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Abstract

Background: The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification
process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia
monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a
lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is
apparent.

Methodology and Results: We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene
sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and
habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA
gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water,
marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three
major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus) and a non-monophyletic cluster constituted
mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and
estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were
further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In
contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very
recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This
result suggested the existence of AOA communities with different evolutionary history in the different habitats.

Conclusion and Significance: Based on an up-to-date amoA phylogeny, this analysis provided insights into the possible
evolutionary mechanisms and environmental parameters that shape AOA community assembly at global scale.
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Introduction

For the cycling of nitrogen on earth, a number of critical

processes carried out by microorganisms have been recognized,

including dinitrogen (N2) fixation, ammonification, nitrification,

denitrification, and anammox (anaerobic ammonium oxidation)

[1,2]. Nitrification is defined as the oxidation of ammonia to

nitrate through nitrite as an intermediate. The first step of

nitrification, ammonia oxidation, is the rate-limiting one in the

nitrification process [3]. For more than one hundred years,

ammonia-oxidizing bacteria (AOB) from the beta- and gamma-

proteobacteria class have been known to be the only organisms

responsible for this biochemical step [4]. However, metagenomics

radically changed the general perception of the nitrification

process in unraveling the widespread Archaea of the Thaumarch-

aeota phylum as potential contributor to nitrification [5,6]. This

was later confirmed by the successful isolation of N. maritimus in

pure culture [7].

More enrichments and isolates of AOA have been obtained

subsequently [7–14], confirming the presence of putative ammo-

nia monooxygenase subunits (i.e. amoA, amoB and amoC) within the

genomes of Thaumarchaeota. Among these sub-units, the amoA

gene has already been widely used as a reliable genetic marker to

explore the diversity and abundance of AOA in various ecosystems

[15,16]. The study of AOA distribution patterns has advanced our

understanding of the relationships between microbial community

ecology and the environmental parameters driving their compo-

sition and abundance at local and regional scale. Wessen et al.

(2011) reported large differences in AOA abundance in relation to

pH variations over 107 sampling sites covering an area of

31500 km2 [17]. In addition, environmental parameters, such as

pH, depth, nutrients and dissolved oxygen, were identified as

potential factors determining the dominant phylotypes of the

ammonia oxidizers and their diversity in ecosystems [18].

However, how ecological and evolutionary factors shape the

community assembly of AOA on a global scale and whether it is

possible to assign specific amoA lineages to each type of habitat, i.e.

soil, freshwater, marine sediment, etc are still unanswered

questions. Solving this matter would shed some light on the

environmental and historical forces influencing AOA community

distribution, diversity and ecology. Meta-analyses have proven to

be useful approaches providing phylogeographical clues on key
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evolutionary and ecological aspects of bacteria [19], archaea [20]

and denitrifiers [21]. Recently, two studies have demonstrated the

prevalence of niche-based mechanism of community assembly

over neutral processes for AOA at the global scale [22,23].

Focusing on aquatic habitats, Biller and colleagues proposed

salinity, water column depth, and temperature as potential sources

of selective pressures driving the partitioning of AOA communities

[23]. Comparing AOA and AOB, Fernandez and Casamayor

observed larger phylogenetic richness and higher diversification

rates in AOA than AOB [22].

In the present study, we investigate the underlying processes

influencing AOA community distribution patterns using amoA

sequences available from public repositories, similar with two

previous studies. Although our analysis considered all natural

habitats, a special emphasis on amoA sequences originating from

estuarine and freshwater systems was made and this is different

from two previous studies on comparison between AOA and AOB

and aquatic habitats of AOA. In an attempt to understand the role

of evolutionary processes involved in the observed community

pattern, we calculated AOA diversification rates and pattern in

each habitat and discovered that particularly low diversity of AOA

in the marine habitat may be related to a more recent and

accelerating diversification of AOA in this ecosystem.

