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Probabilistic QoS Constrained Robust Downlink
Multiuser MIMO Transceiver Design with
Arbitrarily Distributed Channel Uncertainty

Xin He and Yik-Chung Wu

Abstract—We study the robust transceiver optimization in
downlink multiuser multiple-input multiple-output (MU-MIMO)
systems aiming at minimizing transmit power under probabilistic
quality-of-service (QoS) requirements. Owing to the unknown
distributed interference, the channel estimation error obtained
from the linear minimum mean square error (LMMSE) esti-
mator can be arbitrarily distributed. Under this situation, the
QoS requirements should account for the worst-case channel
estimation error distribution. While directly finding the worst-
case distribution is challenging, two methods are proposed to
solve the robust transceiver design problem. One is based on the
Markov’s inequality, while the other is based on a novel duality
method. Two convergence-guaranteed iterative algorithms are
proposed to solve the transceiver design problems. Furthermore,
for the special case of MU multiple-input single-output (MISO)
systems, the corresponding robust transceiver design problems
are shown to be convex. Simulation results show that, compared
to the non-robust method, the QoS requirement is satisfied by
both proposed algorithms. Among the two proposed methods,
the duality method shows a superior performance in transmit
power, while the Markov method demonstrates a lower compu-
tational complexity. Furthermore, the proposed duality method
results in less conservative QoS performance than the Gaussian
approximated probabilistic robust method and bounded robust
method.

Index Terms—LMMSE channel estimation, QoS, robust MU-
MIMO transceiver design, arbitrarily distributed uncertainty.

I. INTRODUCTION

IN downlink MU-MIMO systems, there are two commonly
used transceiver design methodologies, aiming at different

goals. The first one is to maximize or minimize a performance
metric, such as capacity, mutual information or sum data
mean square error (MSE) subject to a power constraint [1]-
[4]. However, this framework does not take fairness into
account in multiuser system. The other methodology is QoS
and fairness based design: minimizing total transmit power
subject to different QoS constraints [5]- [7]. Fairness among
users is automatically introduced by defining different QoS
requirements.

For QoS constraint, it can be in terms of MSE or bit error
rate (BER). If the noise is Gaussian, BER is strongly related
to the signal-to-interference-plus-noise ratio (SINR) through
the Gaussian Q function, and the SINR in each data stream is
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related to the inverse of MSE [8], [9]. Therefore, the BER
requirement on the substream can be transformed into the
MSE requirement on the substream. However, in practice,
owing to the interference from unintended users (e.g., co-
channel interference in a cellular system or interference from
secondary user in cognitive radio systems), or even hostile
jamming signals, the distribution of the interference plus noise
might be unknown. In this case, the relation between BER
and MSE cannot be expressed explicitly, and directly using
the BER as the QoS constraint is intractable.

In general, channel state information (CSI) is required for
transceiver design [1]- [7]. In practice, CSI has to to be
estimated, and estimation error is unavoidable. Therefore,
robust transceiver design, which takes the channel estima-
tion uncertainty into consideration, is important. For ex-
isting works, the estimation errors are usually assumed to
be bounded or Gaussian distributed. In [10]- [12], bounded
channel estimation error is introduced in the QoS constraints
in the multiuser transceiver design problem. Nevertheless,
in general, the distribution of estimation error of a random
variable is unbounded [13]. To tackle this problem, several
approximation based probabilistic robust transceiver designs
with Gaussian distributed channel uncertainty were proposed.
In uplink SIMO system, [14] aims to minimize total users’
transmit power with individual probabilistic SINR constraints.
However, the method is only suitable for users with single
antenna. Furthermore, owing to the difference between uplink
and downlink inter-user interference management, the method
in [14] cannot be generalized to downlink system. For cogni-
tive radio systems when communication is carried out between
single antenna secondary users, a robust power control is
proposed in [15] aiming at maximizing secondary users’
capacity subject to probabilistically constrained interference to
the primary user. The geometric programming (GP) method
was used to solve the power allocation problem. However,
the GP method cannot be extended to transceiver matrices
design in MU-MIMO system. In single-user MIMO system,
a robust transmitter was designed in [16] aiming at maxi-
mizing average SINR while total SINR was probabilistically
constrained. However, the framework of [16] cannot handle
individual SINR constraint on each data stream. Only in a
recent paper [17], a robust transmitter design in downlink MU-
MISO system is proposed to minimize total transmit power
subject to individual probabilistic SINR constraint for different
users. However, there is no corresponding receiver design in
[17].

1536-1276/13$31.00 c© 2013 IEEE



HE and WU: PROBABILISTIC QOS CONSTRAINED ROBUST DOWNLINK MULTIUSER MIMO TRANSCEIVER DESIGN WITH ARBITRARILY . . . 6293

In this paper, we consider a general scenario that the
distribution of the interference plus noise is not known, and the
distribution of the channel estimation error under interference
cannot be modeled in prior. To the best of our knowledge, this
is the first work designing probabilistic QoS based robust MU-
MIMO transceiver when the channel uncertainty distribution
is not known. In particular, we formulate the probabilistic
QoS constraints under arbitrarily distributed channel estima-
tion error into worst-case probabilistic constraints, and two
methods are proposed to tackle this problem. One is based
on the Markov’s inequality, which provides an upper bound
for the worst-case probability. The other is based on a novel
duality method, in which the worst-case probability problem is
transformed into a deterministic finite constrained problem by
using the Lagrange duality and S-Lemma, with strong duality
guaranteed. For both proposed methods, the resulting noncon-
vex problems are solved by convergence-guaranteed iterative
algorithms between two convex subproblems. Furthermore, for
the special case of MU-MISO systems, the robust transceiver
design problems are shown to be convex, and thus global
optimal solutions can be guaranteed. Simulation results show
that the duality method has an excellent performance on
the transmit power with QoS guaranteed, while the Markov
method exhibits low computational complexity. Furthermore,
comparisons with Gaussian approximated robust method [17]
and bounded robust method [11] show superior performance
of the proposed duality method.

The rest of this paper is organized as follows. In Section
II, the system model and the statistical information of the
CSI error modeling is investigated under unknown distributed
interference. In Section III, two different methods are proposed
to solve the robust transceiver design problem under the prob-
abilistic QoS requirements. Simulation results are presented
in Section IV, and conclusions are drawn in Section V.

