<table>
<thead>
<tr>
<th>Title</th>
<th>Determination of the High Prevalence of Dual/Mixed- or X4-Tropism Among HIV Type 1 CRF01_AE in Hong Kong by Genotyping and Phenotyping Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>To, SWC; Chen, JHK; Wong, K; Chan, K; Chen, Z; Yam, WC</td>
</tr>
<tr>
<td>Citation</td>
<td>AIDS Research and Human Retroviruses, 2013, v. 29, p. 1123-1128</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/191454</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Determination of the High Prevalence of Dual/Mixed- or X4-Tropism Among HIV Type 1 CRF01_AE in Hong Kong by Genotyping and Phenotyping Methods

Sabrina Wai-Chi To,1 Jonathan Hon-Kwan Chen,1 Ka-Hing Wong,2 Kenny Chi-Wai Chan,2 Zhiwei Chen,3 and Wing-Cheong Yam1

Abstract

In Hong Kong, the CCR5 antagonist has recently been introduced into salvage therapy for multiclass drug-resistant HIV-1-infected patients. Coreceptor usage must be determined prior to the usage of the CCR5 antagonist, which does not inhibit X4-tropic viruses. This study aimed to determine the tropism prevalence for HIV-1 subtypes B and CRF01_AE in Hong Kong. In addition, a modified promoter-PCR phenotypic assay was used to validate the genotypic tropism prediction on CRF01_AE. One hundred and five subtype B and 98 CRF01_AE antiretroviral-naive patients were recruited for this study. The viral env V3 region isolated from the patients was sequenced and analyzed by Geno2pheno (FPR = 5.75% or 10%, Clonal or Clinical), position-specific scoring matrix (WebPSSM, x4r5 subtype B matrix), and the combination of 11/25 and net charge rules. Fifteen concordant and 22 discordant tropism genotyped CRF01_AE samples were further phenotyped by either enhanced sensitivity Trofile assay or an optimized promoter-PCR phenotypic assay. The prevalence of Dual/Mixed- or X4-tropic virus in antiretroviral-naive subtype CRF01_AE was 39.1%, which was significantly higher than subtype B (p < 0.05), regardless of the choices of genotypic algorithms. Our phenotypic data proposed that a better genotypic tropism prediction for HIV-1 CRF01_AE would be using both Geno2pheno (FPR = 10%, Clonal) and WebPSSM (x4r5 subtype B matrix) algorithms in combination. The sensitivity and specificity for this combination were 88.9% and 89.3%, respectively. The comparatively high prevalence of Dual/Mixed- or X4-tropic virus in CRF01_AE demonstrated the need for special attention to future treatment strategies.

Introduction

HIV-1 uses one or both major chemokine coreceptors, namely CCR5 and CXCR4, for entering host cells.1 This entry pathway can be blocked by the recently developed CCR5 antagonist, maraviroc (MVC), which has inhibitory effects on R5-tropic (R5) viruses only.2 From 2007, the U.S. Food and Drug Administration and the European Medicines Agency have approved the use of MVC for treatment-experienced patients who only have the R5 virus detected.3 Thus, the determination of viral tropism becomes crucial and is highly recommended before initiating MVC treatment.

The Enhanced Sensitivity Trofile Assay (ESTA) (Monogram Biosciences, USA) is believed to be the “gold standard” for HIV tropism phenotypic determination and is available only in the United States.4–6 Due to its limited accessibility, other in-house phenotyping assays or genotyping assays have been developed for coreceptor prediction.7–10 Although the phenotyping assays provide better sensitivity and specificity, they are time consuming to process and require intensive laboratory set-up, which is definitely not suitable for clinical diagnosis. Hence the use of genotyping methods becomes the global trend for tropism prediction. Different genotypic algorithms are designed on the basis of the variable loop 3 (V3) in the HIV-1 env region, which is believed to interact with
coreceptor when binding. The simplest prediction rule relies on the basic amino acids present at positions 11 and/or 25 of the V3 loop and the net charge of the sequences. A modified prediction rule considering both 11/25 and net charge rules was proposed since it had a better prediction result for non-B subtypes. In addition, Geno2Pheno [coreceptor] (G2P) and position-specific scoring matrix (WebPSSM) are two more advanced interpretation algorithms and achieved high concordance with phenotype data in several clinical studies with HIV-1 subtype B and C isolates. These algorithms were reported to be around 80–90% specific and 50–60% sensitive for subtype B viruses and a minority of non-B subtypes. However, the small sample size and unknown treatment background led to many uncertainties in these studies. In addition, no phenotypic data on CRF01_AE tropism were available to validate any of the above-mentioned genotypic algorithms. Hence it is critical to investigate and evaluate the prevalence of X4 or D/M in antiretroviral-naive patients infected with subtype CRF01_AE.