Results and Discussion

Topology of the amoA phylogenetic tree
Our amoA gene phylogenetic tree was composed of three major

monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus)

and a non-monophyletic cluster constituted mostly by soil and

sediment sequences that we named Nitrososphaera (Fig. 1) following

the nomenclature of Pester et al. (2012). Unlike the latter

phylogeny, the Nitrososphaera cluster was located at the base of

the tree and was not a monophyletic sister cluster of the

Nitrosocaldus and Nitrosopumilus/Nitrosotalea clusters. The discrepan-

cies between both phylogenies may be explained by the fact that

Pester’s phylogeny is based on sequences available publically in

2010. Since then, a significant amount of new sequences have

been made available in the public databases and particularly from

low salinity or freshwater habitats like estuarine and freshwater

systems [11,24,25]. Although freshwater habitats have recently

been proposed as one of the largest reservoirs of archaeal genetic

diversity up to date [20,26], only a few freshwater planktonic

habitats have been surveyed for amoA gene diversity. These include

rivers [25], oligotrophic lakes [24,27], groundwater [28] and

drinking water [29]. These studies on freshwater environments

provided some new archaeal ammonia oxidizer lineages

[24,25,27], indicating that planktonic freshwater habitats harbor

typical amoA-containing ecotypes different from those found in soils

and oceans [24]. Because these freshwater sequences were also

clustered with those from acidic soils, e.g. the enrichment of

Candidatus Nitrosotalea devanaterra, this cluster was named as

Nitrosotalea cluster in agreement with Pester et al (Fig. 1) [30].

Freshwater sequences and those from low salinity environments,

i.e. estuaries [31–33] and hot springs [8,9,34–37] formed another

non-monophyletic group of several secondary clusters within the

Nitrosopumilus cluster. This group of clusters, containing the low

salinity archaeal Nitrosoarchaeum limnia, is separated clearly from

other saline clusters and is temporally named as Low Salinity

Environment Cluster (Fig. 1).

In contrast to amoA sequences from each habitat that tended to

group in specific clusters, estuarine sequences were widely

distributed across the phylogenetic tree (Fig. 1). This over-

dispersion of estuarine sequences in the phylogenetic tree may

be explained by the influence of freshwater discharge, soil drainage

waters and coastal marine water intrusions in estuarine habitats.

Hence, the ubiquitous distribution of estuarine sequences in the

three major amoA phylogenetic clusters (i.e. Nitrosopumilus, Nitroso-

talea and Nitrososphaera clusters) was not surprising.

Phylogenetic ecology
The 85 environmental AOA clone libraries analyzed in this

study were sorted into a principal coordinate analysis (PCoA) plot

according to phylogenetic community similarity (Fig. 2). In

agreement with the concept of habitat filtering [38] and as

observed in previous studies on ribosomal or functional genes [19–

23], AOA communities were more similar within habitats than

among habitats (R2 = 0.16, P = 0.001) (Fig. 2). Among the

environmental variables common to all studies (i.e. salinity,

lifestyle, temperature and oxygenation), salinity was the strongest

factor explaining AOA community structure patterns. Salinity

alone accounted for 8.6% (P = 0.003) of the total variance from the

Unifrac analysis (Fig. 3a) and clearly separated saline habitats from

non-saline habitats in a hierarchical clustering analysis (Fig. 2b).

Previous studies analyzing prokaryotic phylogenies based on

ribosomal [19,20] and functional genes [23] have also revealed a

clear separation between freshwater and marine lineages, suggest-

ing that, similar to eukaryotes, salinity represented one of the most

important evolutionary barrier preventing frequent environmental

transitions [39]. Jones et al. [21] showed that this evolutionary

segregation also applies to the nirS and nirK denitrifying genes.

However, due to marked incongruences between ribosomal and

denitrifying gene phylogenies, they could not rule out an

important effect of horizontal gene transfer (HGT). Unlike

denitrifying genes, archaeal amoA phylogeny seemed to be largely

congruent with the archaeal ribosomal phylogeny [24,40,41].

Therefore, our analysis suggested that salinity rather than HGT

may have a more significantly influence on the evolution of AOA

and may be one of the most important evolutionary factors for N

transforming microorganisms.

