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Within the framework of Hubbard model, a bowtie-shaped graphene nanoflake is identified to undergo

an electric-field induced phase transition from an antiferromagnetic ground state. Unlike the case of

half-metallic graphene nanoribbons, the electric field here leads to a non-magnetic state instead of

ferromagnetic state after destructing the antiferromagnetic ordering. Because the spin is polarized on

different sublattices of the nanodot in the antiferromagnetic phase, the transition occurs when the

applied field breaks the sublattice symmetry and induces enough energy splitting among the originally

degenerate zero-energy states. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821954]

Spintronic devices recently attract great interests in poten-

tial logic, memory, and communication applications.1–4

Graphene based nanostructures, because of long spin diffusion

length and long lifetime together with high electron velocity,

are promising candidates for spintronic applications.5–9 Recent

advances in fabrication technique allow graphene nanoflakes

(GNFs) to open up possibilities, for practical applications in

nanoelectronic devices.10–12 For spintronic application, the

magnetic properties of GNFs are of vital importance.

Compared to armchair-edged GNFs which usually exhibit con-

siderable energy gap and nonmagnetic (NM) ground

states,13–16 the electronic structure and magnetic properties of

zigzag-edged GNFs are found highly sensitive to their

shapes.14–20 Zigzag-edged hexagonal and diamond GNFs have

antiferromagnetic (AFM) ordering between opposite edges in

the ground states,18–20 while triangular flakes present ferro-

magnetically (FM) ordered ground states due to the existence

of degenerated edge states at E ¼ 0 induced by the imbalance

between the two sublattices.14–18

It has been recently proposed that the magnetic moment

of zigzag-edged GNFs can be manipulated by applying an

electric field instead of a magnetic field. For example, the

total spin of a triangular GNF begin to depolarize when the

field strength above a critical value.21,22 The electric field

controlled spin states in GNFs make them suitable to be used

as basic components of spintronic devices, such as spin filter

and magnetic memory.23,24 In fact, Son et al. first propose

that a phase transition from an AFM to FM state can be real-

ized in a graphene nanoribbon with an electric field applied

cross its zigzag edges.25 Later, Zheng and Duley point out

that this transition will not happen in rectangular graphene

nanodots, instead, the magnetization only found decreasing

slowly with the applied field.26 Recently, Agapito et al.
show that the transition from an AFM to FM state can be

realized in a diamond-shaped graphene nanoflake, however,

at a significantly higher electric field.27

Similar to rectangular or diamond-shaped GNFs, zigzag

bowtie-shaped GNFs (zBGNFs) have balanced sublattices

and AFM ground states.28,29 However, these zBGNFs also

have zero-energy states like those triangular GNFs. The exis-

tence of zero-energy states makes the electronic structure

and then magnetic ordering of the system vulnerable by an

applied electric field, which suggests that a zBGNF be a per-

fect candidate to realize AFM-NM phase transition at a rea-

sonably low electric field. In this letter, we will study the

effect of an applied electric field on the edgestate magnetism

in zBGNFs to explore an efficient electrical control of mag-

netic ordering in nanographene structures.

Within the mean-field approximation of Hubbard model,

the Hamiltonian of a zBGNF is given by

H ¼ e
X

ir

cþircir þ t
X

hijir
ðcþircjr þ h:c:Þ þ U

X

ir

nirhni;�ri; (1)

where e ¼ 0 is the on-site energy, t ¼ �2:7 eV is the

hopping energy between the nearest-neighbor atoms, cþi ðciÞ
is the creation (annihilate) operator of p electron with spin

r at site i, U ¼ t is the on-site Coulomb repulsion, and

nir ¼ cþircir is the spin-resolved density at site i.
Figure 1 shows a zBGNF with N ¼ 5 and m ¼ 2 as our

model system, where N and m is the number of benzene rings

on each triangular side and junction, respectively. A trans-

verse electric field is applied within the plane from the left

side to the right. In the absence of electric field, the degener-

acy of zero-energy states in zBGNFs is determined by

2ðN � m� 1Þ. Here, two of the four zero-energy states are

localized on one sublattice in the left triangular part while

the other two states only arise on the other sublattice in the

right part. However, the overall sublattice polarization is

zero.