Notation: In this paper, E (·), (·)∗, (·)T , and (·)H denote
statistical expectation, conjugation, transposition and Hermi-
tian, respectively, while ‖ · ‖2 denotes the norm of a vector.
In addition, Tr (·) and ‖ · ‖F refer to the trace and Frobenius
norm of a matrix, respectively. The notations vec (·), ◦ and ⊗
stands for the vectorization, Hadamard and Kronecker product,
respectively. Symbol diag (x) denotes a diagonal matrix with
vector x on its diagonal. Finally, IK is a K × K identity
matrix.

II. SYSTEM MODEL

A. Downlink MU-MIMO System

The downlink MU-MIMO system under consideration con-
sists of one base station (BS) equipped with N transmit
antennas and K active users, with the kth user equipped
with Mk antennas (

∑K
k=1Mk = M ). It is assumed that Lk

independent data streams are transmitted to the kth user and∑K
k=1 Lk = L. In order to guarantee data recovery at the

users, it is required that Lk ≤Mk and L ≤ min{M,N}. Let
sk be the Lk × 1 data vector transmitted to the kth user, we
have E(sks

H
k ) = ILk

.
Let G be the N × L precoding matrix at the BS, and s =

[sT1 · · · sTK ]T is the data vector for all active users, then the

received Mk × 1 signal at the kth user is

yk = HkGs + nk, (1)

where Hk and nk are the Mk × N channel matrix and the
received Mk × 1 interference plus noise vector of the kth

user, respectively. It is assumed that the interference plus noise
can be arbitrarily distributed with its first two moments being
known. Without loss of generality, we assume E(nk) = 0 and
E(nkn

H
k ) = Rk, and we write nk ∼ A(0,Rk), where A

denotes an arbitrary distribution.
At the receiver, an Lk×Mk equalizer Fk is used to process

the received signal. The recovered Lk × 1 data vector at the
kth user is

ŝk = FkHkGs+ Fknk. (2)

Since the transmitted data are independent with the interfer-
ence and noise, the total MSE of the kth user’s data can be
calculated as

MSEk = Esk,nk

[
Tr{(Dks− ŝk)(Dks− ŝk)

H}] (3)

= ‖FkHkG−Dk‖2F +Tr(FkRkF
H
k ), (4)

where the matrix Dk = [0Lk×
∑k−1

k=1 Lk
ILk

0Lk×
∑K

k=k+1 Lk
]

is used to select the kth user’s data streams. The basic QoS
based MU-MIMO transceiver design problem is [7]

G,F1,...,FK

min Tr(GGH)

s.t. MSEk(G,Fk) ≤ εk, k = 1, · · · ,K,
where εk is the required QoS target in terms of MSE. However,
as shown in (4), in addition to the precoder G and equalizer
Fk, the MSE also depends on the channel realization Hk,
which has to be estimated in practice.

B. Channel Estimation Under Arbitrarily Distributed Interfer-
ence

During channel estimation, an N ×Lt training matrix S is
transmitted from the BS, where Lt is the training length with
Lt ≥ N . Let G = IN during training, the received signal at
the kth receiver with observation window length Lt is

Yk = HkS+Nt
k, (5)

where Nt
k is an Mk × Lt matrix with arbitrarily distributed

elements and represent interference plus noise at the training
stage. In this paper, the well-known Kronecker model is used

for the MIMO channel [18], i.e., Hk = R
1
2

rkHwkR
1
2
t , where

Rrk and Rt are the correlation matrix at the kth receiver and
the BS, respectively, and Hwk has independent and identically
distributed (i.i.d.) complex Gaussian elements distributed as
CN (0, 1). After taking vectorization on both sides of (5), we
have vec(Yk) = (ST ⊗ IMk

)vec(Hk) + vec(Nt
k). With ytk �

vec(Yk),hk � vec(Hk) and ntk � vec(Nt
k), we get

ytk = (ST ⊗ IMk
)hk + ntk, (6)

where the first two moments of ntk is assumed to be known,
i.e., ntk ∼ A(0,Φk). According to the Kronecker channel
model, we have hk ∼ CN (0,RT

t ⊗Rrk).
In order to utilize the statistical information of the channel

and the interference plus noise, we employ the linear minimum
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mean squared error (LMMSE) estimator, which takes the ex-
pression ĥk=

(
(R−T

t ⊗R−1
rk )+(S

∗⊗ IMk
)Φ−1

k (ST⊗ IMk
)
)−1·

(S∗⊗ IMk
)Φ−1

k · yk. It is easy to prove that the mean of the
channel estimation error is zero, i.e., E(hk − ĥk) = 0, and
the covariance of the error is [13]

Σk=
(
(R−T

t ⊗R−1
rk )+(S

∗⊗ IMk
)Φ−1

k (ST⊗ IMk
)
)−1

. (7)

Therefore, the channel estimation error can be modeled as

Hk=Ĥk +Δk, (8)

where vec(Ĥk) = ĥk. Since the distribution of the interfer-
ence plus noise is unknown, we can only model the channel
estimation uncertainty Δk as arbitrarily distributed with its
first two moments known, i.e., vec(Δk) ∼ A(0,Σk).

After substituting (8) into (4), the total MSE of the kth user
is

MSEk(Δk)=‖Fk(Ĥk+Δk)G−Dk‖2F+Tr(FkRkF
H
k ). (9)

Note that the distribution of the MSE depends on that of the
Δk. Furthermore, G and Fk are unknown, and in general
depends on the statistical information of Δk. Therefore, the
distribution of the MSE cannot be obtained or approximated
in advance.

Remark 1. Besides the estimation error, the quantization error
is also unavoidable in frequency-division duplex (FDD) sys-
tems (e.g., channel is estimated at the users and then quantized
and fed back to the BS.). Channel directional information
is usually quantized by Grassmannian codebook or random
vector quantization (RVQ) [19], [20], while the channel quality
information is quantized by entropy-maximizing method [21].
In general, accurate analytical statistical model of quantization
error is intractable as it depends on the distribution of the
estimated channel Ĥk. For example, for the simple case of
scalar quantization [12], only an error bound can be derived.
For RVQ technique with i.i.d. Rayleigh distributed channel,
only the error angle is modeled. Fortunately, empirical mean
and variance of the quantization error can be obtained once
the codebook is fixed. Since the channel estimation error is
independent with the quantization error, the combined channel
uncertainty can also be modeled using (8) with updated mean
and variance. As the bias of the quantization error can be
shifted to the estimated channel, the channel uncertainty can
still be modeled as vec(Δk) ∼ A(0,Σk).