In this study, we optimized a recently published promoter-PCR (pPCR) phenotypic assay for CRF01_AE strains and validated it with the ESTA method. The phenotypic tropism was available to validate any of the above-mentioned genotypic algorithms. Hence it is critical to investigate and evaluate the prevalence of X4 or D/M in antiretroviral-naive patients infected with subtype CRF01_AE.

In this study, we optimized a recently published promoter-PCR (pPCR) phenotypic assay for CRF01_AE strains and validated it with the ESTA method. The phenotypic tropism was available to validate any of the above-mentioned genotypic algorithms. Hence it is critical to investigate and evaluate the prevalence of X4 or D/M in antiretroviral-naive patients infected with subtype CRF01_AE.

MATERIALS AND METHODS

Clinical samples

In 2010 and 2011, there were a total of 827 new HIV-1 infections recorded in Hong Kong. About 60% of the patients sought medical consultation at the Integrated Treatment Centre (Department of Health, Hong Kong) and 203 antiretroviral-naive patients were available for this study. Baseline peripheral blood was collected from all patients during their clinic visit at the Centre after consent. An in-house genotyping assay was used to sequence the HIV-1 pol gene, which was then analyzed by the REGA Genotyping Tool version 2.0 for subtype identification. The tropism of all samples was first estimated by genotypic tropism prediction. Based on genotyping, 15 concordant and 22 discordant CRF01_AE samples were further phenotyped by the ESTA method and/or the pPCR phenotypic assay.

Genotypic coreceptor prediction

Five hundred microliters of plasma was centrifuged at 20,000×g, 4°C for 90 min, followed by viral RNA extraction using the QiAamp Viral RNA Mini Kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany). The viral V3 env region was then reverse transcribed and amplified by the SuperScript III One-Step RT-PCR system with Platinum Taq High Fidelity enzyme (Invitrogen, USA) in triplicate. The 35 amino acid V3 region was nested polymerase chain reaction (PCR) by the Expand High Fidelity PCR system (Roche Diagnostics, Germany) and cycle sequenced by BigDye Terminator v1.1 (Life Technologies, USA). The amplification and sequencing reaction conditions were described elsewhere. All sequences were generated by ABI PRISM 3130xl Genetic Analyzer (Life Technologies, USA) and manually edited by Staden Package version 2.0.

The HIV-1 tropism was predicted by three sets of algorithms: (1) Geno2Pheno [coreceptor] 1.2 (http://coreceptor.bioinf.mpi-inf.mpg.de/index.php), the false-positive rate (FPR) was set at 5.75% or 10%, with or without the input of viral load and CD4 and CD8 cell counts; (2) WebPSSM (http://indra.mullins.microbiol.washington.edu/webpssm/), using subtype B x4r5 matrix; and (3) the combination of 11/25 and net charge rules (CN Rules).

Phenotypic coreceptor prediction by ESTA (Monogram Biosciences)

Plasma samples of 12 HIV-1 CRF01_AE-infected patients with viral load above 2,000 copies/ml were randomly selected and sent to Monogram Biosciences in California for ESTA.

Phenotypic coreceptor prediction by a pPCR phenotypic assay

A recently published phenotypic assay was adopted in this study with slight modifications of PCR cycling conditions. Briefly, the extracted RNA was reverse transcribed and amplified in triplicate reactions. An overlapping PCR technique was employed to add the CMV promoter/enhancer to the PCR products without cloning. After cotransfecting pPCR products and pNL4-3.Luc.R-E− pseudoviruses produced were used to infect two U87 indicator cell lines expressing either the CCR5 or CXCR4 coreceptor. The luciferase activities were measured to determine coreceptor usage. Reference viruses, plasmids, and cell lines, including MJ4, LAI_{RI}, 89.6, pYU2, pNL4-3, pNL4-3.Luc.R-E−, U87.CD4.CCR5, and U87.CD4.CXCR4, were obtained from the AIDS Research and Reference Reagent Program (NIH, USA). MJ4 and LAI_{RI} viruses were used as positive controls in each batch of amplification and luciferase measurement for R5 and X4 prediction, respectively.

Statistical analyses

The viral loads and CD4 cell counts of subtype B and CRF01_AE were statically analyzed by two-tailed t-tests using GraphPad Prism (version 4.0, GraphPad software, CA). Chi-square tests were used to calculate the tropism genotypic distributions between subtype B and CRF01_AE. The sensitivity and specificity of each genotypic algorithm were calculated by converting X4 predictions to positive values and R5 predictions to negative values of the assay.

