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Abstract—The energy-efficiency issue of switched-capacitor con-
verters is still a controversial topic that requires a more in-depth
discussion. In this paper, we address the issue by dividing the anal-
ysis of the entire efficiency problem into two parts. In the first
part, the efficiency of a capacitor-charging RC circuit under dif-
ferent aspects (partial charging, full charging, at zero capacitor
voltage, at nonzero capacitor voltage, etc.) will be conducted. The
efficiency analysis of a capacitor-discharging RC circuit with a
resistor, capacitor, and paralleled resistor–capacitor loads will be
covered. A complete evaluation of the overall efficiency is then per-
formed in terms of both the charging and discharging efficiencies.
Based on the analysis, some design rules useful for developing high-
efficiency switched-capacitor converters is suggested. Additionally,
it is shown that the belief that quasi-switched-capacitor converters
are more lossy than switched-capacitor converters is a common
misconception.

Index Terms—Charging efficiency, discharging efficiency, flying
capacitor, full charging, full discharging, partial charging, partial
discharging, quasi-switched-capacitor (QSC) converter, switched-
capacitor (SC) converter.

I. INTRODUCTION

SWITCHED-CAPACITOR (SC) converters have the advan-
tages of small size, lightweight, and high-power density

due to the absence of magnetic components, which make them
suitable for use in portable electronics like cellular phones, dig-
ital cameras, and MP3 players [1]. With the increasing demand
for smaller and lighter power converters, semiconductor com-
panies are introducing new and more advanced types of SC
converters in IC packages, such as MAX5008 and LM2758, for
commercial applications.

Within the research domain of SC converters, energy effi-
ciency is still a frequently discussed and debated issue among
researchers [1]–[40]. Careful review of the literature shows that
there are still many conflicting viewpoints and inconsistencies.
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For example, in [20], it is claimed that higher efficiency could
be obtained by reducing the turn-on resistance RDS(on) of the
power MOSFETs. In [21], it is emphasized that the insertion of
a series current-sensing resistor could result in large power loss.
In [22] and [23], it is realized that the switching loss will limit
the overall energy efficiency. Moreover, in [24], it is argued that
operating the power MOSFET of an SC converter in the satu-
ration region so that the MOSFET serves as a constant current
source and the converter operates as a quasi-switched-capacitor
(QSC) converter [25], [26], will cause the converter to become
highly inefficient. In [27], a resonant switched-capacitor con-
verter, which is basically an SC converter with a small inductor
included to create a zero-current switching condition so that
switching loss can be reduced, is proposed.

On the other hand, in an attempt to rebut some of the claims,
the discussion in [28] has revisited a number of issues. First, the
overall efficiency of SC converters is resistance independent and
is solely dependent on the input voltage, output voltage, and the
conversion ratio n. Second, the efficiency of QSC converters is
the same as that of the conventional SC converter. Yet, in [29], it
is suggested that the SC converter efficiency is bounded by the
expression given in [1] and [28], but will be lower if switching
loss is included. Also, the theoretical work in [30] revealed that
the overall converter efficiency will degrade with the increase of
parasitic resistances. Furthermore, against conventional under-
standing that power loss is caused mainly by resistance and
hard-switching actions, there are controversial claims that a
bigger capacitance and a higher switching frequency can im-
prove the overall efficiency of SC converters [31]–[33]. In [34]
and [35], it is suggested that the application of the interleaved
discharging and variable switching frequency can improve the
power efficiency of SC converters. Finally, while many power-
electronics practitioners still believe that SC converters are a
class of highly inefficient converters, the IC manufacturing com-
panies are contradicting this belief by producing SC converter
ICs of an extremely high efficiency of up to 98% (LM2660).

In this paper, we attempt to address these issues altogether,
by systematically analyzing from a circuit and then a system
perspective, the efficiency of each individual component of the
RC circuit, in the charging operation, the discharging operation,
and then the entire charging-discharging operation so that a com-
plete picture of the efficiency issue of the SC converter can be
revealed. The analysis takes into consideration the different pos-
sible operating conditions, and highlights the main impacts on
efficiency. In Section II, the efficiency analysis of a capacitor-
charging RC circuit under different conditions will be con-
ducted. In Section III, the charging efficiency and the possible
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Fig. 1. Equivalent RC circuit of the charging process.

Fig. 2. Simulated instantaneous current Iin , capacitor voltage VC , and resistor
voltage VR ch waveforms in a full-charging process.

control methods of QSC converters will be discussed. In Sec-
tion IV, the power loss distribution of resistors in a capacitor-
charging RC circuit will be discussed. Then, in Section V, the
efficiency analysis of a discharging RC circuit with resistor, ca-
pacitor and paralleled resistor-capacitor loads will be included.
In Section VII, the derivation of the overall efficiency in terms of
both the charging and discharging efficiencies is given. Finally,
a summary of the major understandings and some design rules
that are useful for achieving high efficiency in SC converters is
given in Section VIII.

II. EFFICIENCY OF RC CHARGING CIRCUITS

In SC converters, the charging circuit contains only power
switches and flying capacitors, which can be represented by
an RC circuit [36], [37] (see Fig. 1). Rch denotes the total
equivalent resistance in the charging path and it is made up of
the equivalent series resistance (ESR) of the capacitors RESR ,
the turn-on resistance of the power MOSFETs RDS(on) , and
an equivalent resistance representing the switching loss of the
power MOSFETs RSW . Figs. 2 and 3 show the simulated instan-
taneous voltages and current, and the power waveforms of the
RC charging circuit, respectively. The instantaneous voltages
and current can be given by

⎧
⎪⎪⎨

⎪⎪⎩

VC (t) = (Vin − VC min)(1 − e
−t

R ch C ) + VC min

VRch(t) = Vin − VC (t)

Iin(t) =
Vin − VC min

Rch

(
e

−t
R ch C

)
.

(1)

The energy profile and efficiency of this circuit can be classified
into two categories, namely, full charging and partial charging.

