
Title A cell permeable NPE caged ADP-ribose for studying TRPM2

Author(s) Yu, P; WANG, Q; Zhang, LH; Lee, HC; Zhang, LR; Yue, J

Citation Plos One, 2012, v. 7 n. 12, p. e51028

Issued Date 2012

URL http://hdl.handle.net/10722/189351

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38031653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Cell Permeable NPE Caged ADP-Ribose for Studying
TRPM2
Peilin Yu1,2,3, Qian Wang1, Li-He Zhang2, Hon-Cheung Lee2, Liangren Zhang2, Jianbo Yue1*

1 Department of Physiology, University of Hong Kong, Hong Kong, China, 2 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences,

Peking University, Beijing, China, 3 Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, China

Abstract

Transient potential receptor melastatin-2 (TRPM2) is a non-selective Ca2+-permeable cation channel of the TRPM channel
subfamily and is mainly activated by intracellular adenosine diphosphate ribose (ADPR). Here we synthesized a 1-(2-
nitrophenyl)ethyl caged ADPR (NPE-ADPR) and found that uncaging of NPE-ADPR efficiently stimulated Ca2+, Mg2+, and
Zn2+ influx in a concentration-dependent manner in intact human Jurkat T-lymphocytes. The cation influx was inhibited by
inhibitors or knockdown of TRPM2. Likewise, uncaging of NPE-ADPR markedly induced cation entry in HEK 293 cells that
overexpress TRPM2. As expected, high temperature increased the ability of the photolyzed NPE-ADPR to induce cation
entry, whereas acidic pH inhibited. Moreover, the absence of extracellular Ca2+ significantly inhibited Mg2+ and Zn2+ influx
after uncaging NPE-ADPR. On the other hand, the absence of extracellular Na+ or Mg2+ had no effect on photolyzed NPE-
ADPR induced Ca2+ entry. Taken together, our results indicated that NPE-ADPR is a cell permeable ADPR analogue that is
useful for studying TRPM2-mediated cation entry in intact cells.
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Introduction

TRPM2 is a non-selective cation channel that is Ca2+

permeable. It has six transmembrane domains, and is best known

as a ‘chanzyme’ due to its function as both ion channel and

pyrophosphatase. The pyrophosphatase (Nudix-like) domain of

TRPM2 is located at its C-terminus, and a calmodulin binding

IQ-like motif is located at its N-terminus. The pore forming region

of TRPM2 sits between the 5th and 6th transmembrane domains

with the N- and C-termini lying in the cytoplasm. TRPM2 in some

tissues is expressed in multiple isoforms, yet the significance of

these isoforms remains to be determined [1–3]. Although TRPM2

is primarily located at the plasma membrane, it has also been

detected on lysosomes, possibly acting as a Ca2+ releasing channel

in the acid Ca2+ store [4].

TRPM2 mediated Ca2+ influx has been indicated in several

physiological and pathophysiological processes, including insulin

secretion, pro-inflammatory cytokine production, permeability of

endothelium, and dendritic cell maturation and chemotaxis [4–

11]. Since TRPM2 can be activated by oxidative stress, it has

recently emerged as a potential therapeutic target in fighting

oxidative stress-related diseases, including diabetes, inflammation,

myocardial infarction, and neurodegenerative diseases [12–16]. In

addition, genetic variants of the TRPM2 gene have been

associated with Western Pacific amyotrophic lateral sclerosis,

parkinsonism-dementia, and bipolar disorders [17–20].

The most potent and primary intracellular activator for

TRPM2 is adenosine diphosphate ribose (ADPR) via its Nudix-

like domain [21]. Intracellular ADPR can be generated from the

hydrolysis of NAD+ by glycohydrolases, e.g., the mitochondrial

NADase and CD38, in response to a wide variety of physiological

stimuli, including oxidative and nitrosative stress, beta amyloid,

and tumor necrosis factor [11,22–24]. ADPR can also be

generated in the nucleus by the sequential action of poly-ADPR

polymerases and poly-ADPR glycohydrolases that are triggered by

DNA damage [25,26]. On the other hand, adenosine monophos-

phate (AMP), generated from hydrolysis of ADPR by TRPM2’s

pyrophosphatase activities, is a potent inhibitor of TRPM2,

constituting a negative feedback loop to shut down the activation

of TRPM2 by ADPR [27]. In addition, cell stress can activate Sir2

deacetylases to produce 29-O-acetyl-ADPR, which can directly

gate TRPM2 for Ca2+ influx [28,29]. NAADP or cADPR, the

other two products of CD38, can also either directly or in synergy

with ADPR activate TRPM2 [30]. The gating of TRPM2 is

influenced by [Ca2+]i, temperature, and pH as well [8,31–35].

