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One- and two-dimensional cuprous oxide (Cu2O) nanostructures were fabricated 

on highly orientated pyrolytic graphite (HOPG) by electrodeposition in CuSO4 at 

room temperature (25
o
C) with no additives. For short deposition times, 1D Cu2O 

single nanocrystals were generally of an octahedral shape with sizes ranging from 

50nm to 400nm, while 2D Cu2O nanowires with diameters ranging from 100nm to 

300nm had lengths of more than 100μm. With longer deposition times, microwires 

were found to have diameters ranging from 1μm to 2μm with lengths up to 60μm, 

while microcrystals were also produced with sizes 1μm to 6μm. The highly aligned 

Cu2O nano/microwires were found to be deposited on the step edges of the HOPG 

substrate. Various crystal morphologies including flower-like and butterfly-like 

structures, and dendrites and truncated octahedra were observed on the working 



electrode of HOPG. Some of the morphologies are revealed for the first time by one 

step electrodeposition and these are confirmed to be single Cu2O crystals.  
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1. Introduction 

 

Nanostructured semiconductors are an emerging research area as they are 

expected to exhibit superior performance due to their remarkable structural, electrical 

and optical properties. Cuprous oxide (Cu2O) is a non-toxic p-type semiconductor 

with a direct band gap of around 2.1eV [1]. Owing to its photovoltaic properties, its 

use in many applications, such as catalyst for decomposition of water [2], conversion 

of organic contaminants [3], solar energy conversion, electrochemical photovoltaic 

cells, gas sensors, nano/microelectronics and electrode material for lithium ion 

batteries [4 – 8], has been demonstrated.  

 

A number of methods, for example, physical vapor deposition [9], solution-phase 

synthesis [10] and thermal decomposition [11], have been developed to prepare 

nanostructured materials. Among these, electrodeposition is well known as one of the 

most efficient and effective methods, because it is a simple and low-cost process, yet 

production rate can be high and the size and shape of the substrate are less limited 

[12-13]. More specifically, electrodeposition on substrates with atomic sized step 

edges, known as electrochemical step-edge decoration (ESED) [14], is one of the 

most widely used methods for fabricating nanowires. Highly oriented pyrolytic 

graphite (HOPG), a type of high-purity graphite, is a widely used substrate material 

for ESED, because its atomic steps of around 0.2-0.3nm high can often provide 

chemically active sites for the deposition of nanostructures.   



 

Penner and co-workers [12] proposed the three-step potentiostatic pulse 

electrodeposition method which includes the "oxidation", "nucleation" and "growth" 

steps in on HOPG. Zach et al. [15] electrodeposited MoOx nanowires on the step 

edges of HOPG and further reduced them to form Mo nanowires. Mukhopadhyay and 

Freyland [16] reported the preparation of Ti nanowires from ionic liquid by 

electrodeposition. Other nanowire materials such as nickel, copper, silver, gold, zinc, 

silicon, palladium, cadmium sulfide and bismuth telluride have been synthesized on 

HOPG by electrodeposition [17-20]. Besides single metal nanowires, Tang et al. [21] 

and Xiao et. al [22] have successfully fabricated Pd-Ag and Pd-Ni alloy nanowire 

arrays respectively by using an aqueous plating solution. Electrodeposition can be 

used to fabricate not only single metal nanowires, but also beaded bimetallic 

nanowires. One type of metal nanoparticles is first electrodeposited and covered by 

self-assembled monolayer (SAM), and then by switching to another electrolyte and 

electrodepositing the second metal nanoparticles, bimetallic nanowires are formed 

[23]. The bimetallic nanowires synthesized include Ag-Cu, Ag-Fe, Ag-Pd, Cu-MoO2, 

Fe-MoO2, Pt-MoO2, Pd-MoO2, Ni-MoO2 and Au-MoO2.  

 

The previous studies summarized above concerned the electrodeposition of metal 

or bimetallic nanowires, and reports on electrodeposition of metal oxide are very rare. 

