P(e)BB" P(e

which implies that, fori = 0,1,...,mp — 1
. Tp
}3&/ {x IN® (e) A+ AP )]x}dt

t+7

= Jim [ ((Bay) + Haey)
® (2P(¢)BB™P(e)) )i}dt
t+r
i {3 ((Bagey) + Haey)
t ® (2P(¢) BB P(e)) )e}dt
— lim +T{Amax (P(e)BB™P(e))

t 0
X (_ + 1) eTe} d; = 0.
Y

From Assumption 4 and Lemma 1, all eigenvalues of the matrix
Lé(tg) —+ -4 Lg(t;cnk—l) + Hé(t%) —+ 4 Hé(tmk 1) are pos-
itive. From Lemma 2 and Assumption 5

t+1
0=lim [ m{i" [Iy® (P(e)A+ATP(e))] 7} dy
tt+T
“tm [ | (o o By
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® (2P(e)BB" P(g)) ] e}dt

t+71

— lim /mk
t—o0
t
92
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t+7 N
< fim {Z

(e)A+ AT P(e)

—~4P(¢)BBTP(e

H/—’

@t (2\P(e)BBT P(e)) éz} dy

(502

t+7 N
. ~T A
< _tlilglo/g{zxi xl}dt
t =

éTéz}

t+1
— lim / {/\max (P(e)BB™P Ze e,}
t

(s)él->T

N s
ﬁB P(E)€z> }dt

t+1

/ {il (ﬁBTP(e)ii \Aﬁ

t

— lim
t—00

X <ﬁBTP(5)§:i —
<0.

T

. N -7~ . . -
Therefore, limy o€ ;14 Z; T; = 0,i.e., limy 00 &, = 0. O

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented to illus-
trate the theoretical results. The simulation is performed with
four agents and one leader. The system matrices are chosen
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Fig. 1. Interaction networks. (a) G1.(b) Go.

0 0 1
forward to verify that (A, B) is ANCBC and (A, C) is de-
tectable. Moreover, F' = [ %] is chosen such that (A + FC)
is asymptotically stable. Initial states x;;(0) and 2,;2(0) of
all agents are randomly chosen from box [—2,2] x [—2,2],
respectively, the initial values #;(0) of all agents are chosen
as [0.1,0.1]", the initial state zx41(0) of the leader is chosen
as [0.5,0.5]", and the initial value Zy1(0) of the leader is
chosen as [0.35,0.35]T. The two interaction networks, i.e., G
and G, are chosen as in Fig. 1, and each network is active
for half of the time in each time interval. Therefore, there
is a jointly connected path from the leader to every agent
in each time interval. Since there are four agents and one
leader in the group, we can obtain the minimum eigenvalue
of the possible spanning trees consisting four agents and one
leader, i.e., minao< <4 {1 (Ls(K) + H(K))} = 0.1206, using
an exhaustive method. Therefore, we can choose ¥ = 0.1 <
ming<g<a{ M (Ls(K)+ H(K))} = 0.1206. For € = 0.1 and
€ =0.001, by using a standard numerical software, we
find that there exist positive definite matrices P(0.1) =

{0.0500 o.oooo]and P(O.OOI):{O'OOOS o.oooo}such

as A= {_1 O}, B = [0], and C =10 1]. It is straight-

0.0000 1.0000 0.0000 0.1000
that conditions (11) and (12) hold. Fig. 2 shows the consensus
of four agents and one leader applying control protocol (4).
Fig. 2(a) and (b) depicts the curves of the state difference
between the four agents and the leader and the control of the
four agents when ¢ = 0.1, respectively. Fig. 2(c) and (d) depicts
the curves of the state difference between the four agents and
the leader and the control of the four agents when ¢ = 0.001,
respectively. It is obvious from Fig. 2 that the control protocol
(4) is capable of achieving stable consensus motion, and for the
same initial conditions, as the value of ¢ decreases, the state
peaks slowly while the control input decreases.

V. CONCLUSION

In this paper, we have investigated semiglobal observer-
based leader-following consensus of multiagent linear systems
with input saturation on networks of switching topology. We
have used a low-gain output feedback strategy to design the
new observer-based consensus algorithms, without requiring
any knowledge of the interaction network topology. Under
the assumption that the system is ANCBC and detectable, all
the agents in the group asymptotically synchronize with the
leader on connected or jointly connected switching networks
by employing bounded control inputs. Future work will be to
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Fig. 2. Leader-following consensus of four agents with one leader under
control protocol (4). (a) State convergence (¢ = 0.1). (b) Control (¢ = 0.1).
(c) State convergence (¢ = 0.001). (d) Control (¢ = 0.001).

further investigate the proposed algorithms on the weighted and
directed switching networks and to study the robustness of the
proposed algorithms against noise and time delays.
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