Given the importance of TRPM2 in diverse cellular processes

and ADPR as its main activator, it is surprising that few ADPR

analogues have been synthesized. Thus far, the studies on TRPM2

were mainly done by patch clamp recording with dialyzed ADPR.

Here we synthesized a 1-(2-nitrophenyl)ethyl caged ADPR (NPE-

ADPR) and found that uncaging of NPE-ADPR induced multiple

cation entry in intact human Jurkat and HEK293 cells via TRPM2.

Results

Synthesis and purification of NPE-ADPR
As the main intracellular activator of TRPM2, ADPR is

hydrophilic and cannot cross the plasma membrane. Thus far, the
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studies on TRPM2 were mainly performed by patch clamp

recording in single cells. Therefore, cell-permeant ADPR

analogues should be valuable research tools in dissecting the

mechanism of TRPM2-induced cation entry. We reasoned that

adding a caged group to one of the phosphates on ADPR could

increase its membrane permeability and enable it to accumulate

inside cells. Photolysis by UV can then release the bioactive ADPR

to activate TRPM2 for cation entry, thereby providing more

precise control in studying the TRPM2/ADPR signaling in

multiple cells simultaneously. We screened a series of caged

groups, and found that only the 1-(2-nitrophenyl)ethyl (NPE)

caged group can be successfully linked to one of the phosphates of

ADPR (Figure 1A). Analyses by HPLC showed that the reaction

mixture contained four peaks (Figure 1B). By mass spectrometry

and NMR analyses, we found that peak A contained the

predicated NPE caged ADPR isomers with one NPE coupled to

one of the phosphates, whereas peak D contained an unexpected

NPE-ADPR product with five NPE groups reacted with all the

hydroxyl groups in the riboses. Peaks B and C did not contain any

ADPR related products.

Purified peak A and peak D were then subjected to photolysis by

UV illumination, and subsequently analyzed by HPLC. After UV

activation, only peak A was efficiently uncaged to generate free

ADPR (Figure 2A), whereas very little of peak D was photolyzed to

free ADPR (Figure 2B), indicating that the bond between NPE

and the hydroxyl groups of the riboses is stable.

Figure 1. Synthesis and purification of 1-(2-nitrophenyl)ethyl (NPE)-ADPR. (A) Synthesis route of NPE-ADPR. (B) HPLC purification of NPE-
ADPR.
doi:10.1371/journal.pone.0051028.g001
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Figure 2. Characterization of NPE-ADPR. (A) and (B) HPLC analysis of Peak A (A) and peak D (B) before and after UV photolysis. (C) and (D) The
concentration response curve of Ca2+ increase in human Jurkat cells induced by peak A (C) and peak D (D) after UV photolysis. Fluo-4 loaded cells
were incubated in regular HBSS containing extracellular Ca2+ during the experiment. Data quantifications of [Ca2+]i peak induced by drug treatment
in (C) and (D) were expressed as mean 6 S.D., n = 30–40 cells. The * symbols indicate the results of t Test analysis, p,0.05, compared with cells
treated with 1 mM NPR-ADPR. In (C) and (D), cells were all continuously incubated with NPE-ADPR, and UV photolysis started at the beginning of the
measurement and was repeated every 7 second throughout the experiments.
doi:10.1371/journal.pone.0051028.g002
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Uncaged NPE-ADPR induction of Ca2+ influx
Next, we examined whether peak A or peak D could induce

intracellular Ca2+ increases in human Jurkat T cells after UV

illumination. Fluo-4 loaded cells were incubated with NPE-ADPR for

5 min and then subjected to Ca2+ measurement without removing

the compound in the medium. As shown in Figure 2C, peak A

induced cytosolic Ca2+ ([Ca2+]i)increases in Jurkat cells in a

concentration dependent manner after UV photolysis. On the other

hand, peak D only marginally induced [Ca2+]i changes independent

of the concentration after UV activation (Figure 2D), again

confirming that the bond between NPE and the hydroxyl groups of

the riboses is resistant to UV photolysis. In addition, peak A did not

evoke any Ca2+ changes in Jurkat cells without UV uncaging, and

UV illumination in the absence of NPE-ADPR also failed to induce

Ca2+ (Figure S1). Therefore, we only characterized the properties of

peak A, named as NPE-ADPR, in the later experiments.

We traced the sources of the [Ca2+]i increases induced by

uncaging NPE-ADPR. Since external ADPR induced [Ca2+]i

increases in Jurkat cells (Figure S2) and other cell types [36], we

pretreated Jurkat cells with suramin [37], a potent P2Y receptor

blocker, to eliminate the effects of extracellular ADPR on [Ca2+]i.