Also, most of the previous studies made use of the three-step potentiostatic pulse 

electrodeposition method. In this paper, we report the fabrication of cuprous oxide 



nanowires on HOPG step edges using a single potentiostatic electrodeposition step at 

room temperature with a simple setup.   

 

2. Experimental methods 

 

The substrates used in this study were 20mm × 20mm × 1 mm highly orientated 

pyrolytic graphite (HOPG) sheets, graded SPI-2 (supplied by SPI supplies Ltd.). with 

an effective surface area of 200 mm
2
.
 
The HOPG was cleaved with adhesive tape 

before electrodeposition.  

 

The electrolyte was prepared by mixing analytical-grade copper (II) sulphate 

(supplied by Sigma Aldrich Co Ltd.) and distilled water to achieve a concentration of 

0.018M. The electrolyte was ultrasonically treated for 10 min before the experiment 

to ensure good solubility.  

 

A simple two-electrode system was used for this experiment. During 

electrodeposition, HOPG substrates were used as the working electrode (cathode) 

while a 0.5mm × 30mm × 50mm polished copper plate (with purity > 99.9%) was 

used as the counter and reference electrode (the anode). Since only about half of the 

HOPG sheet was immersed into the electrolyte, the effective cathode area was about 

200mm
2
. Both electrodes were connected to an electrochemical workstation 

(LK2006A, Lanlike) which acted as the power supply. The electrodes were separated 



by a distance of 15mm, and the whole electrodeposition process was conducted at 

room temperature. All experiments were carried out under constant voltage conditions. 

After electrodeposition, the substrates were rinsed several times with distilled water 

and ethanol, and were kept inside a desiccator at room temperature before 

characterization.  

 

The morphology, chemical composition as well as crystal structure of the 

deposited nanowires and crystals were examined in a field-emission scanning electron 

microscope (FEG SEM, Hitachi S4800) equipped with energy-dispersive x-ray 

spectroscopy (EDX) analysis function, and a transmission electron microscope 

(Scanning TEM, FEI Tecnai G2 20) operating at 200kV. To allow TEM to be carried 

out, the deposited crystals and wires were desquamated from the substrates onto 

Formvar films supported by standard TEM copper sample grids. Electron 

backscattered diffraction (EBSD) was carried out at an acceleration voltage of 20kV, 

working distance of 25mm and a sample tilt angle of 70º in a LEO 1530 FEG SEM. 

The EBSD patterns were automatically indexed and then analyzed using the 

CHANNEL 5 software package. 

 

3. Results 

 

3.1. Nanostructure/microstructure characterization on HOPG 

3.1.1. Cu2O nanocrystals and nanowires deposition 



 

Fig. 1(a) shows a low-magnification SEM image of the deposited nanocrystals 

and nanowires on a HOPG substrate. The applied electrodeposition voltage was 

80mV for 60s. Arrays of long nanowires are shown deposited at the step edges of the 

HOPG and beside the nanowires, single nanocrystals were also uniformly distributed 

over the substrate surface. The nanocrystals observed had edge lengths ranging from 

50nm to 400nm, and the higher magnification SEM image in Fig. 1(b) shows one of 

these with an octahedral shape and edge length 270nm. Most of the nanocrystals were 

octahedral or truncated octahedral in shape.   

 

As shown in Fig. 1(a), the long nanowires deposited at the step edges are highly 

aligned, and many of them are continuous up to 100μm in length, although some are 

shorter, discrete segments. A portion of a long nanowire is shown in higher 

magnification in Fig. 1(c), which shows the continuity of the nanowire and the shape 

of the individual crystals making up the nanowire. The nanowires fabricated this way 

were therefore composed of truncated octahedral nanocrystals, i.e. they were 

“beaded” nanowires. Due to the granular morphology of these nanowires, their 

diameter varies by ±30nm throughout their length. The diameter of the particular 

nanowire in Fig. 1(c) was about 160nm, and that of all the nanowires observed was in 

the range from 100nm to 300nm.  