Figure 2 plots the energy levels of the zBGNF as a func-

tion of the applied transverse electric field. The most noticea-

ble is that degeneracy of the zero-energy states is lifted and

the energy separation increases almost linearly with the field.

As a result, the single-particle energy gap between the high-

est occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) can be described by

the linear Stark effect, i.e., Eg=t � 3:77 F. The originally

degenerate zero-energy states are seen to form two pairs ofa)Email: shengw@fudan.edu.cn
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states, one above the zero line and the other one below. The

energy splitting within these pairs, DE as indicated by the

arrows, is about one-fifth of Eg. In spite of the energy separa-

tions induced by the electric field, the original zero-energy

edge states keep strongly localized. In the meantime, the

overall sublattice polarization for these states remains zero.

In the absence of electric field, it has been shown that

the zBGNF has an AFM ground state due to the spatially

separated edge states of high energy degeneracy. The spin

density of the ground state obtained by solving the mean-

field Hubbard Hamiltonian self-consistently looks very simi-

lar to that as shown in Fig. 1. Since the total spin of an AFM

ordering is always zero, here we make use of the largest local

magnetic moment of carbon atoms in the ground state, Mmax,

to describe the spin polarization. At zero field, we find that

Mmax � 0:295 lB. Figure 3 plots the maximum magnetiza-

tion as a function of the applied electric field. It is seen that

Mmax remains almost constant for the applied field up to

Fc ¼ 0:0396 V/Å. After this critical field, Mmax is seen to

jump directly to zero and the whole magnetization vanishes,

which reflects the destruction of the AFM ordering and a

clear phase transition from AFM to NM.

The dramatic transition from an AFM to NM ordering in

the ground state of the zBGNF can be attributed to the compe-

tition between the Coulomb interactions and the kinetic

energy induced by the applied electric field. The former is rep-

resented by the energy separation between the AFM ground

state and FM first excited state, i.e., 2J ¼ EFM � EAFM, which

is also known as the AFM coupling. In the NM phase, the

ground state becomes non-magnetic and correspondingly

2J ¼ EFM � ENM. The latter is denoted by the single-particle

energy splitting DE induced by the applied field. Figure 3

plots the ratio DE=2J as a function of the applied field. The ra-

tio starts with zero thanks to the degenerate zero-energy states

at zero field. In the AFM phase, we find that the coupling

keeps almost a constant value of 24.2 meV and hence the ratio

increases in proportion with the field. As the applied field

increases close to Fc, the energy splitting between the two top-

most occupied states becomes large enough to override the

AFM coupling, which results in the phase transition to the

NM state. After the transition, the energy gap EFM � ENM

becomes increasing linearly with the field, and therefore the

ratio is found to drop rapidly within a very small field range

and then slowly decays.

Beyond the mean-field approximation, we make use of a

configuration-interaction (CI) approach to study the mag-

netic phase transition induced by the applied electric field. A

full CI with a total of 28 single-particle states, which gener-

ates tens of millions Slater determinants,30 gives a similar

critical field around 0.04 V/Å. Like the result by the mean-

field approximation, the AFM coupling is noted to first

decrease before the transition and then the gap increases dra-

matically after the transition.

Next, let us have a closer look at the spin configuration

before and after the transition. The mean-field approximation

of the Hubbard model is solved by using the unrestricted

scheme, i.e., allowing spin up and spin down states to evolve

separately. Figure 4 plots the energy levels obtained by a self-

consistent calculation at zero field, one before and one after

the transition. At zero field it is noticed that, even within the

unrestricted scheme, spin-up and spin-down states share the

same energy spectrum with the electron-hole symmetry,

Ei;" ¼Ei;# ¼ ENt�i;" ¼ ENt�i;#;

jui;"j2 ¼ juNt�i;#j2;
(2)

with Nt being the total number of electrons. It is further seen

that the Coulomb interaction lifts the degeneracy of the four

FIG. 1. A schematic view of a zBGNF with N ¼ 5 and m ¼ 2 sandwiched

by two electrodes. Solid and open dots denote the overall electron densities

of the degenerate zero-energy states located at two different sublattices.

FIG. 2. Energy spectrum of the zBGNF in the presence of the applied trans-

verse electric field. The energy splitting DE is indicated by the arrows.