III. ROBUST MU-MIMO TRANSCEIVER DESIGN

In multiuser system, different users may have dif-
ferent QoS requirements, which can be formulated as
Prob{MSEk(Δk) ≥ εk} ≤ pk, where εk and pk are the
required QoS target and guaranteed probability at the kth

receiver, respectively. After the QoS requirements are satisfied,
it is crucial to save transmission power at the BS. Therefore,
the probabilistic QoS constrained transceiver design problem
can be formulated as

G,F1,...,FK

min Tr(GGH)

s.t.
vec(Δk)∼A(0,Σk)

sup Prob{MSEk(Δk) ≥ εk} ≤ pk, ∀k. (P0)

In the QoS constraints, due to the arbitrarily distributed
channel estimation errors, the supremum of the outage prob-
ability is used to guarantee the QoS performance is satisfied
even at the worst case.

Note that the problem (P0) is a bilevel optimization
problem, and the lower level problem involves finding the
supremum of the outage probability. Owing to the unknown
distribution of Δk, it is difficult to get an analytical solution
for the lower level problem. Below, we consider two methods
to solve this problem. The first one is to use the Markov’s
inequality to eliminate the supremum. Another method is the
proposed duality method, in which the lower level problem
is transformed from a stochastic problem into a solvable
deterministic problem.

A. The Markov’s Inequality Based Method

Since the distribution of the MSE is unknown, the Markov’s
inequality [22] can be used to get an upper bound of the outage
probability

Prob{MSEk(Δk) ≥ εk} ≤ EΔk
{MSEk(Δk)}

εk
, (10)

where EΔk
{MSEk(Δk)} can be derived as

EΔk
{MSEk} = EΔk

{‖FkΔkG‖2F }+ ‖FkĤkG−Dk‖2F
+ ‖R1/2

k FHk ‖2F (11)

= EΔk
{‖(GT ⊗ Fk)vec(Δk)‖22}

+ ‖FkĤkG−Dk‖2F + ‖R1/2
k FHk ‖2F (12)

= ‖[vec
(
(GT ⊗ Fk)Σ

1
2

k

)T
vec(FkĤkG−Dk)

Tvec(R
1/2
k FHk )T ]‖22.

(13)

Since the right hand side of (10) is independent of the exact
distribution, the problem (P0) can be approximated as

G,F1,...,FK

min Tr(GGH)

s.t. ‖[vec
(
(GT⊗Fk)Σ

1
2

k

)T
vec(FkĤkG−Dk)

T

vec(R
1/2
k FHk )T ]‖22 ≤ pkεk, ∀k.

(14)

From (14), it is obvious that the probabilistic robust approach
becomes a statistically average approach [23], [24]. Although
this problem is still nonconvex, it is observed that it becomes
a convex problem of G when all equalizer Fk are fixed.
Furthermore, when the precoder G is fixed, the objective
function is not related to the equalizer Fk. In order to provide
a larger feasible space for the next round precoder design, the
equalizer Fk can be used to minimize the left side of the QoS
constraints in (14). Therefore, the problem (14) can be solved
by iterations between two convex subproblems as follows.

In the first subproblem, with the equalizer Fk fixed, the
optimum precoder G can be obtained from the second-order
cone programming (SOCP) problem

G,P
min P

s.t. ‖vec(G)‖2 ≤ P

‖[vec
(
(GT ⊗ Fk)Σ

1
2

k

)T
vec(FkĤkG−Dk)

T

vec(R
1/2
k FHk )T ]‖2 ≤ √

pkεk, ∀k,

(15)
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where P is a slack variable.
In the second subproblem, with the precoder G fixed, the

equalizer Fk can be used to minimize the left side of the QoS
constraint. Expressing the left side of the QoS constraint in
(14) with the Frobenius norm, the equalizer Fk can be updated
from the following problem

Fk

min ‖(GT⊗Fk)Σ
1
2

k‖2F+‖FkĤkG−Dk‖2F+‖R1/2
k FHk ‖2F .

(16)
Furthermore, writing the first term of the cost function (16)
as a quadratic form,

‖(GT⊗Fk)Σ
1
2

k ‖2F = Tr
(
Σk

(
(G∗GT )⊗ (FHk Fk)

))
(17)

= Tr(

N∑
j=1

N∑
i=1

gijΣ
ji
k F

H
k Fk), (18)

where gij is the (i, j)th element of the matrix G∗GT , Σji
k is

the (j, i)th Mk×Mk subblock of the matrix Σk. Putting (18)
into (16), and setting the derivative of the cost function (16)
with respect to F∗

k to zero, the optimum equalizer Fk is

Fk = (ĤkGDH
k )H(ĤkGGHĤH

k +Rk+

N∑
j=1

N∑
i=1

gijΣ
ji
k )

−1.

(19)
It is observed that the obtained equalizer is a conventional
MMSE equalizer with additional regularization from the
weighted uncertainty

∑N
j=1

∑N
i=1 gijΣ

ji
k .

The iterative algorithm between the two subproblems is
summarized at Table I. With a feasible initialization, the
transmit power in each iteration obtained by the iterative
algorithm decreases monotonically and converges. Similar
proofs have been provided in [11].

With regard to the initialization, it is a common problem for
the QoS based MU-MIMO transceiver design since a feasible
initial transceiver pair is required [7] [11]. Conventionally, the
receiver Fk is initialized with an identity or a randomly gener-
ated matrix. However, these initializations are not guaranteed
to satisfy the QoS constraints, and the precoder G design in
(15) may not exist. It is observed in (15) that if the elements
of Fk are small, we have a better chance of satisfying the QoS
constraints. Based on this observation, it is suggested in [11]
that scaling factors 1/ak are introduced into the initial chosen
equalizer in (15), and the scaling factors can be obtained from
the following SOCP problem

G,P,γ1,...,γK

min P

s.t. ‖vec(G)‖2 ≤ P

‖[vec
(
(GT⊗Fko)Σ

1
2

k

)T
vec(FkoĤkG−akDk)

T

vec(R
1/2
k FHko)