 

Fig. 2(a) shows a TEM bright-field image of a truncated octahedral nanocrystal 



desquamated from a HOPG substrate. Selected-area electron diffraction (SAED) 

carried out over the nanocrystal, Fig. 2(b), revealed the diffraction pattern of a cubic 

structure of the nanocrystal. Several layers of the HOPG were desquamated together 

with the nanocrystal on the copper grid as shown in Fig. 2(a) (the diagonal line in the 

middle of the figure shows a step of the HOPG) and therefore a set of dotty, 

concentric oval rings arising from the graphite were superimposed on the cubic 

diffraction pattern of the nanocrystal [24]. For the cubic structure, the SAED pattern 

in Fig. 2(b) was taken along its  zone, and by calculation, its lattice constant 

was determined to be 0.43±0.01nm, which is in agreement with the known value of 

0.427nm for Cu2O [25]. The nanocrystal was thus identified to be cuprous oxide 

Cu2O. No grain boundary or changes in the crystal orientation could be detected from 

within the particle and it was thus confirmed to be a single nanocrystal. From the 

determined orientation of the crystal, the truncated faces in Fig. 2(a) were found to be 

{100}, and the eight faces of the truncated octahedron were found to be all {111} 

planes. As the crystal continues to grow along the <100> direction normal to the 

truncated {100} faces, the latter may continue to shrink until they disappear at the 

apexes of a full octahedron.  

 

3.1.2. Cu2O microcrystals and microwires deposition 

 

At the same deposition voltage of 80mV but for longer deposition time of 300s, 

the deposited isolated crystals and beaded wires grow into the micron size, as shown 



in Fig. 3(a). The microwires were generally 1-2μm in diameter and up to 60μm in 

length. A Cu2O microwire of diameter 1.0 μm is shown in high magnification in Fig. 

3(b), revealing the constituent octahedral shaped microcrystals along the wire length.  

 

Fig. 4 shows a TEM bright-field image of a microwire fragment desquamated 

from a HOPG substrate. Three crystals each with octahedral shape comprised this 

fragment. The top row of SAED patterns in Fig. 4 were taken from each of the three 

crystals, at the same sample orientation along the  zone for the left crystal. The 

diffraction pattern of the left crystal shows a cubic crystal structure with lattice 

constant of 0.43±0.01nm which is in agreement with that of Cu2O. At this sample tilt, 

the other two crystals did not have a major zone aligned with the electron beam, and 

so their SAED patterns do not show characteristics of the cubic Cu2O structure. 

However, upon tilting the specimen to align a major zone of each of the two 

remaining crystals with the electron beam separately, they show again the cubic 

structure of Cu2O. It can therefore be concluded that the microwires are “beaded” 

polycrystalline microwires comprising individual octahedral crystals of Cu2O with 

different orientations, and this applies to the Cu2O nanowires as well.  

 

The microcrystals observed were of octahedral shapes and the edge length ranged 

from 1μm to 6μm. Fig. 5(a) shows a SEM image of a typical octahedral Cu2O 

microcrystal with edge length 2.5μm. The low-magnification micrograph in Fig. 5(b) 

shows a few of the truncated octahedra on the HOPG substrate, where the {100} faces 



can still be seen on them. In addition to the octahedral shape, some other interesting 

configurations were also deposited on the substrate. Fig. 6(a-e) show different 

transient structures found over this region of the substrate at 300s of deposition time 

at 80mV. Fig 6(a) shows a four-leaf flower structure with four identical leaves 

pointing outward along two orthogonal <100> directions and a stamen in the middle, 

which points upward along the <100> direction. Fig. 6(b) shows a similar flower 

structure but with four stamens in the middle. Fig. 6(c) shows a dendritic structure 

comprising four dendritic leaves along the orthogonal <100> directions. Fig. 6(d) 

shows three butterfly-like structures with two wings on either side and the main body 

pointing towards a <100> direction. Fig. 6(e) shows an incomplete octahedron 

showing the gaps in between and the incomplete faces. It is possible that they are the 

transient structures during the growth towards eventually a full octahedron.  