FIG. 3. The largest local magnetic moment and the ratio between the single-

particle energy splitting and AFM coupling calculated as a function of the

applied electric field.
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zero-energy states and splits them into two degenerate pairs

of states. Here, spin degeneracy remains intact and each

energy level is doubly occupied. The total spin of the system

is therefore zero. Nevertheless, the spin-up and spin-down

states at the same energy level have different electron den-

sities, i.e., jui;"j2 6¼ jui;#j2. Hence the spin is locally polar-

ized even when the overall spin is zero. In the zBGNF, spin

degeneracy and sublattice symmetry are correlated. When

the latter is broken by the applied electric field, the former

can no longer exist. Figure 4(b) shows that the spin degener-

acy is lifted at F ¼ 0.03 V/Å just before the critical field.

Now, the spin-up and spin-down states have not only differ-

ent density distributions but also splitting energy levels. In

the meantime, the electron-hole symmetry is also broken,

i.e., Ei;" 6¼ ENt�i;". As a result, the up-spin gap decreases

while the down-spin gap increases greatly.25

Figure 5(a) plots the corresponding spin density of the

ground state. Although the energy spectrum changes dramati-

cally with the field, the spin density at F ¼ 0.03 V/Å is seen to

have a very similar distribution to that at zero field. As the

electric field further increases to 0.04 V/Å beyond the thresh-

old value 0.0396 V/Å, it can be seen from Fig. 4(c) that the

spin degeneracy recovers and the energy spectrum becomes

similar to that at the zero field except for much smaller energy

gap around the Fermi level. The other important difference is

that the electron densities of the degenerate spin-up and spin-

down states are now identical. As a result, the local spin polar-

ization totally vanishes across the whole structure and the

ground state becomes NM, as shown in Fig. 5(b).

We have seen that the electric field induces local spin

transfer between the two triangles of the zBGNF by breaking

the sublattice symmetry and finally leads to the destruction of

the AFM ordering without resort to spin-orbit coupling.

Although the applied electric field first closes the energy gap

for one spin orientation while widening the other in the

zBGNF similar to graphene nanoribbons25 or diamond-shaped

graphene nanoflakes,27 a different phase transition which

results in a NM state instead of a FM state occurs when the

field exceeds the threshold. Without the help of degenerate

zero-energy states, the transition from an AFM to NM state in

rectangular GNFs is shown to require a much stronger electric

field.26 Moreover, the transition in the rectangular nanodot

occurs slowly over a large field range (>0.1 V/Å). In contrast,

the electrical switching of the AFM state in the zBGNF occurs

almost instantly after the critical field.

Finally, we present the ground state phase diagram of the

zBGNF calculated for the range 1:0 � U=t � 2:0 in Fig. 6. It

is seen that the critical field for the transition to the non-

magnetic state increases almost quadratically with the

Hubbard U. At U=t ¼ 2:0, the field reaches 0.114 V/Å. This is

understood by the fact that the AFM coupling in the Hubbard

model becomes stronger as the Hubbard U increases, and

FIG. 4. Energy levels of the zBGNF

obtained by solving a mean-field

Hubbard model self-consistently at three

different electric fields, (a) F ¼ 0, (b)

F ¼ 0.03 V/Å, and (c) F ¼ 0.04 V/Å.

FIG. 5. Ground state spin density in the zBGNF at (a) F ¼ 0.03 V/Å and (b)

F ¼ 0.04 V/Å. Solid and open dots denote two different spin components. FIG. 6. Ground state phase diagram of the zBGNF for 1:0 � U=t � 2:0.
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therefore requires higher electric field for destructing the anti-

ferromagnetic ordering.

In summary, we have studied electrical control of spin

configuration in bowtie-shaped graphene nanodots. Within

the framework of mean-field Hubbard model, we have dem-

onstrated that the antiferromagnetic ordering in the ground

state of the nanodot can be efficiently switched by applying

an electric field. The local maximum magnetic moment of

the antiferromagnetic ground state is shown to be almost

constant for the field up to 0.04 V/Å while vanishes abruptly

as the applied field exceeds the critical field. Unlike half-

metallic graphene nanoribbons, we have revealed that the

electric field induces a phase transition to non-magnetic state

instead of ferromagnetic state after the destruction of antifer-

romagnetic ordering. Finally, we have obtained the ground

state phase diagram for the graphene nanoflake.

This work was supported by National Basic Research
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