T ]‖2 ≤ ak
√
pkεk, ∀k,

(20)

where Fko is the initial chosen equalizer. Compared to the
precoder design with fixed equalizers in (15), the joint pre-
coder and scalable equalizers (G, 1

a1
F1o, · · · , 1

aK
FKo) in (20)

has more degree of freedom and thus has a higher chance of
satisfying the QoS constraints. If problem (20) is feasible, the
result (G, 1

a1
F1o, · · · , 1

aK
FKo) is used as the initial starting

point for the iterative algorithm. Otherwise, another Fko with
a different beamforming direction may be chosen and (20)
is solved again. In practice, the feasibility problem can also

TABLE I
MARKOV’S INEQUALITY BASED ROBUST TRANSCEIVER DESIGN

1. Set iteration number j = 1, initialize with a feasible transceiver set
(G[0],F1[0], · · · ,FK [0]), define P [0] = Tr(G[0]HG[0])

2. Update G[j] using the solution of (15), calculate P [j]=Tr(G[j]HG[j])
3. Update Fk [j] using (19)
4. If P [j − 1]− P [j] ≤ ε (ε is a pre-defined threshold) then stop,

otherwise increment j and go to step 2

be mitigated by utilizing it as the user admission criterion
if the number of active user is large [25]. However, the
corresponding cross-layer design problem is beyond the scope
of this paper.

B. The Duality Based Method

In the MSE expression (9), the random variable Δk is
weighted by unknown Fk and G, whose values in general
depend on Δk. Therefore, the MSE is a sum of correlated
elements. According to the generalized weak-convergence the-
orem [26], a sum of many random variables with dependence
will tend to be distributed according to one of a small set
of stable distributions. This means that although the channel
estimation uncertainty Δk is arbitrarily distributed, the MSE
in (9) is in fact not arbitrarily distributed. Therefore, the
Markov’s inequality in (10) is quite loose [22], and the QoS
and power saving performance of the Markov method is
expected to be conservative. In this subsection, the exact
solution of the lower level problem is derived by the proposed
duality method.

Since the MSE is a function of the channel estimation
uncertainty, let ψk(xk) =MSEk(Δk), where xk � vec(Δk).
The lower level problem

vec(Δk)∼A(0,Σk)

sup Prob{MSEk(Δk) ≥ εk} can

be reformulated as

f(xk)

sup Prob{ψk(xk) ≥ εk}
s.t.

∫
xk∈CNMk

f(xk)dxk = 1

E(xk) = 0
E(xkx

H
k ) = Σk,

(21)

where f(xk) is the probability density function (PDF) of the
vectorized uncertainty xk .

Transforming problem (21) into its dual problem
The Lagrangian of this problem is presented as

Lk (f(xk), αk,ηk,Ξk)

= Prob{ψk(xk) ≥ εk}+ αk

⎛
⎜⎝1−

∫
xk∈CNMk

f(xk)dxk

⎞
⎟⎠

+ ηHk (0− E(xk)) + Tr
(
ΞHk (Σk − E(xkx

H
k ))

)
(22)

= αk +Tr(ΞHk Σk) +

∫
ψk(xk)≥εk

f(xk)dxk

−
∫

xk∈CNMk

(
αk + ηHk xk +Tr(ΞHk xkx

H
k )

) · f(xk)dxk (23)
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=αk +Tr(ΞHk Σk)

+

∫
ψk(xk)≥εk

(
1− αk − ηHk xk − Tr(ΞHk xkx

H
k )

) · f(xk)dxk

+

∫
ψk(xk)<εk

(
0− αk − ηHk xk − Tr(ΞHk xkx

H
k )

) · f(xk)dxk. (24)

where αk,ηk,Ξk are the Lagrangian multipliers, and Ξk =
ΞHk . With the implicit PDF constraint f(xk)≥0, the Lagrange
dual function of the problem (21) is

gk (αk,ηk,Ξk) = sup
f(xk)≥0

Lk (f(xk), αk,ηk,Ξk) . (25)

Note that the supremum of the first integral in (24) with
the nonnegative PDF constraint is zero if αk + ηHk xk +
Tr(ΞHk xkx

H
k ) > 1, otherwise the supremum is infinity.

Similarly, the supremum of the second integral with the
nonnegative PDF constraint is also zero if αk + ηHk xk +
Tr(ΞHk xkx

H
k )≥0, otherwise the supremum is infinity. There-

fore, the Lagrange dual function gk (αk,ηk,Ξk) is

gk (αk,ηk,Ξk)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
αk +Tr(ΞHk Σk) if

αk + ηHk xk +Tr(ΞHk xkx
H
k ) ≥ 0,

∀xk : ψk(xk) < εk; and
αk + ηHk xk +Tr(ΞHk xkx

H
k ) > 1,

∀xk : ψk(xk) ≥ εk
+∞ otherwise.

(26)

Combining the two conditions that make gk (αk,ηk,Ξk) =
αk +Tr(ΞHk Σk), the first condition can be replaced by αk +
ηHk xk + Tr(ΞHk xkx

H
k ) ≥ 0 for all xk ∈ CNMk . Therefore,

the dual of the problem (21) can be formulated as

αk,ηk,Ξk

min αk +Tr(ΞHk Σk)

s.t. αk + ηHk xk +Tr(ΞHk xkx
H
k ) ≥ 0, ∀xk : xk ∈ CNMk

αk + ηHk xk +Tr(ΞHk xkx
H
k ) > 1, ∀xk : ψk(xk) ≥ εk

Ξk = ΞHk .
(27)

Remark 2. It is recognized that the problem (21) is known as
the moment problem [27]. Since only the first two moments
of the random vector xk are used in (21), the feasible moment
vector set of xk is M = {(0,Σk)|Σk � 0}. According to the
general theory on the moment problem [27, p. 812], strong
duality holds between the primal moment problem (21) and
its dual problem (27) when the moment vector of xk is an
interior point of M, i.e., Σk 
 0.

Remark 3. From (7), the condition Σk 
 0 is equivalent
to requiring that either the covariance matrix of the channel
RT
t ⊗Rrk or the interference plus noise covariance matrix Φk

is positive definite. Furthermore, when strong duality holds,
the optimal value of (21) is equivalent to that of (27).

In order to get a compact form of (27), we define Zk �[
ΞHk

1
2ηk

1
2η

H
k αk

]
, Σ̃k�

[
Σk 0
0 1

]
and uk�

[
xTk 1

]T
, then we get

Zk

min Tr(ZkΣ̃k)

s.t. uHk Zkuk ≥ 0, ∀xk : xk ∈ CNMk

uHk Zkuk − 1 > 0, ∀xk : ψk(xk) ≥ εk
Zk = ZHk .