 

Fig. 7(a,b) show a TEM bright-field image, high-resolution lattice image and the 

corresponding SAED pattern taken along the  zone of a leaf from the Cu2O 

flower-structured microcrystal desquamated from a HOPG electrode. The {110} 

planes are labeled in the high-resolution image and the corresponding reflections are 

indicated in the diffraction pattern. The SAED shows a cubic crystal structure with 

interplanar spacing in agreement with the lattice constant of 0.427nm of Cu2O. Again, 

no grain boundary or changes in the crystal orientation could be detected and so it was 

confirmed to be a single crystal. Fig. 8 shows another TEM bright-field image and the 

corresponding SAED pattern taken along the  zone of a truncated octahedral 



microcrystal desquamated from the HOPG. From the determined orientation of the 

crystal, the direction joining the two twin apexes was along the <100> direction. The 

measured lattice constant also agrees with that of Cu2O. 

 

Microstructures such as those in Figs. 6(b-d) which appear to be composed of 

several smaller crystals were further analyzed by EBSD. Fig 9(a) shows the SEM 

micrograph of such a microstructure, and the corresponding EBSD map is shown in 

Fig. 9(b). As can be seen from Fig. 9(a), the Cu2O flower-like microstructure appears 

to consist of five crystals with four leaves and one stamina in the middle, but the 

EBSD map with Euler angles in Fig. 9(b) shows that all five composing crystals have 

identical orientation. This supports that the leaves and stamina are parts of one single 

crystal with no grain boundaries inside. Backscattered Kikuchi pattern of different 

microcrystals at different points further confirms that the deposited material is Cu2O. 

Fig. 10 (a,b) are the SEM images of typical dendrite and the butterfly-like structures 

while 10 (c,d) are the corresponding Kikuchi patterns. Again, the Kikuchi patterns are 

confirmed to be consistent with that of Cu2O. Chemical compositions of the 

microstructures were also determined by EDX, as shown in Fig. 11. Only Cu and O 

were detected, confirming that the microcrystals were copper oxide.  

 

3.2. Cu2O deposition on Cu anode 

 

Besides the HOPG cathode, the Cu anode was also examined after the 



electrodeposition experiments. Fig. 12 shows an SEM image of the surface of the Cu 

anode after electrodeposition on HOPG at 80mV for 300s. The surface of the Cu 

anode was covered by nanocrystals of generally octahedral shapes ranging from 

several tens of nm to 1μm.  Fig. 13(a, b) shows a TEM bright–field image and the 

corresponding SAED pattern of the crystals desquamated from the Cu anode. The 

SAED pattern is identified to be a simple cubic structure with lattice constant of 0.42 

±0.01nm, which is again in agreement with the Cu2O structure.  

 

4. Discussion 

 

In the present experiments, the micro/nanowires were all found deposited on the 

step edges of the HOPG substrates instead of the terraces, suggesting that step edges 

offer a lower nucleation barrier than terraces, in accordance with the common belief 

that nuclei are more readily formed on the step edges thus causing the high degree of 

selectivity during electrodeposition [15, 26]. Thus, nucleation may first occur on the 

HOPG steps to form discrete nanocrystals. After some time, the crystals grow and 

subsequently coalesce into a continuous nanowire. As in Fig. 1(c), the nanowire is 

polycrystalline comprising many single crystals with different orientations arranged in 

series along the step edge.  

 

Unlike those studies in the literature where nanowires on HOPG were obtained by 

three potentiostatic pulses during electrodeposition, which include the oxidizing 



“activation” pulse, a reducing “nucleation” pulse and a reducing “growth” pulse [17, 

22], we managed to synchronize the nucleation and growth processes to fabricate both 

Cu2O nano/micro wires as well as single crystals on HOPG by one-step, low-potential 

electrodeposition at room temperature (25
o
C) without the use of any additives. 

Furthermore, as discussed in section 3.1.3, the product at the anode, not just the 

cathode, was also Cu2O. The possible chemical reactions at the cathode are as follow: 

 

2Cu
2+

 + H2O + 2e
-
  Cu2O + 2H

+
         [1] 

 

The standard electrode potential versus standard hydrogen electrode (SHE) of the 

above reaction is 0.203V. According to the calculation using the Nernst equation by 

Yu et al [27], the equilibrium electrode potential of this reaction is relatively high. 