Results

Characteristics of the patients

After analyzing the pol sequence by REGA, 105 samples were confirmed to be HIV-1 subtype B while the remaining 98 samples were HIV-1 subtype CRF01_AE. The mean viral load
and CD4 counts for subtype B treatment-naive patients were 4.77 log_{10} copies/ml (95% confidence interval: 4.66 to 4.88 log_{10} copies/ml) and 310 cells/μl (IQR: 163 to 446 cells/μl), respectively. For subtype CRF01_AE treatment-naive patients, their mean viral load and CD4 counts were 4.82 log_{10} copies/ml (95% confidence interval: 4.66 to 4.98 log_{10} copies/ml) and 289 cells/μl (IQR: 125–392 cells/μl) respectively. For subtype B and CRF01_AE as detected by G2P, PSSM, and the CN rules.

CRF01_AE tropism phenotyping by ESTA and the pPCR assay

Twelve antiretroviral-naive CRF01_AE samples were randomly selected and sent to Monogram for phenotyping. This included seven R5 and five D/M viruses that were used to validate our modified version of the pPCR phenotypic assay. Our assay managed to reproducibly distinguish between R5 (MJ4, pYU2), X4 (LAI jigme, pNL4-3), and D/M (89.6) reference strains. More importantly, the assay results completely agreed with the coreceptor predictions by ESTA. Hence, the pPCR assay was employed to validate the genotypic tropism tests for CRF01_AE hereafter.

Based on the CRF01_AE tropism genotypic results, 15 concordant and 22 discordant predictions between each algorithm were selected arbitrarily for evaluation by the pPCR assay. The sequence alignment of these 37 samples and their coreceptor predictions by the pPCR assay, G2P, WebPSSM, and CR are shown in Fig. 1. Individual sensitivities and specificities of each genotypic algorithm against the ESTA or pPCR assay were calculated and are presented in Table 2a and 2b, respectively.

Discussion

To our knowledge, this is the first study focusing on the CRF01_AE tropism and the prevalence of coreceptor usage

Table 1. Coreceptor Prediction by the G2P and WebPSSM Algorithms and 11/25 and Net Charge Rules

<table>
<thead>
<tr>
<th>Genotypic algorithms</th>
<th>Subtype B (n=104)</th>
<th>Subtype CRF01_AE (n=87)</th>
<th>p-value^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R5 (%)</td>
<td>X4/DM (%)</td>
<td>R5 (%)</td>
</tr>
<tr>
<td>G2P (clonal, FPR 5.75%)</td>
<td>90 (86.5)</td>
<td>14 (13.5)</td>
<td>52 (60.0)</td>
</tr>
<tr>
<td>G2P (clonal, FPR 10%)</td>
<td>78 (75)</td>
<td>26 (25)</td>
<td>39 (44.8)</td>
</tr>
<tr>
<td>G2P (clinical, FPR 10%)</td>
<td>89 (85.6)</td>
<td>15 (14.4)</td>
<td>66 (75.9)</td>
</tr>
<tr>
<td>WebPSSM (subtype B X4R5 matrix)</td>
<td>88 (84.6)</td>
<td>16 (15.4)</td>
<td>47 (54.0)</td>
</tr>
<tr>
<td>11/25 and net charge rules</td>
<td>64 (61.5)</td>
<td>40 (38.5)</td>
<td>71 (81.6)</td>
</tr>
</tbody>
</table>

^a Chi-square test.

X4 includes all D/M and X4 predictions; FPR, false-positive rate.
among antiretroviral-naive patients with current genotypic and phenotypic assays. The prevalence of X4 or D/M in subtype B samples is around 10–20% in many validated global studies.14,16,37 Depending on the genotypic algorithms, a similar prevalence at 13.5–25% was observed in our locality.

However, the prevalence of X4 or D/M in CRF01_AE is about 39.1% in Hong Kong, which is slightly lower than other studies at around 50\%21,23,24. Indeed, the prevalence of X4 or D/M in CRF01_AE viruses is nearly 2-fold higher than subtype B.