Fig. 3. Simulated instantaneous power of the input voltage source Pin , capac-
itor PC , and resistor PR ch of a full-charging process.

Fig. 4. Capacitor voltage waveform of a full-charging process with (a) zero
initial capacitor voltage and (b) nonzero initial capacitor voltage. (a) VC m in =
0 V and (b) 0 V <VC m in < Vin .

In this paper, full charging is defined as one that has a charging
time period longer than four times the charging time constant,
i.e., Tch ≥ 4τch , and partial charging corresponds to Tch < 4τch ,
where τch = RchC.

A. Efficiency of Full-Charging RC Circuit

In full charging, the capacitor is charged to the value of the in-
put voltage, i.e., VC max = Vin regardless of its initial condition.
The energy profile and the charging efficiency over a charging
cycle can be expressed as
⎧
⎪⎪⎨

⎪⎪⎩

ΔEC =
∫ Tch

0 VC (t) · Iin(t)dt = C
2 (V 2

in − V 2
C min)

ΔERch =
∫ Tch

0 VRch(t) · Iin(t)dt = C
2 (Vin − VC min)2

ΔEin =
∫ Tch

0 Vin · Iin(t)dt = CVin(Vin − VC min)

(2)

ηch(full) =
ΔEC

ΔEin
=

1
2

(
1 +

VC min

Vin

)
. (3)

The charging process can start with two different initial condi-
tions, i.e., zero [see Fig. 4(a)] or nonzero [see Fig. 4(b)] initial
capacitor voltage, respectively.

For VC min = 0 V, the charging efficiency is 50% and is in-
dependent of resistance Rch in the charging path, as discussed
in [28] and [38]. However, for VC min > 0 V, the charging ef-
ficiency will be greater than 50%. From (3), a high charging
efficiency is obtained by keeping VC min close to Vin .

B. Efficiency of Partial-Charging RC Circuit

In partial charging, the capacitor is charged to a voltage less
than the input voltage, i.e., VC max < Vin . The energy profile
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Fig. 5. Capacitor voltage waveform of a partial-charging process with (a) zero
initial capacitor voltage and (b) nonzero initial capacitor voltage. (a) VC m in =
0 V and (b) 0 V <VC m in < Vin .

and charging efficiency over a charging cycle are, respectively

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔEC =
∫ Tch

0 VC (t) · Iin(t)dt = C
2 (V 2

C max − V 2
C min)

ΔERch =
∫ Tch

0 VRch(t) · Iin(t)dt

= C
2 [(Vin − VC min)2 − (Vin − VC max)2 ]

ΔEin =
∫ Tch

0 Vin · Iin(t)dt = CVin(VC max − VC min)

(4)

ηch(partial) =
ΔEC

ΔEin
=

1
2

(VC min + VC max

Vin

)
≈ VC

Vin
. (5)

Similar to full charging, partial charging can start with a zero
[see Fig. 5(a)] or nonzero [see Fig. 5(b)] initial capacitor voltage.
According to (5), for VC min = 0 V, the charging efficiency is
always less than 50% and it increases with an increasing VC max .
For VC min > 0 V, a high charging efficiency can be achieved by
keeping (Vin − VC min ) and (Vin − VC max ) small. For the same
purpose, ΔVC (= VC max − VC min) should be small. From (3)
and (5), some key points can be summarized.

1) The charging efficiency is independent of Rch in the charg-
ing path. Rch affects only the time constant τch of the
charging circuit, and the instantaneous peak current value
of the charging response. Doubling the value of Rch will
reduce the peak of the charging current to half, while
the charging duration will be doubled with VC max un-
changed [see Fig. 6(a) and (b)]. Experimental charging
current waveforms of two RC charging circuits with dif-
ferent values of Rch (0.3 and 0.4 Ω) are shown in Fig. 7(a)
and (b). Time duration for the capacitor to be fully charged
(charging current reached zero) is longer for the case of
larger Rch . Additionally, the peak value of the charging
current can be expressed as V i n −VC m in

R ch
. With the same

value of Vin and VC min in both circuits, the peak charging
current is larger for the case of smaller Rch . However, the
energy dissipated in Rch in both RC circuits are the same.
Therefore, a larger Rch suppresses the peak current value
while lengthening the charging duration with no penalty
on the charging efficiency (by keeping the same desired
final voltage on the flying capacitor), which is consistent
with the discussion in [33].

2) The instantaneous powers of the two charging circuits
with different Rch , as shown in Fig. 6(a) and (b), are not
the same. However, both circuits have the same average
power loss since the energy loss over the switching period
will be the same in steady state.

Fig. 6. Instantaneous (a) charging current and (b) power dissipated on Rch of
two different RC charging circuits, ch1 and ch2 (ch1: Vin = 12 V, Rch = 0.3
Ω, C = 20 μF, τch3 = 6 μs, VC m in = 9 V; ch2: Vin = 12 V, Rch = 0.4 Ω,
C = 20 μF, τch3 = 8 μs, and VC m in = 9 V).

Fig. 7. Experimental results of instantaneous charging current on two different
RC charging circuits: (a) ch1 and (b) ch2.

3) A charging efficiency of 50% appears only in full charging
when VC min = 0 V. An efficiency lower than 50% occurs
in partial charging when VC min + VC max < Vin .

4) A higher charging efficiency is obtained when ΔVC is
smaller and/or when VC is nearer to Vin .

5) The charging duration should be increased for getting the
same desired VC max if the charging resistance is increased,
while the charging efficiency is still maintained. However,
there are still practical limits to achieve the aforemen-
tioned condition. For an SC converter operating at a fixed
switching frequency, the maximum charging time should
be less than the switching period. For variable frequency
control, the increase in the charging time requires the re-
duction of the switching frequency, but the switching fre-
quency has a practical lower limit.
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Fig. 8. (a) Equivalent charging circuit of a QSC converter and (b) its theoretical
voltage and current waveforms.