(28)

Note that the first and the third constraints of (28) can be
combined into Zk � 0. Furthermore, after replacing the
MSE term ψk(xk) with MSEk(Δk) in (9), the problem (28)
becomes

Zk

minTr(ZkΣ̃k)

s.t. Zk � 0

uHk Zkuk−1>0, ∀Δk:‖Fk(Ĥk+Δk)G−Dk‖2F
+Tr(FkRkF

H
k ) ≥ εk.

(29)

Since (29) does not contain probabilistic constraint, it is a
deterministic optimization problem. But it is still an infinite
constrained problem.

Transforming problem (29) into finite constrained problem
We first reformulate the Frobenius norm as a spectral norm

as follows

‖Fk(Ĥk +Δk)G−Dk‖2F
= ‖vec(Fk(Ĥk +Δk)G−Dk)‖22 (30)

= ‖vec(FkΔkG) + vec(FkĤkG−Dk)‖22 (31)

=

∥∥∥∥[GT⊗Fk vec(FkĤkG−Dk)]

[
vec(Δk)

1

]∥∥∥∥
2

2

(32)

= uHk QH
k Qkuk, (33)

where vec(FkΔkG)=(GT⊗Fk)vec(Δk) is used from (31) to
(32) [28], and Qk � [GT⊗ Fk vec(FkĤkG − Dk)]. Putting
(33) into the condition of the second constraint of (29), we
get the quadratic form

‖Fk(Ĥk +Δk)G−Dk‖2F +Tr(FkRkF
H
k )−εk

=uHk

(
QH
k Qk−

[
0NMk

0NMk×1

01×NMk
εk−Tr(FkRkF

H
k )

])
uk (34)

= uHk (QH
k Qk − diag([0, εk−Tr(FkRkF

H
k )]))uk. (35)

Therefore, the second constraint of the problem (29) can be
transformed as

uHk (Zk − diag([0, 1]))uk > 0, ∀xk : uHk
(
QH
k Qk

−diag([0, εk − Tr(FkRkF
H
k )])

)
uk ≥ 0. (36)

By using the S-Lemma in control theory [29, p. 23], (36) can
be equivalently formulated as

∃λk ≥ 0 : Zk − diag([0, 1])− λk
(
QH
k Qk

− diag([0, εk − Tr(FkRkF
H
k )])

) � 0. (37)

It is shown in Appendix A that the problem (P0) will be
infeasible if λk = 0 for any k ∈ {1, 2, · · · ,K}. Therefore, we
can omit λk=0 in (37). Letting βk� 1/λk > 0, the constraint
(37) can be reformulated as

∃βk>0 : βkZk+diag([0, εk−Tr(FkRkF
H
k )−βk])−QH

k Qk�0.
(38)

According to the Schur’s Complement [30], (38) can be
transformed into an linear matrix inequality (LMI) form of
βk as

∃βk>0 :

[
βkZk+diag([0, εk−Tr(FkRkF

H
k )−βk]) QH

k

Qk ILLk

]
�0.

(39)
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After replacing the second constraint of the problem (29)
with its equivalent form (39), the problem (29) becomes

βk,Zk

min Tr(ZkΣ̃k)

s.t. Zk � 0, βk > 0[
βkZk+diag([0, εk−Tr(FkRkF

H
k )−βk]) QH

k

Qk ILLk

]
�0.
(40)

Defining a new variable Z̃k� βkZk, then the problem (40)
further becomes an LMI problem

βk,Z̃k

min Tr(Z̃kΣ̃k)/βk

s.t. Z̃k � 0, βk > 0[
Z̃k+diag([0, εk−Tr(FkRkF

H
k )−βk]) QH

k

Qk ILLk

]
�0.

(41)
Therefore, the stochastic problem (21) is transformed into

the deterministic finite constrained problem (41).

Transforming (P0) into a solvable single-level problem
Since the strong duality holds between the primal and dual

problem, after replacing the lower level problem of (P0) with
(41), we get the following results.

Proposition 1. The original bilevel optimization problem (P0)
is equivalent to the following single-level problem

G,F1,...,FK

β1,...,βK

Z̃1,...,Z̃K

min Tr(GGH)

s.t. Tr(Z̃kΣ̃k)/βk ≤ pk, βk>0, Z̃k�0, ∀k[
Z̃k + diag([0, εk−Tr(FkRkF

H
k )−βk]) QH

k

Qk ILLk

]
�0, ∀k.

(P1)

Proof. See Appendix B.

Since the term Qk in problem P1 contains the product of
G and Fk, it is a nonconvex problem of G and Fk. However,
it can be solved by an iteration between two subproblems as
follows.

In the first subproblem, when all equalizers Fk are fixed,
the subproblem becomes a convex problem of G, and the
precoder design problem is

G,β1,...,βK

Z̃1,...,Z̃K

min Tr(GGH)

s.t. Tr(Z̃kΣ̃k) ≤ pk · βk, βk>0, Z̃k�0, ∀k[
Z̃k+diag([0, εk−Tr(FkRkF

H
k )−βk]) QH

k

Qk ILLk

]
�0, ∀k.

(42)

This convex problem can be efficiently solved by the interior
point method in [31, p. 561].

For the second subproblem, similar to the idea in the
Markov method, the equalizer Fk is chosen to minimize the
guaranteed data MSE ε̃k to create a larger feasible space for
the next round precoder design. Therefore, Fk is updated using

the following problem

Fk,βk,Z̃k,ε̃k

min ε̃k

s.t. Tr(Z̃kΣ̃k) ≤ pk · βk, βk > 0, Z̃k � 0[
Z̃k + diag([0, ε̃k − Tr(RkF

H
k Fk)− βk]) QH

k

Qk ILLk

]
�0.

(43)
In contrast to the problem (16), we cannot get a closed-
form solution from (43). Furthermore, owing to the nonlinear
term Tr(RkF

H
k Fk) in the positive semidefinite constraint, this

subproblem seems to be a nonconvex problem on Fk. But
since Tr(RkF

H
k Fk) is a scalar and lies on the diagonal of the

matrix
[
Z̃k+diag([0,ε̃k−Tr(RkF

H
k Fk)−βk]) QH

k

Qk ILLk

]
, by introducing

a slack variable tk, the problem (43) is transformed into

Fk,tk
βk,Z̃k,ε̃k

min ε̃k

s.t. Tr(Z̃kΣ̃k) ≤ pk · βk, βk > 0, Z̃k � 0[
Z̃k + diag([0, ε̃k − tk − βk]) QH

k

Qk ILLk

]
�0

Tr(RkF
H
k Fk) ≤ tk,

(44)

which is a convex problem as Rk � 0. The problem (44)
is equivalent with (43), because the last inequality constraint
in (44) becomes active at the optimal solution. This can be
proved by contradiction. If the last constraint is not active,
then ε̃k and tk can always be reduced by the same amount,
which does not change the positive semidefinite constraint,
until the last inequality becomes active.