Therefore, formation of Cu2O is thermodynamically favourable in this case and Cu2O 

is deposited in priority. During electrodeposition, Cu
2+

 ions from the electrolyte were 

driven by electric field to the cathode. Because of the low potential, Cu
2+

 ions are 

slowly attracted to the surface and reduced to form a smooth surface with lowest 

specific energy.  

For anode, the possible chemical reactions are: 

Cu + 2OH
-
   Cu(OH)2

-
 + e

- 
        [2]  

2Cu(OH)2 
-
   Cu2O + H2O + 2OH

-
        [3]  

2Cu + 2OH
-
  Cu2O + H2O + 2e

-   
(overall reaction)  [4]  

 



During electrodeposition, Cu from the anode copper plate oxidizes to form Cu
+
 ions. 

They were stabilized immediately by OH
-
 ions to form Cu(OH)2

-
, which would then 

decompose to form Cu2O. Therefore, formation of Cu2O is favorable and no CuO is 

formed at the anode. [28] 

 

Compared with the experiment by Xiao et al. [22] where they used three 

potentiostatic pulses with a long deposition time (50min) to obtain nanowires with 

length over 250μm, we demonstrated a more effective method by using just one single 

electrodeposition step at a low voltage with a short deposition time (60s). The 

as-deposited nanowires in our experiments are highly uniform and continuous up to 

100μm.  Besides the long and continuous nanowires, some discrete nanowires were 

also observed on the HOPG. These were short and discontinuous, and this is possibly 

due to the Interparticle Diffusion Coupling (IDC) effect [21]. The growth of each 

deposited nucleus is influenced by the concentration of the ions around it and the 

position of the crystal grain. During electrodeposition, each nucleus has its own 

depleting zone but since some of the nuclei are deposited more closely together than 

others, their depleting zones will overlap. Fewer ions are around the overlapped 

depleting zone and so electrodeposition is not favored there causing the IDC effect. 

Under this condition, the deposited nanowires become discrete and discontinuous.   

  

On the other hand, the morphology of the nanowires in our experiments is 

different from that reported by Zach et al. [26], who investigated the synthesis of 



molybdenum nanowires by electrochemical step edge decoration. In Zach et al’s study, 

the morphology of the nanowires changed from discrete, beaded and discontinuous to 

smooth, cylindrical and continuous when the deposition time increased from 8s to 

256s at 0.95V. In the present study, however, when the deposition time was increased 

from 60s to 300s at 80mV, the nanowires did not change to smooth and cylindrical 

nanowires, but instead, each of the comprising crystals grew in size and remained as 

an octahedron. The result is the formation of a beaded continuous wire but with 

diameter increased to the micron regime as in Fig. 3(b).   

 

Despite the fact that various configurations of Cu2O crystals have been 

synthesized in the literature, for example, cubic, six-horn, eight-pod, triangular 

pyramidal, and icositetrahedron [29-32], these were synthesized by other processes or 

by adjusting the pH value of the electrolyte. In this study, we managed to fabricate 

Cu2O crystals of different configurations on HOPG by electrodeposition, and in 

particular, Cu2O crystals with dendrite and butterfly-like structures are produced for 

the first time. Cu2O crystals were also found on the Cu anode which suggests that 

Cu2O crystals can be prepared also by anodic deposition, i.e. Cu2O crystals can be 

fabricated on both electrodes in a single step. We have recently demonstrated that, 

under similar conditions but with different potentials, uniform nano-to-micron sized 

Cu2O crystals can be fabricated on Si wafer and stainless steel substrate as well [28]. 