III. CHARGING EFFICIENCY OF QSC CONVERTERS AND

BASICS OF THEIR CONTROLS

A. Charging Efficiency Analysis

For QSC converters, the MOSFET switch in the charging
path is operated in the active region such that the converter be-
haves like a constant current source [25], [26]. This is possible
via the control of the gate voltage of the switch. Theoretically,
the control of current flow through the switch is equivalent to
the control of its internal resistance. Hence, to have a constant
current Iin flowing through the RC circuit from a constant volt-
age source while the capacitor voltage is linearly increasing, the
resistance of the switch RSW should be time varying. Fig. 8(a)
shows the equivalent charging circuit of the QSC converter. The
theoretical voltage and current waveforms are given in Fig. 8(b).
The instantaneous voltages and current, energy profile and the
charging efficiency of QSC converters over a charging cycle can
be expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

VC (t) = VC m a x −VC m in
Tch

(t) + VC min

VRch(t) = Iin · Rch

VSW (t) = Iin · RSW (t)
Iin(t) = Iin

(6)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔEC =
∫ Tch

0 VC (t) · Iindt = C
2 (V 2

C max − V 2
C min)

ΔE(Rch+RSW) =
∫ Tch

0 (VRch(t) + VSW (t)) · Iindt

= C
2 [(Vin − VC min)2 − (Vin − VC max)2 ]

ΔEin =
∫ Tch

0 Vin · Iindt = CVin(VC max − VC min)

(7)

ηch(QSC) =
ΔEC

ΔEin
=

1
2

(VC min + VC max

Vin

)
=

VC

Vin
. (8)

From this analysis, several points can be concluded.
1) Even though the charging trajectories of SC converters

(exponential) and QSC converters (linear) are different,
their charging efficiencies are identical [see (5) and (8)].
This is because the charging efficiency is independent
of Rch and the use of MOSFET in the saturation region
merely alters its internal resistance while as an ON–OFF
switch, the MOSFET has a fixed RDS(on) . Hence, the
QSC converter is not more lossy than the conventional
SC converter, which is consistent to the comments given
in [28].

Fig. 9. Output characteristics (ID and VDS ) of a typical N-channel power
MOSFET.

2) The QSC converter has a flat and continuous input current
flow, which means that it does not have an issue with
electromagnetic radiation. However, the precise control of
the current level may be difficult especially for a varying
output power which requires the use of more than one unit
of the SC converter connected in parallel.

3) Due to voltage–current crossing, nonideal “ON–OFF”
switches of conventional SC converters can be regarded
as a form of time-varying resistance RSW [39]. Hence,
switching loss does not affect the overall charging effi-
ciency. Application of soft-switching in conventional SC
converters will not improve the charging efficiency.

B. Control of QSC Converters

In QSC converters, the MOSFET is operated as a constant
current source by application of the following control methods.

1) Saturation Region: The drain current of power MOSFETs
operating in saturation region can be expressed as ID = Kn ·
(VGS − VTN)2 . By applying a small-signal perturbation on ID
and VGS , we have

ID + ĩd = Kn · [(VGS + ṽgs) − VTN]2 (9)

which gives the ac equation as

ĩd = 2Kn · (VGS − VTN) · ṽgs . (10)

From (10), ṽgs = 0 if ĩd = 0. To keep ID constant, the power
MOSFET should operate in the saturation region over the en-
tire charging cycle, i.e., VDS should be kept constant within the
saturation region, for example, from point A to A′ in Fig. 9. Ad-
ditionally, VC max should be limited to keep the power MOSFET
in the saturation region, i.e.,

VDS = Vin − VRch − VC max ≥ VDS(sat) = VGS − VTN . (11)

2) Nonsaturation Region: For power MOSFETs operat-
ing in nonsaturation region, the expression of the drain cur-

rent is ID = Kn · [(VGS − VTN) · VDS − V 2
D S
2 ]. By applying a
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small-signal perturbation on ID , VDS , and VGS , we have

ID + ĩd = Kn ·
{

[(VGS + ṽgs) − VTN] · (VDS + ṽds)

− (VDS + ṽds)2

2

}

(12)

which gives the small-signal equation as

ĩd = VDS · ṽgs + (VGS − VTN − VDS) · ṽds (13)

where ṽgs and ṽds can be adjusted to keep ĩd = 0. Thus, another
operating point should be selected (by increasing VGS and de-
creasing VDS , or vice versa) to maintain ID (for example, from
point B to B′ in Fig. 9). To ensure that the power MOSFET
operates in the nonsaturation region, it is necessary to ensure
VDS < VDS(sat) over the entire charging cycle, i.e.,

VDS = Vin − VRch − VC min < VDS(sat) = VGS − VTN . (14)

While there are methods of operating the MOSFET as a con-
stant current source in order to charge the capacitor linearly, the
control of the power MOSFET in nonsaturation region requires
higher precision due to the narrow operating range of VDS .

IV. CHARGING LOSS DISTRIBUTION

Assume that Rch is the total equivalent resistance in the
charging path and it is made up of the ESR of the capaci-
tor RESR , the RDS(on) , and the resistance due to the switch-
ing loss RSW . The total energy loss over a switching cycle
is ΔETotal = ΔERESR + ΔERDS(on) + ΔERSW . Since these
resistive elements are connected in series, the total energy loss
will be distributed according to the proportion of the individ-
ual resistance over the total equivalent resistance. Consider two
charging circuits having the same VC min and VC max , i.e., same
charging efficiencies, but a different Rch [one is Rch1 and the
other is Rch2 = 10 Rch1 (by increasing only RSW )]. The energy
loss in both circuits are the same, i.e., ΔETotal1 = ΔETotal2 as
the total energy loss in the charging process is independent of
Rch . However, with Rch2 = 10 Rch1 , the squaring of the average
current flowing in each circuit will have a tenfold increase, i.e.,
I2
in1 = 10I2

in2 . The energy loss in the two suggested circuits can
be found as (15) and (16), respectively
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔETotal1 = ΔERESR1 + ΔERDS(on)1 + ΔERSW1

ΔERESR1 =
∫ Tch

0 I2
in1(t) · RESRdt

ΔERDS(on)1 =
∫ Tch

0 I2
in1(t) · RDS(on)dt

ΔERSW1 = ΔETotal1 − ΔERESR1 − ΔERDS(on)1

(15)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔETotal2 = ΔERESR2 + ΔERDS(on)2 + ΔERSW2

ΔERESR2 = 0.1
∫ Tch

0 I2
in1(t) · RESRdt

ΔERDS(on)2 = 0.1
∫ Tch

0 I2
in1(t) · RDS(on)dt

ΔERSW2 = ΔETotal1 − 0.1(ΔERESR2 + ΔERDS(on)2).