The iterative algorithm for the duality method can also be
represented as in Table I, except that the two subproblems (15)
and (19) are replaced by (42) and (44), respectively. The proof
for its convergence is similar to that in [11], and is omitted in
this paper.

Again for initialization, the conventional identity or ran-
domly generated equalizer may not be feasible. Below, we
introduce a feasibility enhancement initialization analogous to
that used in the Markov based method. Let Fk � 1

ak
Fko in

(P1), where Fko is an initial chosen equalizer, and ak > 0
is the amplitude factor. Multiplying both sides of the last K
inequalities by ak, (P1) becomes

G,a1,...,aK
β̌1,...,β̌K

Ž1,...,ŽK

min Tr(GGH)

s.t. Tr(ŽkΣ̃k) ≤ pkβ̌k, β̌k > 0, Žk � 0, ak > 0, ∀k[
Žk+diag([0, akεk− 1

ak
Tr(RkF

H
koFko)−β̌k]) Q̌H

k

Q̌k akI

]
�0, ∀k,
(45)

where Q̌k � [GT⊗Fko vec(FkoĤkG − akDk)], β̌k � akβk
and Žk � akZ̃k. Further introducing a slack variable ck, the
problem (45) is equivalent to

G,a1,...,aK ,c1,...,cK
β̌1,...,β̌K

Ž1,...,ŽK

min Tr(GGH)

s.t. Tr(ŽkΣ̃k) ≤ pkβ̌k, β̌k > 0, Žk � 0, ∀k[
Žk+diag([0, akεk−ckTr(RkF

H
koFko)−β̌k]) Q̌H

k

Q̌k akI

]
�0,∀k

akck ≥ 1, ak > 0, ∀k,
(46)
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where the positive amplitude constraint ak > 0 regularizes
the set {(ak, ck)|akck ≥ 1} into a convex set, which can
be represented as a LMI

[
ak 1
1 ck

]� 0. Therefore, the initial
transceiver pair (G, 1

a1
F1o, · · · , 1

aK
FKo) can be efficiently

obtained from the convex problem (46).

C. Convex Robust MU-MISO Transceiver Design

In MU-MIMO systems, the proposed iterative algorithms
converge, but in general it is not known whether the converged
solution is the global optimal or not [1]- [7]. However, for the
special case of MU-MISO systems, we will show that the ro-
bust probabilistic QoS constrained transceiver design problems
are convex, thus global optimal solution is guaranteed.

1) Markov’s Inequality Based Method: Since each user
only equipped with one antenna in the MU-MISO system,
Lk =Mk =1, L=K and the kth user’s equalizer Fk in (14)
should be replaced by 1/ak·ejθk . After multiplying a2k on both
sides of all inequalities in problem (14), it becomes

G,a1,...,aK,θ1,...,θK

min Tr(GGH)

s.t. ‖vec
(
GTΣ

1
2

k e
jθk

)
‖22+‖ĤkGe

jθk−akDk‖22
+‖R1/2

k ejθk‖22 ≤ a2kpkεk, ∀k,
(47)

where Dk = [0, · · · , 1, · · · , 0], with 1 appears at the kth

position, is a 1×K basis vector in MU-MISO system. Now,
define Ḡ � G ◦ [ejθ11, · · · , ejθK1], we get Tr(GGH) =

‖G‖2F =Tr(ḠḠH) and ‖vec
(
GTΣ

1
2

k e
jθk

)
‖22= ‖GTΣ

1
2

k ‖2F =

‖ḠTΣ
1
2

k ‖2F . It is also observed that the kth elements of vectors
[ĤkGe

jθk−akDk] and [ĤkḠ−akDk] are the same, and other
elements in them only differ by a phase rotation because the
corresponding elements in Dk are zeros. Therefore, (47) is
equivalent to the following SOCP problem,

Ḡ,a1,...,aK
min Tr(ḠḠH)

s.t. ‖[vec
(
ḠTΣ

1
2

k

)T
, ĤkḠ−akDk,R

1/2
k ]‖2≤ak√pkεk, ∀k,

(48)
and the global optimal transceiver (Ḡ, 1

a1
, · · · , 1

aK
) for the

Markov’s inequality based MU-MISO system can be obtained.
2) Duality Based Method: Similar to the above Markov

method, letting Fk� 1
ak
ejθk and introducing Ḡ to (30), we get

‖ 1
ak
ejθk(Ĥk+Δk)G−Dk‖2F = 1

a2k
uHk Q̄H

k Q̄kuk, where Q̄k�
[ḠT vec(ĤkḠ−akDk)]. Following the same derivations in the
MU-MIMO case, the MU-MISO transceiver design problem
corresponds to (P1) is

Ḡ,a1,...,aK ,c1,...,cK
β̌1,...,β̌K

Ž1,...,ŽK

min Tr(ḠḠH)

s.t. Tr(ŽkΣ̃k)≤pkβ̌k, β̌k>0, Žk�0, ∀k[
Žk+diag([0, akεk−ckTr(Rk)−β̌k]) Q̄H

k

Q̄k akIL

]
�0, ∀k[

ak 1
1 ck

]
� 0, ∀k.

(49)
Obviously, (49) is convex and is similar to (46).

D. Implementation Consideration and Complexity Analysis

In practical systems, the proposed Markov and duality
method can be used when the estimated downlink channels
and the statistical information of the estimation error are
obtained at the BS. In particular, since the downlink channel
is the same as the uplink channel in the time-division duplex
(TDD) system, the BS can estimate the uplink channels and
then infer the downlink channels. Once these information are
obtained, the BS can calculate the optimal precoder G and
all equalizers, and send the equalizer Fk to the corresponding
user.