Together with salinity, our analysis suggested that other

environmental variables such as lifestyle (R2 = 0.06, P = 0.001)

and temperature (R2 = 0.04, P = 0.01) represented significant

driving forces of AOA distribution pattern at global scale

(Figs. 3a and 3d). Temperature was recently recognized as a key

factor influencing AOA diversity in aquatic ecosystems [23]. The

formation of monophyletic clusters by amoA sequences exclusively

from marine sediment (Msed) or marine water column (Mwc)

habitats may reflect the adaptation to sessile or planktonic lifestyle

(Fig. 1). Similarly, the formation of typical geothermal clusters may

illustrate the strong selective pressures exerted by high tempera-

ture in geothermal habitat. Surprisingly, oxygenation was not a

significant factor (R2 = 0.01, P = 0.09), although oxygen could be

an important factor shaping AOA community structure in natural

environments [42,43]. Oxygen is generally the electron acceptor

for AOA but an alternative energy metabolism involving nitrous

oxide combined to oxygen as potential electron acceptor has been

proposed [42,44]. This suggests that AOA could survive well in

low oxygen conditions. In agreement, an unexpected composi-

tional overlap between amoA sequences from distinct environments

characterized by a large variability in oxygen contents has been

observed in previous works [43,45], indicating that similar AOA

communities could survive a broad range of oxygen concentra-

tions.

Unfortunately, most of studies lacked detailed information on

factors known to have an impact on AOA community structure

(i.e. sampling depth, N species concentration, organic carbon, pH,

sulfide, and phosphate levels) at local scale could not be tested at
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global scale. Particularly, pH has been shown to affect soil

microbial community structure in large-scale studies based on 16S

rRNA gene [46,47], denitrifying genes [48,49] and amoA gene

[30,50], pH may therefore represent another important evolu-

tionary force for N cycling microorganisms at global scale.

However, to date, this parameter has been largely ignored in

most planktonic or sediment AOA surveys.

Diversity and Diversification
Rarefaction curves (Fig. S1), diversity indices (Fig. 2b) (i.e.

phylogenetic diversity (PD) and phylogenetic species variability

(PSV)) were determined for each habitat. As previously observed,

highest PD values were found in marine sediments [22,23]. Here

we also observed high PD values in symbionts and estuarine

sediments indicating that these habitats may be the largest

reservoir of AOA diversity and, therefore, promising environment

for the discovery of new AOA ecotypes. In agreement, the

accumulation of OTU’s in rarefaction curves did not reach an

asymptote, evidencing that AOA diversity is far from exhaustively

sampled. Estuarine sediment diversity may be the result of both

freshwater and marine intrusions as illustrated by the ubiquitous

distribution of estuarine sequences in the phylogenetic tree (Fig. 1).

Overall, the high diversity in sediments may be explained by the

heterogeneity of these habitats, which offer a large variety of

potential niches for ammonia oxidation. In contrast, in the central

Black Sea water, only one thaumarchaeotal subcluster was

detected [51]. This agrees with the low PD value observed for

marine planktonic amoA sequences, which was the result of closely

related phylotypes rather than different lineage as illustrated by the

low PSV value (Fig. 2b) and the concentration of marine

planktonic sequences in one monophyletic cluster (Fig. 1). In the

case of freshwater systems (i.e. both sediment and water column),

the low PD value may result from lower sampling efforts. Indeed,

inland water systems represent heterogeneous ecosystems and

Figure 1. Phylogenetic tree based on archaeal amoA gene sequences from the variable samples on the global level using the
maximum likelihood (ML) criterion. The credible support over 70% for each node was indicated with round circle on the node. The outer color
circle around the phylogenetic tree suggested the different habitats.
doi:10.1371/journal.pone.0052853.g001
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were identified as one of the largest reservoir of archaeal diversity

[20]. However, freshwater ecosystems are by far less thoroughly

sampled than marine habitats [24] and sampling is biased toward

oligotrophic systems [24–26,41]. Hence more research is called to

describe freshwater AOA diversity.