(16)

From the equations, it can be seen that the loss in both RESR
(ΔERESR ) and RDS(on) (ΔERDS(on)) are proportionally de-
creased while that of RSW (ΔERSW ) is increased when RSW

Fig. 10. Equivalent RC discharging circuit with a resistor load.

increases. This indicates that while the change of a resistance
component in the charging path does not affect the total charg-
ing efficiency, the energy loss among the individual resistive
components in the charging path will be changed by adjusting
the charging duration, i.e., the switching frequency and the duty
ratio, to keep the same desired value of VC max . Therefore, by
inserting an external resistor in the charging path, the energy
loss in the electronic components (power switch and capacitor)
will be diverted to the external resistor, thus improving the ther-
mal condition of the components with no penalty on the overall
efficiency of the converter.

V. EFFICIENCY OF RC DISCHARGING CIRCUITS

The equivalent discharging circuit of an SC converter can
also be represented by an RC circuit. Three types of loading,
namely, a resistor, a capacitor, and a parallel resistor–capacitor
loads, are considered.

A. Discharging Efficiency With Resistor Load

Fig. 10 presents the equivalent discharging circuit with the
resistor load. The simulated voltage and current waveforms are
shown in Fig. 11. The instantaneous voltages and current, en-
ergy profile, and the discharging efficiency of this circuit over a
discharging cycle are

⎧
⎨

⎩

VC (t) = VC max

[
e

−t
(R d i s + R L )C

]

IC (t) = − VC max
(Rd i s +RL )

[
e

−t
(R d i s + R L )C

] (17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔEC =
∫ Td i s

0 VC (t) · IC (t)dt

=
C

2
(V 2

C max − V 2
C min)

ΔERL =
∫ Td i s

0 VRL(t) · IC (t)dt

=
C

2
(V 2

C max − V 2
C min)

( RL

Rdis + RL

)

ΔERdis =
∫ Td i s

0 VRdis(t) · IC (t)dt

=
C

2
(V 2

C max − V 2
C min)

( Rdis

Rdis + RL

)

(18)

ηdis(Rload) =
ΔERL

ΔEC
=

RL

Rdis + RL
=

VO

VC

. (19)

From (19), the total equivalent resistance in the discharging
path Rdis (sum of RESR , RDS(on) , and RSW ) will degrade the
discharging efficiency, irrespective of whether it is a full (VC min
= 0 V) or partial (VC min > 0 V) discharging condition. This
is consistent with what is reported in [30]. It is important to
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Fig. 11. Simulated current and voltage waveforms of a RC discharging circuit
with a resistor load.

keep Rdis � RL (i.e., use of soft-switching) to maintain a high
discharging efficiency.

B. Discharging Efficiency With Capacitor Load

The energy transfer from one capacitor to another is a very
common process in SC converters. The equivalent circuit, sim-
ulated voltage, and current waveforms are given in Figs. 12 and
13, respectively. When two capacitors with different voltages
are connected in parallel, charges will be redistributed and en-
ergy will be lost (called the charge redistribution loss) [40].
Two different final conditions, resulting from full discharg-
ing [see Fig. 14(a)] and partial discharging [see Fig. 14(b)],
will be discussed. The instantaneous voltages, current, and
energy profile in both the full and partial discharging pro-
cesses over a discharging cycle are respectively given in (20)
and (21)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VC (t) = VC max − (VC max − VOmin)
(CE

C

)(
1 − e

−t
R d i s C E

)

VO(t) = VOmin + (VC max − VOmin)
(CE

CO

)(
1 − e

−t
R d i s C E

)

IC (t) = −VC max − VOmin

Rdis

(
e

−t
R d i s C E

)

CE =
C · CO

C + CO
, CO = mC (20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔEC =
∫ Td i s

0
VC (t) · IC (t)dt

=
CE

2
(VC max − VOmin)

(
1 − e

−T d i s
R C E

)

×(VC min + VC max)

ΔEC O =
∫ Td i s

0
VO(t) · IC (t)dt

=
CE

2
(VC max − VOmin)

(
1 − e

−T d i s
R C E

)

×(VOmin + VOmax)

ΔERdis =
∫ Td i s

0
VRdis(t) · IC (t)dt

=
CE

2
(VC max − VOmin)2

(
1 − e

−2 T d i s
R d i s C E

)
. (21)

Fig. 12. Equivalent RC discharging circuit with a capacitor load.

Fig. 13. Simulated current and voltage waveforms of a RC discharging circuit
with a capacitor load.

Fig. 14. Sketched capacitor voltage waveforms under two different discharg-
ing processes. (a) Full discharging. (b) Partial discharging.

The balanced voltage VC f can be found using the charge balance
approach as

C(VC max − VC f ) = CO(VC f − VOmin)

⇒ VC f =
VC max + mVOmin

m + 1
. (22)

Differentiating VC f with respect to m, we have

dVC f

dm
= −VC max − VOmin

(m + 1)2 < 0. (23)

From (23), the increase of m will lead to the decrease of VC f ,
where m is the ratio between C and CO (with CO = mC). Addi-
tionally, using (21), the efficiency in both discharging conditions
can be calculated as

ηdis(Cload,full) =
ΔEC O

ΔEC
=

VC f + VOmin

VC f + VC max

=
2VC f − ΔVC O

2VC f + ΔVC
(24)

ηdis(Cload,partial) =
ΔEC O

ΔEC
=

VOmax + VOmin

VC max + VC min

=
2VOmax − ΔVC O

2VC min + ΔVC
. (25)
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By substituting (22) into (24), and differentiating ηdis(Cload,full)
with respect to m, we have

dηdis(Cload,full)

dm
= − V 2

C max + V 2
Omin

[(m + 1)VC max + mVC min ]2
< 0.