Indeed, suramin pretreatment markedly inhibited the photolyzed

NPE-ADPR from inducing [Ca2+]i increases, in which the pattern

of Ca2+ changes resembled that observed in the absence of

extracellular NPE-ADPR (Figure 3A). Furthermore, removal of

both extracellular Ca2+ and NPE-ADPR abolished the photolyzed

NPE-ADPR from inducing [Ca2+]i increases. Similarly, the

combination of suramin pretreatment and removal of extracellular

Ca2+ prevented the photolyzed NPE-ADPR from inducing [Ca2+]i

increases as well (Figure 3A). These data indicated that NPE-

ADPR can enter intact Jurkat cells and trigger Ca2+ influx after

UV photolysis. In the later experiments, we mainly studied the

effects of intracellular NPE-ADPR by removing the extracellular

compound through cell washing after loading.

After removal of extracellular NPE-ADPR, uncaged NPE-ADPR

still induced [Ca2+]i increases in a concentration dependent manner

in Jurkat cells, albeit at lesser extent than without washing

(Figure 3B). Moreover, pretreatment of cells with the TRPM2

antagonist, 8-Br-ADPR [38], or knockdown of TRPM2 [39] in

Jurkat cells significantly inhibited the photolyzed NPE-ADPR-

induced [Ca2+]i increases (Figure 3C). Similarly, in the presence of

suramin, pretreatment with 8-Br-ADPR or after TRPM2 knock-

down, the photolyzed NPE-ADPR induced [Ca2+]i increases in

Jurkat cells was abolished (Figure S3). Likewise, uncaging of NPE-

ADPR markedly induced Ca2+ entry in HEK 293 cells that

overexpress TRPM2 (Figure S4) as compared to that in wildtype

cells (Figure 3D). Taken together, these data indicate that uncaging

of intracellular NPE-ADPR induces Ca2+ influx via TRPM2.

Uncaged NPE-ADPR induction of Mg2+ influx
TRPM2 is a non-selective cation channel, and it has been

shown previously that ADPR can stimulate Mg2+ influx via

TRPM2 [40]. We therefore examined the ability of photolyzed

NPE-ADPR to induce Mg2+ entry in Jurkat cells. Mag-Fura-2 AM

was used to measure intracellular Mg2+ concentrations. As shown

in Figure 4A, uncaging of NPE-ADPR induced intracellular Mg2+

increases in a concentration dependent manner in Jurkat cells. In

addition, NPE-ADPR did not evoke any Mg2+ changes in Jurkat

cells without UV uncaging, and UV illumination in the absence of

NPE-ADPR also failed to induce Mg2+ (Figure S5). Moreover,

removal of extracellular Mg2+, or treatment with 8-Br-ADPR, or

knockdown of TRPM2 abolished the photolyzed NPE-ADPR-

induced Mg2+ increases (Figure 4B). Likewise, uncaging of NPE-

ADPR induced Mg2+ entry only in HEK 293 cells that

overexpress TRPM2 but not in wildtype cells (Figure 4C).

Notably, Mag-Fura-2 is insensitive to Ca2+ change, evidenced by

the fact that anti-CD3 antibody, OKT3, markedly induced Ca2+

increases in Fura-2 loaded Jurkat cells, whereas it failed to induce

any fluorescence changes on Maga-Fura-2 loaded cells (Figure S6).

Thus, these data demonstrated that uncaging of NPE-ADPR

induces Mg2+ entry via TRPM2.

Uncaged NPE-ADPR induction of Zn2+ influx
It has been previously shown that extracellular Zn2+ can inhibit

ADPR-induced cation entry via TRPM2 [41]. However, we found

that high concentrations of Zn2+ were toxic to both Jurkat and

HEK 293 cells (data not shown). We therefore examined the

effects of non-toxic concentrations of extracellular Zn2+ on

TRPM2 in Jurkat cells. Surprisingly, extracellular Zn2+ at low

concentrations had little effect on the ability of photolyzed NPE-

ADPR to induce intracellular Ca2+ increases in Jurkat cells

(Figures 5A).