In our study, over 50\% of CRF01_AE samples with D/M reported by ESTA had discordant genotypic predictions by G2P and WebPSSM. Genotypic predictions were based on population sequencing and considered all possible heterogeneous viral populations, yet not all of them were really present and able to infect and replicate. More importantly, the env variable loops 1 and 2 were proposed to affect HIV-1 tropism.38 Our pPCR assay results showed that using G2P or WebPSSM alone had a high rate of false X4 or D/M predictions for CRF01_AE samples. This implied that the prevalence of X4 or D/M among CRF01_AE viruses was not as high as reported.21,22,24,39 The false-positive prediction would be a concern in the future for patients who have fewer salvage therapeutic options.

| Table 2. Specificities and Sensitivities of the Genotypic Algorithms on CRF01_AE Tropism |

2A. True R5 and X4 tropism based on 12 Trofile results

<table>
<thead>
<tr>
<th>Geno2Pheno</th>
<th>(FPR = 5.75% (clonal))</th>
<th>(FPR = 10% (clonal))</th>
<th>(FPR = 10% (clinical))</th>
<th>WebPSSM</th>
<th>Combined 11/25 and net charge rules</th>
<th>Geno2Pheno (FPR = 10%, clonal) and WebPSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>71.4%</td>
<td>71.4%</td>
<td>100%</td>
<td>71.4%</td>
<td>100%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>80%</td>
<td>100%</td>
<td>60%</td>
<td>100.0%</td>
<td>80%</td>
<td>100%</td>
</tr>
</tbody>
</table>

2B. True R5 and X4 tropism based on 37 results from the optimized phenotypic assay

<table>
<thead>
<tr>
<th>Geno2Pheno</th>
<th>(FPR = 5.75% (clonal))</th>
<th>(FPR = 10% (clonal))</th>
<th>(FPR = 10% (clinical))</th>
<th>WebPSSM</th>
<th>Combined 11/25 and net charge rules</th>
<th>Geno2Pheno (FPR = 10%, clonal) and WebPSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>71.4%</td>
<td>60.7%</td>
<td>96.4%</td>
<td>78.6%</td>
<td>96.4%</td>
<td>89.3%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>77.8%</td>
<td>88.9%</td>
<td>77.8%</td>
<td>100%</td>
<td>33.3%</td>
<td>88.9%</td>
</tr>
</tbody>
</table>
The patients recruited for this study were all antiretroviral-naive and had baseline samples collected at the earliest time point. A recent study showed that X4 was present in transmission clusters regardless of subtypes and routes of infection. Therefore the evidence of having a high ratio of X4 transmission in CRF01_AE was promising. Some R5-tropic CRF01_AE isolates in other studies were shown to have a lower baseline susceptibility than subtype B viruses toward CCR5 antagonists. Thus, an investigation of CRF01_AE viral pathogenesis will be necessary in the future due to the high prevalence of X4 observed.

In conclusion, the prevalence of X4 in CRF01_AE antiretroviral-naive patients is significantly higher than that in subtype B patients in Hong Kong. In addition, an optimized pPCR phenotypic assay, validated with the commercial ESTA method, was used to evaluate the specificities and sensitivities of common genotypic coreceptor prediction algorithms on CRF01_AE variants. Our study proposed a better coreceptor prediction for CRF01_AE strains by combining G2P (FPR = 10%, Clonal) and WebPSSM (x4r5 subtype B matrix). An independent study with clinical and virological outcome data will be required to validate the proposed algorithm before implementation. The high prevalence of CXCR4 HIV-1 variants among antiretroviral-naive CRF01_AE patients suggests the need to evaluate their disease progression and pathogenesis in future studies.

Acknowledgments

The study was supported by the AIDS Trust Fund of Hong Kong Special Administrative Region Government (grant MSS-180R). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We would like to thank the Nursing Team of the Integrated Treatment Centre for their patient care and sample collection. The opinions and assertions contained herein are private views of the authors and do not necessarily reflect those of the Centre for Health Protection, Hong Kong Department of Health.

The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: 89.6 from Dr. Ronald Collman, LAI-1BRU from Drs. Jean-Marie Bechet and Luc Montagnier, MJ4 from Drs. ThumbiNdung ‘u, Boris Renjifo, and Max Essex, pYU2 from Drs. Beatrice Hahn and George M. Shaw, pNL4-3.Luc.R-E from Dr. Nathaniel Landau, pNL4-3 from Dr. Malcolm Martin, U87.CD4.CCR5 and U87.CD4.CXCR4 from Drs. Hong Kui Deng and Dan Litman, and AMD3100 and TAK-779 from the Division of AIDS, NIAID.

Presented in part at the 10th European Meeting on HIV and Hepatitis, Treatment Strategies and Antiviral Drug Resistance, Barcelona, March 2012.

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:

W.C. Yam
Department of Microbiology
Queen Mary Hospital
The University of Hong Kong
Hong Kong Special Administrative Region
China

E-mail: wcyam@hkucc.hku.hk