The marked differences in AOA phylogenetic diversity and

community structure among different habitats raised the question

of the evolutionary processes underlying these patterns. One

apparent reason may be the existence of distinct rates of

cladogenesis over time among habitats. As phylogenies derived

from molecular data, phylogenetic trees provide an indirect record

Figure 2. Principal coordinate analysis (PCoA) plot for archaeal amoA gene assemblages based on the eight types of habitats
deduced from the online Fast UniFrac software (a). Hierarchical clustering analysis (UPGMA algorithm with 100 replicates Jackknife supporting
test) for the all archaeal amoA gene sequences represent of eight types of habitats according to the online Fast UniFrac software. The number of
sequence (n), number of libraries (Nlib), phylogenetic diversity with s.d. (PD6s.d.) and phylogenetic species variability (PSV) in each habitat is given.
S.d. for PSV index was less than 0.001 for all habitats (b).
doi:10.1371/journal.pone.0052853.g002
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of speciation events [52], the amoA phylogeny inferred in this study

can be used to test this hypothesis. Accumulation of lineages as a

function of a relative scale of time (ltt plot) were plotted for each

habitat in order to assess departure from a constant rate of

cladogenesis (i.e. c= 0). Except for the marine water column, very

similar ltt plots were observed for all habitats with a constant

accumulation of lineages initiated closer to the root than to the tips

of the tree were observed (Fig. 4). This resulted in constant

diversification rates for the estuarine sediment and freshwater

habitats and decelerating rates for the remaining habitats. These

results must be taken cautiously as microbial evolutionary

inferences suffer from limitations such as the lack of fossil records

and the unknown range of microbial diversity [53]. The latter

aspect is critical since the gamma statistical value calculated with

the method developed by Pybus and Harvey [54] results in

increasingly negative gamma values as the fraction of the sampled

diversity decreases [55]. Hence, it is possible that the negative

gamma values obtained would follow the general pattern for

microorganisms assuming a constant diversification rate [55] if an

exhaustive sampling of amoA diversity could be made. Departure

from this general constant diversification pattern (i.e. acceleration

or deceleration) has been observed previously in bacteria [56],

archaea [57] and denitrifiers [21]. Very recently, it has been

shown that the whole AOA community exhibited two fast

diversification events separated by a long steady-state episode

[22]. Interestingly, in the present study, only one habitat, the

marine water column habitat, differed significantly from the

general constant diversification pattern and displayed a recent

diversification marked by an increase in the rate of cladogenesis

(i.e. c= 7.265.1) toward present time (Fig. 4). Discrepancies in the

rate of cladogenesis and diversification patterns between both

studies may rely in the methods used to calculate them. Here, we

used a maximum likelihood method assuming a molecular clock

since it provides a more reliable estimate of diversification than

non-molecular clock methods [55]. The recent diversification of

marine planktonic amoA sequences is consistent with the low PD

and PSV values observed for this habitat. The factors resulting in

an acceleration of the cladogenesis rate cannot be identified in this

work but they may lie in the ecological context of speciation and

extinction within marine planktonic systems.

Overall, our analysis provided further insight into the possible

evolutionary mechanisms and environmental parameters that

Figure 3. PCoA analyses for archaeal amoA gene assemblages based on the different environmental factors calculated by the online
Fast UniFrac software (A, living style; B, oxygen; C, salinity; D, temperature).
doi:10.1371/journal.pone.0052853.g003
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shape AOA community assembly at global scale. We unraveled a

well-defined trend of community similarity by habitat type with

salinity, temperature and lifestyle emerging as important environ-

mental factors governing community phylogenetic similarity.

Focusing on two aspects of macroevolution (i.e. the rate of

cladogenesis over time and whether different habitats exhibit

different diversification rates), we showed that planktonic marine

habitats departed from other habitats by displaying a recent and

accelerating diversification that may explain the low diversity of

AOA in this ecosystem. Nonetheless, the lack of knowledge on true

AOA diversification within certain habitats prevented definitive

conclusions on the macroevolutionnary processes related to AOA

diversification at the global scale.

Materials and Methods

Dataset constructions
The published literatures and GenBank database (before April,

2011) were surveyed to extract partial amoA gene sequences

matching the following criteria: high-quality sequences without

nucleotide ambiguities and with a length longer than 400 bp. Most

sequences were amplified with the same primer set (Arch-amoAF:

59-STAATGGTCTGGCTTAGACG-39 and Arch-amoAR: 59-

GCGGCCATCCATCTGTATGT-39) [45]. Variation in sam-

pling efforts and methodologies among studies were homogenized

by clustering amoA sequences at a 95% identity threshold using the

MOTHUR software [58]. An AOA database of 1476 archaeal

amoA sequences from 85 clone libraries globally distributed was

assembled (see the Table S1).