For computational complexity, since the first subproblem
of the Markov method is a SOCP problem, the complexity in

each iteration is O

(
n2 ·

K∑
k=1

dk

)
[32], where n=NL is the

number of unknown variables and dk = NLMkLk+L
2
k+M

2
k is

the vector length in the kth second order cone constraint. The
complexity of the second subproblem is O

(
M3
k

)
owing to the

dominant matrix inversion operation.
For the computational complexity of the duality method,

since all subproblems are SDP problems, the complexity in

each iteration is O

(
n2 ·

K∑
k=1

d2k

)
[32] where n is the number

of unknown variables and dk is the matrix dimension in the
kth positive semidefinite constraint. For the first subproblem,

n=NL+
K∑
k=1

(NMk+1)
2

2 +K and dk=NMk+1+LLk. Although

the matrix dimension of the second subproblem is the same as
that of the first subproblem, the variable number is reduced to
n=LkMk+

(NMk+1)2

2 +3 owing to the fact that all equalizers
can be computed in parallel. Therefore, the computational
complexity of the Markov method is lower than that of the
duality method.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the two proposed al-
gorithms is illustrated by simulations. Unlike most existing
works, the channel estimation is implemented first, and the
estimated channel and statistical information of the estimation
errors are taken into consideration in the transceiver design.
The MIMO channel in the simulations has complex Gaus-
sian entries with zero mean and unit variance. The channel
correlation matrices are taken as the exponential model, i.e.,
[Rt]ij=ρ

|i−j|
t , [Rrk]ij=ρ

|i−j|
r , with the correlation coefficient

ρt = 0.2 and ρr = 0.5. We assume the system is interference
dominated, and the received interference at every antenna is
i.i.d. with zero mean and variance 0.01. Since interference in
future networks (e.g., Cognitive Radio [33] and Heterogeneous
Network [34]) is often modeled by heavy-tailed distributions,
it is assumed in this section that the distribution of interference
is Laplace unless stated otherwise. The BS is equipped with
four antennas and there are two active users, and each is
equipped with two antennas, i.e., N = 4,K = 2,Mk = 2.
Spatial multiplexing is implemented for the two users, i.e.,
Lk = 2. At the channel estimation stage, orthogonal Walsh
sequences with length Lt = 2N are employed in different
transmit antennas. At the data detection stage, the required
outage probability is p1 = p2 = 0.15, the QoS target for the
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Fig. 1. The convergence performance of the proposed iterative algorithms.

second user is ε2 = 0.3 while that for the first user is varied be-
tween 0.05 and 0.3, and the threshold to terminate the iteration
is ε = 5× 10−4. All simulation results are averaged over 103

randomly chosen channel realizations. For fair comparison in
the transmit power performance, the randomly chosen channel
realizations are feasible for all algorithms under consideration.

In Fig. 1, the convergence performance of the proposed
algorithms with Fko being identity matrix and random matrix
as initialization is compared. The QoS target for the first user
is ε1 = 0.3. It can be seen that for any particular proposed
method, both initializations lead to the same transmit power
level after convergence, but the method with identity matrix
initialization converges slightly faster than the random one.
Therefore, Fko = I is used for equalizer initialization in the
subsequent simulations. Besides the convergence speed, from
Fig. 1, it is further noted that the duality method achieves a
lower transmission power level than the Markov method, as the
Markov method involves a loose upper bound, and therefore
is more conservative.

In Fig. 2, the histograms of the recovered first user’s data
MSEs of the two proposed methods and the non-robust method
using the basic formulation after (4) [7] is compared when
the QoS target for the first user is ε1 = 0.15. The non-robust
method takes the estimated channel as the true channel, and
the channel estimation error is ignored1. It is observed that
the residual MSEs of the two proposed robust methods are
smaller than the prefixed QoS target, while that of the non-
robust method exceeds the QoS target for about 70% of the
channel realizations. Furthermore, it is also noted that the
residual MSEs of the duality method are very close to the QoS
target, while that of the Markov method are much smaller than
the target. This shows the conservative nature of the Markov’s
inequality based design.

The required transmit power of the two proposed algorithms
to guarantee QoS performance is illustrated in Fig. 3. It is
observed that over a wide range of QoS target for the first

1Note that for the non-robust method, if the channel is perfectly known,
the QoS performance will always coincide with the “QoS target ε1” in Fig.
2.
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Fig. 2. The residual MSE of the first user with QoS requirement p1 = p2 =
0.15, ε1 = 0.15, ε2 = 0.3.
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Fig. 3. The transmission power with different QoS requirement.

user, the duality method consistently requires a significantly
lower transmission power than that of the Markov method,
saving more than 8 dB in transmission power. This is owing to
the loose Markov’s inequality which makes the approximated
QoS requirements in (14) over conservative. The additional
required transmit power of the duality method compared to
the non-robust method is about 3 dB, which is the cost of the
guaranteed QoS performance against the channel uncertainty.
At Fig. 4, the required transmit power as a function of outage
probability p1 (with ε1 = 0.15) is shown. It can be seen that
similar conclusions can be drawn as in Fig. 3.

From Figs. 2, 3 and 4, it can be concluded that the pro-
posed duality method guarantees the QoS requirement, while
maintaining a low transmission power. While the Markov
method also guarantee the QoS constraints, the duality method
achieves a good balance between the QoS requirement and the
power saving requirement. Notice that although the non-robust
method seems to indicate a low transmit power, it does not
represent a valid solution because the QoS constraints are not
satisfied as shown in Fig. 2. Similar conclusions can be drawn
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Fig. 4. The transmission power with different outage probability requirement.

in other simulation settings with different interference distri-
butions, e.g., Gaussian and uniform distributed interference.
The corresponding figures are not repeated in this paper.

One may argue that in order to have fair comparison,
the transmit power of the non-robust method should be in-
creased to the same level as the robust method. However,
this is possible only after we executed the proposed robust
transceiver design algorithm (i.e., after we obtained the re-
quired transmit power to guarantee the QoS requirements).
Without the proposed algorithms, the only way to guaran-
tee the QoS requirements for the non-robust method is to
perform extensive simulations on the MSE with increasing
transmit power level, until the QoS requirements are satisfied.
This would takes prohibitively significant amount of time,
as the minimum required power level would also depend on
numerous other factors, such as pilot pattern, pilot transmit
power, total number of users, antenna number in BS and
different users, number of data stream of each user, signal-to-
noise ratio, and most importantly the interference plus noise
distribution. Simulations have to be re-run if any one of
the above parameters is changed. Therefore, this approach is
almost impossible in practice.