(26)
If CO > C, both VC f and ηdis(Cload,full) will decrease when m
increases. Equations (24) and (25) indicate that the discharging
efficiency is independent of Rdis , but is dependent on ΔVC . The
difference between VOmin and VC max , therefore both ΔVC (=
VC max − VC min) and ΔVO(= VOmax − VOmin), should be kept
small for a higher discharging efficiency.

It is important to emphasize that in this case, the discharg-
ing efficiency on C is the same as the charging efficiency on
CO . However, the charging efficiency on a capacitor in an RC
circuit is different when the capacitor is charged by a constant
voltage source and by a precharged capacitor. Consider an RC
circuit (see Fig. 1) with the following condition: Vin = 1 V and
VC min = 0 V. After the capacitor C is fully charged (VC max =
Vin ), the charging efficiency is 50% [using (3)]. Consider an-
other RC circuit (see Fig. 12) with the following parameters:
VC max = 2 V, VOmin = 0 V, and C = CO . After the completion
of the charge redistribution process, VC min = VOmax = 1 V,
ΔEC = 1.5C, and ΔEC O = 0.5C, leading to the charging ef-
ficiency on CO is only 33% [refer to (24)]. Although ΔVC =
1 V is the same in both cases (same amount of energy delivered),
charging a capacitor by a voltage source is more efficient than
by a precharged capacitor due to the smaller charging current
peak and the shorter charging duration.

C. Discharging Efficiency With Parallel RC Load

For practical SC converters, an output capacitor is connected
in parallel with the load resistor for minimizing the output volt-
age ripple. Precharged flying capacitors will deliver energy to
both the output capacitor and load resistor. Fig. 15(a) gives the
equivalent circuit of a capacitor C discharging to an RC load.
The waveforms of VC and VO are shown in Fig. 15(b). Figs. 16
and 17 are, respectively, the simulated and experimental results
of the RC discharging circuit with an RC parallel load. The
voltage and current profile can be described as

⎧
⎪⎪⎨

⎪⎪⎩

C
dVC (t)

dt
=

VO(t) − VC (t)
Rdis

VO(t) − VC (t)
Rdis

+ CO
dVO(t)

dt
+

VO(t)
RL

= 0.

(27)

By solving (27), the voltage and current profile can be found as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VC (t) =
(

1
4CRLα1/2

)
(
X1Z1e

−Y1 t + X2Z2e
−Y2 t

)

VO(t) =
1

2α1/2

(
X1e

−Y1 t + X2e
−Y2 t

)

IC (t) =
(

1
4RLα1/2

)
(
X1Y1Z1e

−Y1 t + X2Y2Z2e
−Y2 t

)

IC O(t) =
−CO

2α1/2

(
X1Y1e

−Y1 t + X2Y2e
−Y2 t

)

(28)

Fig. 15. (a) Equivalent RC discharging circuit with a parallel RC load and
(b) the voltage waveforms of C and CO .

where

α = R2
disC

2 + 2RdisRLC2 − 2RdisRLCCO + R2
LC2

+ 2CCOR2
L + R2

LC2
O

X1 = −Z2VOmin + 2RLCVC max

X2 = Z1VOmin − 2RLCVC max

Y1 =
1

2RdisRLCCO

(
Z2 − 2RLCO

)

Y2 =
1

2RdisRLCCO

(
Z1 + 2RLCO

)

Z1 = RdisC + CRL − RLCO + α1/2

Z2 = RdisC + CRL − RLCO − α1/2 .

The operation of the circuit can be briefly described as follows:
If VC max > VOmin , the charge in C will be delivered to CO and
dissipated in RL until CO is fully charged (IC O = 0 A). When
this happens, both capacitors will then transfer energy to the
load resistor. A two-stage analysis based on the operation of CO
is given to elaborate the operation of the circuit (see Figs. 16
and 17).

1) Stage One—Charge Redistribution Phase: Due to the un-
balanced initial voltages on C and CO (with VC max > VOmin ),
C delivers charge to both CO and RL until CO is fully charged.
By conservation of charge, we have

C(VC max − VC (QB)) = CO(VOmax − VOmin) + IRL · TQB
(29)

where VC (QB) and VOmax are, respectively, the voltages of C
and CO after the completion of the charge redistribution pro-
cess, TQB is the time duration of the process [see Fig. 15(b)]. As

VOmax = VC (QB)

(
RL

RL +Rd i s

)
and IRL = VO m a x +VO m in

2RL
(with

the assumption that TQB is much smaller than the time con-
stant of the circuit, i.e., CO charges up linearly), VC (QB) and
VOmax can be, respectively, expressed as

VC (QB) =
CVC max + (CO − TQ B

2RL
)VOmin

C + CO( RL
RL +Rd i s

) + TQ B
2(RL +Rd i s )

(30)

VOmax =
CVC max + (CO − TQ B

2RL
)VOmin

C(1 + Rd i s
RL

) + CO + TQ B
2(RL )

. (31)
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Fig. 16. Simulated (a) voltage and (b) current waveforms of the RC discharg-
ing circuit with an RC parallel load.

Fig. 17. Experimental results of the voltage waveforms of C and CO in the
RC discharging circuit in Fig. 15(a) with the following parameters: VC m ax =
11.7 V, VOm in = 7.4 V, C = 20 μF, CO = 94 μF, Rdis = 0.07 Ω, and RL =
8.4 Ω.