We then examined whether photolyzed NPE-ADPR can

directly induce Zn2+ influx via TRPM2 in Jurkat cells. The

fluorescent intensity of FluoZin-3 loaded cells was used to indicate

intracellular Zn2+ concentration. Interestingly, photolyzed NPE-

ADPR induced intracellular Zn2+ increases in a dose dependent

manner (Figure 5B), which was abolished by removal of

extracellular Zn2+, pretreatment with 8-Br-ADPR, or knockdown

of TRPM2 (Figure 5C). Not surprising, NPE-ADPR did not evoke

any Zn2+ changes in Jurkat cells without UV uncaging, and UV

illumination in the absence of NPE-ADPR also failed to induce

Zn2+ (Figure S7). Consistently, uncaging of NPE-ADPR induced

Zn2+ entry only in HEK 293 cells that overexpress TRPM2 but

not in wildtype cells (Figure 5D). In summary, our data supported

that uncaging of NPE-ADPR induces Zn2+ entry via TRPM2 as

well.

The effects of temperature and pH on NPE-ADPR induced
cation entry

It has been previously reported that TRPM2 gating is

modulated by pH and temperature [8,31–35]. Indeed, we found

that the abilities of photolyzed NPE-ADPR to induce the increases

of intracellular Ca2+ (Figure 6A), Mg2+ (Figure 6B), or Zn2+

Figure 3. Characterization of the NPE-ADPR-induced Ca2+ increase. (A) The photolyzed NPE-ADPR (30 mM)-induced Ca2+ increases in Fluo-4
loaded human Jurkat cells were inhibited by suramin or removal of extracellular Ca2+ (washout), and was completely abolished by combination of
removal of extracellular Ca2+ and extracellular NPE-ADPR or by combination of removal of extracellular Ca2+ and suramin pretreatment. The * symbols
indicate the results of t Test analysis, p,0.05, compared with cells without pretreatment. (B) Uncaging of intracellular NPE-ADPR triggered Ca2+

increases in a concentration dependent manner in Fluo-4 loaded human Jurkat cells in regular HBSS containing extracellular Ca2+. The * symbols
indicate the results of t Test analysis, p,0.05, compared with cells loaded with buffer only. (C) Pretreatment of Jurkat cells with 8-Br-ADPR (100 mM)
or knockdown of TRPM2 significantly inhibited the photolyzed NPE-ADPR (30 mM) induced Ca2+ influx in Fluo-4 loaded Jurkat cells. The * symbols
indicate the results of t Test analysis, p,0.05, compared with cells without pretreatment. (D) Uncaging of NPE-ADPR (30 mM) induced Ca2+ influx in
Fluo-4 loaded HEK293 cells that transiently express TRPM2-CFP. The * symbols indicate the results of t Test analysis, p,0.05. Data quantifications of
[Ca2+]i peak induced by drug treatment in (A), (B), (C), and (D) were expressed as mean 6 S.E., n = 30–40 cells. In (B), (C), and (D), after Fluo-4 loaded
cells were incubated with NPE-ADPR, extracellular NPE-ADPR was then removed before UV photolysis to start Ca2+ measurement.
doi:10.1371/journal.pone.0051028.g003
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Figure 4. Characterization of the NPE-ADPR induced Mg2+ influx. (A) Uncaging of intracellular NPE-ADPR (30 mM) induced intracellular Mg2+

increases in a dose dependent manner in Mag-Fura-2 loaded human Jurkat cells in regular HBSS. The * symbols indicate the results of t Test analysis,
p,0.05, compared with cells loaded with buffer only. (B) Pretreatment of Jurkat cells with 8-Br-ADPR (100 mM), or knockdown of TRPM2, or removal
of extracellular Mg2+ markedly inhibited uncaged NPE-ADPR (300 mM)-induced Mg2+ influx in Mag-Fura-2 loaded human Jurkat cells. The * symbols
indicate the results of t Test analysis, p,0.05, compared with cells without pretreatment. (C) Uncaging of NPE-ADPR (300 mM) induced Mg2+ influx in
Mag-Fura-2 loaded HEK293 cells that transiently express TRPM2-CFP. Data quantifications of [Mg2+]i peak induced by drug treatment in (A), (B), and
(C) were expressed as mean 6 S.E., n = 30–40 cells. In (A), (B), and (C), after Mag-Fura-2 loaded cells were incubated with NPE-ADPR, extracellular NPE-
ADPR was then removed before UV photolysis to start the Mg2+ measurement.
doi:10.1371/journal.pone.0051028.g004

Cell Permeable NPE Caged ADPR

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51028



Cell Permeable NPE Caged ADPR

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51028



(Figure 6C) were much higher at 37uC than those at 25uC.