The performance comparison between the Gaussian ap-
proximated robust method in [17] and the duality method is
illustrated in Fig. 5. In the simulation, there are two users, both
equipped with single antenna, and one BS equipped with two
antennas. This corresponds to the MU-MISO case. The MSE
target is 0.15 for both users (the corresponding SINR target
can be calculated to be 5.66 [9]), and the outage probability
is 0.15. As shown in Fig. 5, the residual MSE and SINR of
the method in [17] is more spread out (conservative) than
the proposed duality method, the reason is that the Bernstein-
type inequality in [17] is a conservative approximation for
linear and quadratic formulated problems with probabilistic
constraint over a set of ambiguous uncertainties [35, p.91,
p.118], while the proposed duality method is a tight solution
for the specific problem. Also note that the method in [17]
can only be applied to the MU-MISO system, while our
proposed methods are applicable to the more general MU-
MIMO system.
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Fig. 5. The CDF of residual MSE and SINR for the proposed duality method
and Gaussian approximated robust method.

In Fig. 6, the cumulative distribution function (CDF) of
the residual first user’s data MSE for the proposed duality
method and the bounded robust method in [11] are compared.
The interference distribution is assumed to be Gaussian, but
not known to the design procedure. For the bounded method,
since the interference distribution is unknown, the bound is
heuristically selected as 3b and 0.3b, where b = ‖Σ 1

2

k ‖F .
It can be seen that the QoS performance of the bounded
method with bound 3b is too conservative, while the QoS
requirement is not satisfied for the bound 0.3b. Therefore,
without the interference distribution information, there is no
systematic way to choose an accurate bound to realize the
probabilistic QoS target. On the other hand, if we assume
the interference distribution is known to be Gaussian, the
bound can be set as 1.44b to make this bound to cover 85%
of the Gaussian channel estimation error. Only under this
strong assumption, the bounded method has a comparable QoS
performance to the proposed duality method, which assumes
no knowledge on the interference distribution. However, even
with the accurate bound 1.44b, the distribution of the MSEs
of the bounded method is more spread out than that of the
duality method. This is because the bounded robust method
only exploited the deterministic bound information of channel
uncertainty, while the duality method fully utilized the first
and second-order moment information. It can be concluded
that the bounded robust method in [11] is not a practical way
to realize the probabilistic QoS constrained transceiver design
without distribution information.

In practical wireless systems, the transmission power is
limited. Therefore, besides the feasibility problem at the
initialization, the problem is also considered as infeasible if
the required transmission power is larger than the peak power,
resulting in two factors that affect the feasibility of the whole
transceiver design problem. With the QoS target for the first
user ε1 = 0.3, the impact of the peak power constraint on
the feasible rate of different methods is illustrated in Fig. 7.
On the left hand side of Fig. 7, the rapidly increasing feasible
rate with increasing peak power reveals that the peak power
is the main limiting factor. On the other hand, on the right
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Fig. 6. The CDF of residual MSE for the proposed duality method and
the bounded robust method (p1 = p2 = 0.15, ε1 = 0.15, ε2 = 0.3, b =

‖Σ
1
2
k ‖F ).

hand side of Fig. 7, the flat feasible rate with increasing peak
power reveals that the peak power is not the limiting factor, but
the feasibility rate of initialization would become the limiting
factor. For practical peak power around 1 to 2 (corresponds
to SINR 20 to 23 dB), we observe that the feasible rate of
the proposed duality method is close to that of the non-robust
method, while that of the Markov method is close to zero
owing to its high transmit power requirement.

V. CONCLUSIONS

In this paper, probabilistic QoS constrained robust downlink
MU-MIMO transceiver design was investigated. The objective
of the proposed design is to minimize the transmit power,
while still guarantees a probabilistic QoS requirement un-
der arbitrarily distributed channel estimation error. Markov’s
inequality based method and a novel duality method were
proposed to solve the problem. The convergence of both
iterative algorithms and the tightness of the duality method
were guaranteed, and the convexity of robust transceiver
designs for the MU-MISO scenario was proved. Simulation
results showed that the QoS requirement is guaranteed for
both proposed methods. For the minimized transmit power,
the duality method showed superior performance than the
Markov method, due to its tight reformulation. Furthermore,
compared with Gaussian approximated probabilistic robust
method and bounded robust method, the duality method has
less conservative QoS performance.

APPENDIX A

Replacing the second constraint of problem (29) with its
equivalent form (37), (29) becomes

Zk,λk

minTr(ZkΣ̃k)

s.t. Zk � 0, λk ≥ 0
Zk−diag([0, 1])−λk(QH

k Qk−diag([0, εk−Tr(FkRkF
H
k )]))�0.

(50)
If λk = 0, then the constraints of (50) reduces to Zk −
diag([0, 1])� 0. Since Σ̃k� 0, the optimal Zk occurs on the
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Fig. 7. The feasible rate of different methods with different peak power
constraints.

boundary of the constraint and the optimal value of problem
(50) becomes Tr(diag([0, 1])Σ̃k) = 1. Putting this optimal
value into (P0), the resulted constraint in (P0) becomes 1≤pk,
which is infeasible because the outage probability has to be
smaller than one.

APPENDIX B
PROOF OF THE PROPOSITION 1

Owing to the strong duality between the supremum of
the outage probability in (P0) and its dual problem (41), the
problem (P0) is represented as

G,F1,...,FK

min Tr(GGH)

s.t.
βk>0

Z̃k�0

Bk(G,Fk,βk,Z̃k)�0

minTr(Z̃kΣ̃k)/βk ≤ pk, ∀k. (51)

where Bk(G,Fk, βk, Z̃k) represents the matrix in the last
constraint of problem (41). Let (G0,F0

1, · · · ,F0
K) be any

transceiver, then the constraints in problem (51) is

βk>0, Z̃k�0, Bk(G
0,F0

k, βk, Z̃k)�0,
minTr(Z̃kΣ̃k)/βk ≤pk, ∀k. (52)

If there exist βk, Z̃k such that

βk>0, Z̃k�0, Bk(G
0,F0

k, βk, Z̃k)�0,
Tr(Z̃kΣ̃k)/βk ≤pk, ∀k (53)

is satisfied, then (52) is also satisfied. On the other hand, if (52)
is satisfied, then there exist βk, Z̃k such that (53) is satisfied.
Therefore, the constraint (52) and (53) are equivalent, and the
proposition is proved.
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