The discharging efficiency in the first stage can be calculated as

ηRC load1 =
ΔERC load

ΔEC
=

VC O · IC · TQB
1
2 C(V 2

C max − V 2
C (QB))

=
VOmax + VOmin

VC (QB) + VC max
. (32)

The expression in (32) is similar to (25), i.e., a charge sharing
loss between the capacitors exists in this stage. Additionally,
(30) and (31) reflect that the presence of Rdis increases VC (QB)
but decreases VOmax , leading to a reduction in the discharging
efficiency. The parasitics will lower the discharging efficiency
since it is in series with the output resistor, thereby creating a
voltage divider network between the two.

2) Stage Two—Loading Phase: Both C and CO will deliver
energy to the load resistor together. Applying the principle of
charge balance, we have

C(VC (QB)−VC min)+CO(VOmax − VOf ) = IRL(Tdis − TQB).
(33)

Using VOf = VC min

(
RL

RL +Rd i s

)
and IRL = VO m a x +VO f

2RL
, the fi-

nal voltages of C and CO can be found as

VC min = VC (QB)

[C(RL + Rdis) + RLCO − Td i s−TQ B
2

C(RL + Rdis) + RLCO + Td i s−TQ B
2

]
(34)

VOf = VC (QB)

( RL

RL + Rdis

)

×
[

C(RL + Rdis) + RLCO − Td i s−TQ B
2

C(RL + Rdis) + RLCO + Td i s−TQ B
2

]

. (35)

The discharging efficiency can then be derived as

ηRC load2 =
ΔERC load

ΔEC
=

VC O · IC · (Tdis − TQB)
1
2 C(V 2

C (QB) − V 2
C min)

=
RL

Rdis + RL
(36)

which is the same expression as given in (19), i.e., only the
voltage divider loss among the parasitics and the load will have
an effect on the discharging efficiency. This can be explained by
the lossless discharging process on an RC circuit. As the energy
delivered by CO will dissipate entirely on RL (ignore the ESR
of CO ), the discharging process under such a circumstance is
regarded as lossless. Thus, the only loss encountered in this
stage is the discharging loss of C on Rdis .

To conclude, the discharging efficiency of an RC circuit with
an RC load is affected by two factors: the charge redistribution
loss and the voltage-divider loss in the discharging path. To
maximize the discharging efficiency of an SC converter with an
parallel RC load, it is necessary to keep Rdis � RL , ΔVC (=
VC max − VC (QB)) and ΔVO (= VOmax − VOmin) small.

VI. SWITCHING FREQUENCY VERSUS EFFICIENCY

The effect of switching frequency on the overall efficiency
will be presented in this section. Fig. 18(a) presents a simple
SC converter with the corresponding timing diagram shown in
Fig. 18(b). The flying capacitor is charged when S1 is turned ON
and S2 is turned OFF. The output capacitor CO is discharged to
the load at the same time. Then, both S1 and S2 are turned OFF
during Thold . In the second half of the switching period, S2 is
turned ON and S1 is turned OFF. The flying capacitor will be
discharged to both the output capacitor and the output load (see
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Fig. 18. (a) Complete SC converter circuit with (b) its timing diagram.

Fig. 19. Equivalent (a) charging and (b) discharging circuits for the SC con-
verter in Fig. 18.

the equivalent charging and discharging circuits in Fig. 19(a)
and (b), respectively).

Based on the critical values of VC and VO (refer to the detailed
derivation in Appendix A), the overall efficiency can be given
by

ηSC =
ΔERL

ΔEin
=

[
1

2Vin(VC max − VC min)

]

×
[

VC max(VOmin + VOmax)

+ VC (QB)(VOf + VOmin)

− VC min(VOmax + VOf )

]

. (37)

For detailed derivation, refer to Appendix B.
Substituting (45)–(48) into (37), the relationship between the

switching frequency and the overall efficiency is derived and
plotted in Fig. 20. As shown in the figure, the efficiency increases
with the increment of frequency in the low-frequency region,
and then reach a limit at around 200 kHz. Note that the effect
of parasitic inductance (which is only significant at very high
frequency) is neglected as this will convert the SC circuit into a
resonant circuit, which is beyond the scope of this work.

VII. OVERALL EFFICIENCY OF SC CONVERTERS

Combining the analysis of the charging and discharging oper-
ations, the overall SC converter’s efficiency can be analyzed at a
system’s level using a simple SC converter circuit in Fig. 18(a),
with the corresponding timing diagram shown in Fig. 18(b).

Fig. 20. Simulated results on the relationship between the switching frequency
and the overall efficiency for an unregulated SC converter (Vin = 12 V, C =
CO = 47 μF, Rch = Rdis = 0.1 Ω, and RL = 10 Ω).

Table I summarizes the major efficiency expressions in different
aspects and conditions. Since at steady state, energy is balanced
on the flying capacitor, i.e., ΔEC (ch) = ΔEC (dis) , the overall
efficiency of the SC converter over a complete switching cycle
is

ηSC =
ΔERL

ΔEin
=

(ΔEC (ch)

ΔEin

)( ΔERL

ΔEC (dis)

)

= ηch(partial) · ηdis(Rload) . (38)

With the assumption of linear charging on the flying capacitor
(the charging time is much smaller than the time constant in
the charging circuit) and the relatively larger output capacitor
compared to the flying capacitor (i.e., CO � C), (39) can also
be derived from (5) and the voltage divider property at the output
in Fig. 10 to reach the same result given in [36] and [37]

VO

Vin
=

(
ηdis(Rload) · VC

)(ηch(partial)

VC

)
=ηch(partial) · ηdis(Rload) .

(39)

An experimental prototype has been constructed based on
Fig. 18(a) with the following design specifications: Vin = 12 V,
VO = 9 V, C = 47 μF, CO = 94 μF, and fSW = 200 kHz.
RDS(on) of PMOS switches S1 and S2 is 0.06 Ω and the current
sensing resistor inserted in both the charging and discharging
paths is 0.1 Ω, i.e., Rch = 0.16 Ω and Rdis = 0.16 Ω. The
output voltage is regulated using a standard voltage mode con-
troller IC TL494. A Type II compensator with transfer function
GC(s) = s+2.74×103

s(1.12×10−5 s+8.55×10−2 ) obtained through a trial-and-
error tuning is used in the feedback control.