 

 



 

5. Conclusions 

 

We successfully fabricated one- and two-dimensional Cu2O nano/microstructures 

on HOPG by one-step, low-potential electrodeposition in a simple two-electrode setup 

at room temperature (25
o
C) with no additives. Highly aligned nano/microwires were 

found deposited on the step edges of the HOPG. They were “beaded” polycrystalline 

nano/microwires comprising octahedral crystals of different orientations. The 

as-deposited Cu2O nanowires with diameters ranging from 100nm to 300nm were 

highly uniform and continuous and more than 100μm long, while the microwires with 

diameters ranging from 1μm to 3μm had lengths up to 60μm. Due to the IDC effect, 

some short, discrete nano/microwires were also observed during the experiments. The 

nanocrystals found on the terraces were of sizes ranging from 50 to 400nm, whereas 

the sizes of the microcrystals deposited ranged from 1μm to 6μm. Various 

morphologies of microcrystals were observed on the terraces of the HOPG substrates, 

including full and truncated octahedra, dendrites, and butterfly-like and flower-like 

structures. Some of the structures are revealed for the first time by one-step 

electrodeposition. The steady-state shape of the nano/microcrystals seems to be 

octahedral with eight {111} faces which suggests that {111} are the most stable 

crystallographic planes in Cu2O. Cu2O single crystals were also found to deposit on 

the Cu anode and hence this work provides a method to fabricate Cu2O crystals on 

both anode and cathode in a single step.   



 

Acknowledgements 

The work described in this paper was supported by funding from the University 

Grants Committee (Project No. SEG-HKU06) of the Hong Kong Special 

Administration Region, as well as the Kingboard Endowed Professorship. Technical 

assistance from Frankie Chan of the Electron Microscope Unit of the University of 

Hong Kong is gratefully acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

References 

 

[1] J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, Electronic structure of Cu2O and 

CuO, Phys. Rev. B 38 (1988) 11322. 

 

[2] P. E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: a catalyst for the 

photochemical decomposition of water , Chem. Commun. (1999) 1069. 

 

[3] J. Ramirez-Ortiz, T. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, P. Bosch, 

J.A.d.l. Reyes, V.H. Lara, A catalytic application of Cu2O and CuO films deposited 

over fiberglass, Appl. Surf. Sci., 174 (2001) 177. 

 

[4] Y. Chang, J. J. Teo, H.C. Zeng, Formation of Colloidal CuO nanocrystallites and 

their spherical aggregation and reductive transformation to hollow Cu2O nanospheres, 

Langmuir 21 (2005) 1074.  

 

[5] P.E. de Jough, D. Vanmaekelbergh, J.J. Kelly, Photoelectrochemistry of 

Electrodeposited Cu2O, J. Electrochem. Soc., 147 (2000) 486. 

 

[6] J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly Monodisperse Cu2O and CuO 

nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater. 18 



(2006) 867. 

 

[7] J.A. Switzer, B.M. Maune, E.R. Raub, Negative differential resistance in 

electrochemically self-assembled layered nanostructures, J. Phys. Chem. B 103 (1999) 

395.  

 

[8] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nano-sized 

transition-metal oxides as negative-electrode materials for lithium-ion batteries, 

Nature, 407 (2000) 496. 

 

[9] P. Taneja, R. Chandra, R. banerjee, P. Ayyub, Structure and properties of 

nanocrystalline Ag and Cu2O synthesized by high pressure sputtering, Scripta mater. 

44 (2001) 1915. 

 

[10] L. Gou, C.J. Murphy, Solution-Phase synthesis of Cu2O nanocubes, Nano Lett. 3 

(2003) 231. 

 

[11] J. Park, J. Joo, Y. Jang, T. Hyeon, Synthesis and catalytic applications of 

uniform-sized nanocrystals, Stud. in Surf. Sci. and Catal. 159 (2006) 47. 

 

[12] F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, N.V. Myung, Recent 

progress in electrodeposition of thermoelectric thin films and nanostructures, 



Electrochim. Acta, 53 (2008) 8103. 

 

[13] U. Erb, Electrodeposited nanocrystals: Synthesis, properties and industrial 

applications, Nanostruct. Mater., 6 (1995) 533. 

 

[14] R. M. Penner, Electrochemical Step Edge Decoration (ESED): A Versatile Tool 

for the Nanofabrication of Wires, Modern Aspects of electrochemistry, Springer New 

York, 45 (2009) 175. 

 

[15] M. P. Zach, K.H. Ng, R. M. Penner, Molydenum nanowires by electrodeposition, 

Science 290 (2000) 2120. 