Simultaneously, these clone libraries were classified into eight

distinct habitats so as to discuss the preferred environment for

AOA: soil, freshwater, freshwater sediment, estuary, marine water,

marine sediment, geothermal systems and symbionts. The

environmental factors were coded for every clone library using

one semi-quantitative matrix on the basis of the gradients present

in the eight distinct habitats: temperature (psychrophile to

thermophile), salinity (hypersaline brines to freshwater), life style

(plankton, soil, sediment and endosymbiont), trophic state

(hypertrophic to oligotrophic) and oxygen concentrations (anoxic

to oxic) (see Table S1).

Phylogenetic analysis and diversity indices
AmoA gene sequences were aligned using the software MAFFT

[59]. Poorly aligned positions and divergent regions of the DNA

alignment were removed using the Gbloks software [60] resulting

in 572 bp length fragments for the final analysis. Phylogenetic

inference was carried out with RAxML version 7.2.8 [61] that

estimates large phylogenies by maximum likelihood. The best

phylogenetic tree estimated by the GTRCAT model with 1000

bootstrap replicates was drawn with iTOL [62].

Distance matrices based on relatedness between communities

were calculated with Fast UniFrac [63]. Principal coordinate

analysis (PCoA) plots were used to represent the ordering

relationships obtained from the UniFrac distance matrices. In

addition, a hierarchical clustering analysis (UPGMA algorithm

with Jackknife supporting values) was run.

To determine the community similarity between the eight

habitats delineated in this study, phylogenetic diversity (PD)

indices for the eight habitats were calculated based on the

summation of the branch length calculated from the amoA gene

sequences within each habitat type [64]. To correct for unequal

Figure 4. Diversification rates plotted as lineage through-time (ltt) plots based on ultrametric trees (penalized likelihood method).
Bar plot in the upper left corner indicates the values c (i.e. rate of cladogenesis) for each habitat.
doi:10.1371/journal.pone.0052853.g004
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number of sequences, we calculated the mean PD of 1,000

randomized subsamples of each habitat [65]. The phylogenetic

structure was evaluated with the phylogenetic species variability

(PSV) index for each habitat [66]. PSV estimates phylogenetic

diversity as the variance of a trait evolving under a neutral model.

The PSV value changes toward 1 if species in a sample are

unrelated, and their correlation is low indicating higher diversity in

the sample as the species in a sample tend to be independent from

each other. On the contrast, PSV value approaches to 0 if species

are more related [66]. All these analyses were executed with the R

package picante [67].

To compare the phylogenetic diversity between different

habitats, a genetic distance matrix of the sequences from each

habitat was made. This matrix was used in MOTHUR to

calculate rarefaction curves [58].

Diversification analysis
Diversification analyses were run on the habitats defined in this

study. Because diversification analysis is sensible to sequence

numbers, sampling efforts for each habitat were normalized by

random resampling using the sub-sample function of MOTHUR

[58]. Resampling was conducted ten times on each habitat and an

equivalent number of ML rooted trees were constructed using the

workflow described in the above section. These trees were

rendered ultrametric (i.e. all branch tips are equidistant from the

root) using the Sanderson’s semi–parametric penalized likelihood

approach [68] with the chronopl function of the ape package in R

[69]. Several smoothing parameter (i.e. l= 0; 0,5; 1) were tested in

order to compare the results. However, no significant change in

the rates of cladogenesis was observed. Visualization of diversifi-

cation patterns was achieved by plotting the increasing number of

lineages from the root nodes to the tips of the trees in a ltt plot

(linear through time plot). For examining the rate of cladogenesis

over time, we calculated the c-statistic developed by Pybus and

Harvey [54]. If diversification has been constant through time, the

parameter c= 0. If the diversification rate is slow, then c,0, while

c.0 indicates acceleration in the rate of lineage accumulation

[55]. We tested whether there was a difference between habitat

cladogenesis rates using a Kruskal-Wallis test on the c values.

All these analyses were run in R software (http://www.r-

project.org/) with the package ape [69].

Supporting Information

Table S1 Summary of the 85 archaeal libraries included
in the analysis and the environmental matrix associated.

(DOCX)

Figure S1 Rarefaction curves of archaeal amoA gene
sequences retrieved from all the references on the basis
of 5% distance cut-off calculated from MOTHUR
software.
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