Fig. 21(a) shows the experimentally measured overall effi-
ciency versus the load current of the SC converter based on the
original design specifications, but with different values of charg-
ing resistance Rch . Here, the input power and the output power
of the SC converter are measured for three values of Rch (0.16,
0.26, and 0.36 Ω) with the discharging side of the SC converter
remains unchanged for the load current range of 1 to 2 A. In
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TABLE I
MAJOR EFFICIENCY EQUATIONS OF SC CONVERTERS

the experiment, the turn-on time of the charging circuit Tch is
adjusted such that for different values of Rch , VC is maintained
constant under the same loading condition while the turn-on
time of the discharging circuit Tdis remains unchanged and that
the output voltage is regulated at 9 V. The so-called overall ef-
ficiency described here is obtained by dividing the measured
output power by the measured input power. It can be seen from
the plot that for a different value of Rch , the same efficiency
under the same input voltage, output voltage, and loading con-
dition, is obtained. Since the same discharging circuit is used
throughout the experiment, there is no change in the discharg-
ing efficiency under the same load condition even when Rch is
different. Therefore, Fig. 21(a) shows equivalently the trend of
the charging efficiency of the SC converter, which conclusively
proves that charging efficiency is independent of the charging
resistance Rch .

Fig. 21(b) shows the plots of experimentally measured overall
efficiency against the input power of the SC converter for differ-
ent values of discharging resistance Rdis . Here, the experiment
is conducted for three values of Rdis (0.16, 0.26, and 0.36 Ω)
while the charging side of the SC converter remains unchanged
for the input power range of 10 to 25 W. In the experiment, both
Tch and Tdis are adjusted such that for different values of Rdis ,
VC is maintained constant under the same loading condition. In
this way, the charging efficiency is constant for different values
of Rdis . Thus, the efficiency plot is equivalently illustrating the
trend of the discharging efficiency of the SC converter for dif-
ferent values of Rdis . From the plots, a larger value Rdis results
in a lower discharging efficiency under the same input power,
which is consistent with our analysis that Rdis degrades the
discharging efficiency of SC converters.

Fig. 22(a)–(c) shows the experimental and calculated efficien-
cies of the SC converter against the load current for different
flying capacitance, output capacitance, and switching frequency.
Here, the SC converter is based on the design specifications, but
with different values of C, CO , and fSW , under feedback con-
trol which automatically regulates the output voltage at 9 V.
There is no manual adjustment of Tch and Tdis to regulate the
value of VC . From the plots, it can be observed that a larger

Fig. 21. Experimental results showing (a) the overall efficiency versus load
current with different charging resistances Rch and (b) the overall efficiency
versus the input power with different discharging resistances Rdis under closed-
loop control where VC is maintained constant under the same load.

switching frequency, flying capacitance, and output capacitance
can achieve a higher power efficiency, which is consistent to our
analysis. Note that the experimental results include the power
consumption of the control circuits, which is relatively small
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Fig. 22. Experimental (solid lines) and calculated (dotted lines) results show-
ing the efficiency versus load current with (a) different flying capacitance, (b)
different output capacitance, and (c) different switching frequency.

(less than 0.7 W) and only has a significant effect on the overall
efficiency at light load condition.

Fig. 23 shows the plots of the measured and calculated ef-
ficiencies of the SC converter (based on the original design
specifications) with different load values, of which both results
are in close proximity with one another.

Additionally, with the converter operating as a system that
toggles between the charging and discharging operations, the
capacitor size and switching frequency are important factors that
influence the energy efficiency. For an unregulated SC converter,

Fig. 23. Plots of experimental and calculated result of the efficiency of the
SC converter (based on the original design specifications) versus different load
currents.

a bigger capacitance and a higher switching frequency fSW will
increase the average voltage of the flying capacitor, and reduce
the charging/discharging flying capacitor voltage ripple ΔVC ,
leading to a higher efficiency. However, for a regulated SC
converter, the efficiency can be found in (39).

VIII. CONCLUSION

A thorough discussion on the charging, discharging, and over-
all efficiencies of SC converters have been presented. The fol-
lowing are the major points of concern for the design of SC
converters. The charging resistance Rch does not affect the
charging efficiency, but the discharging resistance Rdis in the
discharging circuit does affect the discharging efficiency. Sec-
ond, QSC converters have a similar loss to SC converters. Third,
soft switching would not improve the charging efficiency, but
would improve the discharging efficiency. Moreover, a change
in resistance of one resistive component will redistribute the
energy loss of other resistive components without affecting the
overall efficiency. Furthermore, the discharging efficiency of an
SC converter with an RC load is affected by both the voltage di-
vider loss and the capacitors’ charges redistribution. Last, since
ΔVC affects the overall energy efficiency, increasing fSW or C
can improve the efficiency of SC converters.

With this understanding, the rules of thumb toward designing
a highly efficient SC converter are suggested. First, VC should be
near Vin in the charging process. Additionally, ΔVC should be
small in the charging/discharging processes during steady state.
Soft switching should be applied only on the power switches
in the discharging path to enhance the discharging efficiency. R
in the discharging path should be kept as small as possible to
maximize the discharging efficiency. For capacitors that share
charges, ΔVC on both capacitors should be small. This also
implies that a high fSW and a large C can be used to minimize
ΔVC .

It is important to emphasize that the maximum theoretical
efficiency of SC converters is still a function of the voltage
conversion ratio n, the input and output voltages of the converter
[29]. Thus, the practical design rules should aim to ensure that
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the efficiency of SC converters approach this theoretical limit.
Additionally, although the charging efficiency is only 50% when
a capacitor is fully charged from 0 V to Vin , SC converters can
still achieve a very high efficiency since the flying capacitors
are never charged from 0 V in the steady state. Furthermore,
energy efficiency is the same as power efficiency during steady
state since energy transfer is repeated periodically.