  

[16] I. Mukhopadhyay, W. Freyland, Electrodeposition of Ti nanowires on highly 

oriented pyrolytic graphite from an ionic liquid at room temperature, Langmuir 19 

(2003) 1951. 

 

[17] E.C. Walter, B.J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, R. M. Penner, 

Noble and coinage metal nanowires by electrochemical step edge decoration, J. Phys. 

Chem. B 106 (2002) 11407. 

 

[18] C. Fournier, F. Favier, Zn, Ti and Si, nanowires by electrodeposition in ionic 

liquid, Electrochem. Commun. 13 (2011) 1252. 



 

[19] Q. Li, R.M. Penner, Photoconductive cadmium sulfide hemicylindraical shell 

nanowire ensembles, Nano Lett., 5 (2005) 1720.   

 

[20] E.J. Menke, Q. Li, R.M. Penner, Bismuth Telluride (Bi2Te3) nanowires 

synthesized by cyclic electrodeposition/stripping coupled with step edge decoration, 

Nano Lett., 4 (2004) 2009.  

 

[21] L. Tang, G. Yu, Y. Ouyang, W. Si, B. Weng, Single pulse deposition of Pd-Ag 

alloy nanowires on highly oriented pyrolytic graphite: A mechanistic assessment, 

Electrochim. Acta 53 (2008) 3305. 

 

[22]Y. Xiao, G. Yu, J. Yuan, J. Wang, Z. Chen, Fabrication of Pd-Ni alloy nanowire 

arrays on HOPG surface by electrodeposition, Electrochimica Acta 51 (2006) 4218. 

 

[23] E. C. Walter, B.J. Murray, F. Favier, R.M. Penner, “beaded” bimetallic 

nanowires: wiring nanoparticles of metal 1 using nanowires of metal 2, Adv. Mater. 5 

(2003) 396. 

 

[24] A. P. Tomsia, A.M. Glaeser, Ceramic Microstructures, Control at the atomic level, 

Plenum Press, New York, (1998) 487. 

 



[25] R. Restori, D. Schwarzenbach, Charge density in cuprite, Cu2O, Acta Crystallogr. 

Sect. B: Struct. Sci. 42 (1986) 201. 

 

[26] M. P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R. M. Penner, Synthesis of 

Molybdenum nanowires with millimeter-scale lengths using electrochemical step 

edge decoration, Chem. Mater. 14 (2002) 3206. 

 

[27] G. Yu, X. Hu, D. Liu, D. Sun, J. Li, H. Zhang, H. Liu, J. Wang, Electrodeposition 

of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer, J. 

Electroanal. Chem. 638 (2010) 225. 

 

[28] S. Y. Ng, A. H. W. Ngan, Fabrication of nanometer-to-micron sized Cu2O single 

crystals by electrodeposition, Electrochim. Acta 56 (2011) 7686. 

 

[29] S. Xu, X. Song, C. Fan, G. Chen, W. Zhao, T. You, S. Sun, Kinetically 

controlled synthesis of Cu2O microcrystals with various morphologies by adjusting 

pH value, J. Cryst. Growth 305 (2007) 3. 

 

[30] L. Wang, H. Jia, L. Shi, N. Liao, X. Yu, D. Jin, Controlled synthesis of Cu2O 

micro-crystals with various morphologies by adjusting solution conditions, Inorg. 

Mater. 46 (2010) 847. 

 



[31] S. Joseph, P.V. Kamath, Electrochemical deposition of Cu2O on stainless steel 

substrates: Promotion and suppression of oriented crystallization, Solid State Sci. 10 

(2008) 1215. 

 

[32] W. Zhao, W. Fu, H. Yang, C. Tian, R. Ge, C. Wang, Z. Liu, Y. Zhang, M. Li, Y. 

Li, Shape-controlled synthesis of Cu2O microcrystals by electrochemical method, 

Appl. Surf. Sci. 256 (2010) 2269. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figures Captions 

 

Fig. 1. (a) SEM image showing the distribution of Cu2O nanocrystals and nanowires 

electrodeposited over HOPG substrate at 80mV for 60s. (b) A single 

octahedral shaped Cu2O nanocrystal deposited on a HOPG substrate in high 

magnification. (c) SEM image showing the continuity and the shape of a 

Cu2O nanowire. 

 

Fig. 2. (a) TEM bright-field image of a truncated octahedron Cu2O nanocrystal 

deposited on HOPG substrate. (b) Selected-area electron diffraction (SAED) 

pattern of the as-deposited Cu2O nanocrystal at zone .  

 

Fig. 3.  (a) SEM micrograph showing Cu2O microcrystals and microwires deposited 

at 80mV for 300s on HOPG substrate. (b) A Cu2O microwire deposited on 

the step edge of a HOPG substrate in high magnification.  

 

Fig. 4. TEM bright-field image of a Cu2O microwire fragment desquamated from 

HOPG substrate. The top row of inset SAED patterns were taken at the same 

specimen tilt with the left crystal along the  zone. The bottom row of 

insets show the SAED patterns along the  and  zone of the 

middle and right crystal respectively. 



 

Fig. 5.  (a) SEM image showing a typical octahedron Cu2O microcrystal deposited 

on HOPG substrate at 80mV for 300s. (b) Low-magnification micrograph 

showing a few of the incomplete octahedra on the HOPG substrate 

 

Fig. 6.  SEM images showing different transient structures of Cu2O microcrystals 

found over the HOPG substrate at 80mV for 300s: (a) a four-leaf flower 

structure viewed along a [100] direction, (b) a four-leaf flower structure with 

four stamens, (c) a dendrite comprising four dendritic leaves along the <100> 

directions, (d) three butterfly-like structures, (e) an incomplete octahedron 

showing gaps in between. 

 

Fig. 7.  (a) TEM bright-field image and (b) high-resolution lattice image of a 

HOPG-deposited Cu2O microcrystal taken along the  zone. The inset 

in (b) is the corresponding SAED pattern.  

 

Fig. 8.  TEM bright-field image and the corresponding SAED pattern taken along the 

 zone of an incomplete octahedron microcrystal  

 

Fig. 9. SEM image (a) and EBSD orientation map (b) of a Cu2O flower-like 

microstructure deposited on HOPG substrate. 

 



Fig. 10. SEM image showing (a) a dendrite, (b) a butterfly-like microstructure 

analyzed by EBSD. The corresponding backscattered Kikuchi patterns of the 

(c) dendrite, (d) butterfly-like microstructure. 

 

Fig. 11 EDX analysis result of an as-deposited microwire.  

 

Fig. 12. SEM image showing the surface of the Cu anode after an electrodeposition 

experiment with HOPG cathode at 80mV for 300s. The surface is covered 

with a high density of octahedral shaped Cu2O crystals. 

 

Fig. 13. (a) TEM bright-field image of Cu2O nanocrystals desquamated from Cu 

anode. (b) The corresponding SAED pattern. 



 

 
Fig. 1(a) 

 

 
Fig. 1(b) 

 

 

 

 

 

 

 



 

 
Fig. 1(c) 

 

 
Fig. 2(a) 

 

 

 

 



 

 

 
Fig. 2(b) 

 

 
Fig. 3(a) 

 



 
Fig. 3(b) 

 

 

Fig. 4 



 
Fig. 5(a) 

 

 
Fig. 5(b) 

 



 
Fig. 6(a) 

 

 

 

 

 

 

 
Fig. 6(b) 

 



 
Fig. 6(c) 

 
Fig. 6(d) 

 



 
Fig. 6(e) 

 

 

Fig. 7(a) 

 



 

Fig. 7(b) 

 

 
Fig. 8(a)  

 



 

 

Fig. 9(a) 

 

 

Fig. 9(b) 



 

 

Fig. 10(a) 

 

Fig. 10(b) 

 



 

 

Fig.10(c) 

 

 

Fig. 10(d) 

 

 
Fig. 11 

 



 

Fig. 12 

 

 

Fig. 13 (a) 

 



 
Fig. 13 (b) 

 