APPENDIX A

DERIVATION ON THE CRITICAL VOLTAGES ON C AND CO

The instantaneous voltages on C and CO can be expressed as

VC (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Vin−VC min)(1 − e
−t

R ch C )+VC min , 0 ≤ t ≤ Tch
( 1

4CRLα1/2

)(
X1Z1e

−Y1 (t−0.5TS )

+X2Z2e
−Y2 (t−0.5TS )

)
, 0.5TS ≤ t ≤ TS (40)

VO(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2α1/2

(
X1e

−Y1 Td i s + X2e
−Y2 Td i s

)(
e

−t
R L C O

)
,

0 ≤ t ≤ 0.5TS
1

2α1/2

(
X1e

−Y1 (t−0.5TS ) + X2e
−Y2 (t−0.5TS )

)
,

0.5TS ≤ t ≤ TS

(41)

where

α = R2
disC

2 + 2RdisRLC2 − 2RdisRLCCO + R2
LC2

+ 2CCOR2
L + R2

LC2
O

X1 = −Z2VOmin + 2RLCVC max

X2 = Z1VOmin − 2RLCVC max

Y1 =
1

2RdisRLCCO

(
Z2 − 2RLCO

)

Y2 =
1

2RdisRLCCO

(
Z1 + 2RLCO

)

Z1 = RdisC + CRL − RLCO + α1/2

Z2 = RdisC + CRL − RLCO − α1/2 .

Using (40), (41), and Tdis = 0.5TS , the initial voltages of both
C and CO on the discharging cycle can be expressed as

VC max = VC (Tch) = Vin(1 − e
−T ch
R ch C ) + VC min · e

−T ch
R ch C (42)

VOmin = VO (0.5TS)

=
VC max

[(
RL C1
α0 . 5

)(
e−Y1 ·0.5TS −e−Y2 ·0.5TS

)(
e

−0 . 5 T S
R L C O

)]

1 + 1
2α0 . 5

(
Z2e−Y1 ·0.5TS − Z1e−Y2 ·0.5TS

)(
e

−0 . 5 T S
R L C O

) .

(43)

Additionally, the charge redistribution time TQB can be com-
puted by considering the time duration from the start of the
discharging cycle until VO is maximum [see Fig. 18(b)], i.e.,

dVO(t)
dt

= 0 ⇒ TQB =
(RdisRLCCO

α0.5

)

ln
[
(Z1VOmin − 2RLCVC max)(Z1 + 2RLCO)
(Z2VOmin − 2RLCVC max)(Z2 + 2RLCO)

]

.

(44)

Using (30) and (44), and by substituting (34) into (42) and
(43), VC max and VOmin can be solved in terms of the circuit
parameters and the operating conditions. Similarly, other critical
design values, such as VC min , VC (QB) , VOmax , and VOf can be
calculated using (30), (31), (34), (35), and the solution of VC max
and VOmin . The derived solutions are

VC min = VC max

[(
1

2α0.5

)(

Z1e
−Y1 ·0.5TS − Z2e

−Y2 ·0.5TS

)]

− VOmin

[(
Z1Z2

4CRLα0.5

)(

e−Y1 ·0.5TS − e−Y2 ·0.5TS

)]

(45)

VC (QB) = VC max

[(
1

2α0.5

)(

Z1e
−Y1 ·TQ B − Z2e

−Y2 ·TQ B

)]

− VOmin

[(
Z1Z2

4CRLα0.5

)(

e−Y1 ·TQ B − e−Y2 ·TQ B

)]

(46)

VOmax = VC max

[(
RLC

α0.5

)(

e−Y1 ·TQ B − e−Y2 ·TQ B

)

×
(

e
−(T S −0 . 5 T S )

R L C O

)]

− VOmin

[(
1

2α0.5

)

×
(

Z2e
−Y1 ·TQ B − Z1e

−Y2 ·TQ B

)(

e
−(T S −0 . 5 T S )

R L C O

)]

(47)

VOf = VC max

[(
RLC

α0.5

)(

e−Y1 ·0.5TS − e−Y2 ·0.5TS

)

×
(

e
−(T S −0 . 5 T S )

R L C O

)]

− VOmin

[(
1

2α0.5

)

×
(

Z2e
−Y1 ·0.5TS − Z1e

−Y2 ·0.5TS

)(

e
−(T S −0 . 5 T S )

R L C O

)]

.

(48)

APPENDIX B
DERIVATION ON THE ENERGY PROFILE

AND THE ENERGY EFFICIENCY

The energy profile for different circuit components over a
switching period can be analyzed as follows:

1) charging phase: C will be charged by the voltage source
and CO will be discharged to RL (ΔEin = ΔEC +
ΔERch , ΔEC O = ΔERL );

2) redistribution phase: C will be discharged to both CO and
RL (ΔEC = ΔEC O + ΔERdis + ΔERL );

3) loading phase: Both C and CO will be discharged to RL
(ΔEC + ΔEC O = ΔERdis + ΔERL ).
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TABLE II
ENERGY PROFILE ON DIFFERENT CIRCUIT COMPONENTS IN A SWITCHING PERIOD

The detailed evaluation on the energy profile is summarized
in Table II.

Therefore, the total amount of energy delivered to the load
is the summation of the energy profile of RL over all the three
phases, i.e.,

ΔERL =
C

2
[VC max(VOmin +VOmax) + VC (QB)(VOf + VOmin)

− VC min(VOmax + VOf )]. (49)

The input energy is

ΔEin = CVin(VC max − VC min). (50)

Dividing (49) by (50), the overall efficiency can be given by

ηSC =
ΔERL

ΔEin
=

[
1

2Vin(VC max − VC min)

]

[VC max(VOmin

+ VOmax) + VC (QB)(VOf + VOmin)

− VC min(VOmax + VOf )]. (51)
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