Likewise, acidic pH (,7) markedly inhibited the photolyzed NPE-

APDR from inducing the increases of intracellular Ca2+

(Figure 7A), Mg2+ (Figure 7B), and Zn2+ (Figure 7C) as compared

to neutral (,7) or alkaline (.8) pH in Jurkat cells. It is noteworthy

that the photolyzed NPE-ADPR induced Ca2+ increase was higher

in alkaline pH compared to that in neutral pH, which is most likely

due to the fact that alkaline pH additionally inhibits SERCA to

induce an intracellular Ca2+ rise [42]. Nevertheless, these data

clearly indicated that temperature and pH modulate the gating of

TRPM2 by ADPR.

The effects of extracellular cations on NPE-ADPR induced
cation entry

Although ADPR is the primary activator for TRPM2 gating,

intracellular Ca2+ was also implicated as an important modulator

for TRPM2. We, therefore, examined the effects of varied

extracellular cation compositions on photolyzed NPE-ADPR

induced cation entry (Table 1). As shown in Figure 8A, the

absence of extracellular Na+, Mg2+, or Zn2+ had no effect on

photolyzed NPE-ADPR induced Ca2+ entry. On the other hand,

the absence of extracellular Ca2+ not only abolished the induced

Ca2+ influx (Figure 3A), but also markedly inhibited the induced

Zn2+ (Figure 8B) or Mg2+ (Figure 8C) influx. The absence of

extracellular Na+ or Mg2+ had no effect on the induced Zn2+ influx

(Figure 8B), and the absence of extracellular Na+ also had no

effects on induced Mg2+ influx (Figure 8C). In summary, these

data indicated that extracellular Ca2+ is important for ADPR to

activate TRPM2 for cation entry, possible by changing intracel-

lular Ca2+ concentration via influx.

Discussion

Here we reported the synthesis and characterization of a NPE-

caged ADPR. We found that the compound is permeable to Jurkat

cells and HEK293 cells. Uncaging of intracellular NPE-ADPR

induced the entry of multiple cations, including Ca2+, Mg2+, and

Zn2+, via TRPM2. Thus NPE-ADPR is a useful cell permeant

ADPR analogue and can be used to study the mechanisms of

TRPM2-mediated cation entry.

NPE-ADPR is biologically inert before photolysis, suggesting

that the phosphate groups are important for TRPM2 gating.

Interestingly, the ester linkage between NPE and the phosphate is

prone to UV photolysis, whereas the ether linkage between NPE

and the hydroxyl group of ribose is relatively stable and resistant to

UV photolysis (Figures 2A and 2B). These data indicated that ester

bond has higher hydrolytic ability than ether bond under

physiological condition. We speculate that the NPE group nearing

the acidic phosphate could be easily protonated, thereby tending

to be photolyzed more efficiently [43].

We showed in this study that attaching a cage group to the

phosphate of ADPR can greatly increase its cell permeability

(Figure S8), presumably because of the reduction of the charge of

the phosphate as well as the increased lipophilicity contributed by

NPE group. To minimize the leakage of the loaded NP-ADPR

after washing, the photolysis was performed promptly after

loading. Nevertheless, we observed a small Ca2+ increases in

wildtype HEK293 cells lacking TRPM2 after photolysis

(Figure 3E), which might be due to leakage of the probe and its

activation of the P2Y1 receptor after photolysis. Indeed, treating

cells with a P2Y1 inhibitor, suramin, can almost completely block

the effects of extracellular uncaged NPE-ADPR on P2Y1

(Figures 3A and S3).

Interestingly, except Ca2+, neither Mg2+ nor Na+ had no

significant effects on TRPM2 gating by ADPR. It has been shown

previously that endogenous Ca2+ activates TRPM2 via its N-

terminal calmodulin binding IQ-like motif possibly through

calmodulin interaction [44,45]. Thus, the effect of absence of

extracellular Ca2+ on TRPM2 gating is likely due to the decrease

intracellular Ca2+ concentration. Yet, it remains to be determined

whether extracellular Ca2+ regulates some residues in the outer

pore of TRPM2 for its activation.

Our results, in agreement with a patch clamp study [40], clearly

demonstrated that ADPR can activate TRPM2 for Mg2+ influx.

Mg2+ is one of the most abundant intracellular divalent cations

and has been proposed to be able to serve as an intracellular

second messenger, in addition to its well-known role of being a

cofactor to ATP and a variety of enzymes [46]. Since a variety of

stimuli can induce the generation of endogenous ADPR to incite

intracellular Ca2+ increases via TRPM2 [11,22–24,47], these

stimuli may well activate TRPM2 to cause not only Ca2+ influx

but Mg2+ influx as well. In addition, TRPM2 mutants have been

associated with several neurological diseases. These mutants led to

decreases in Ca2+ influx [17–20]. In this regard, the role of Mg2+

in the neurological diseases associated with mutations in TRPM2

may well be worth re-examining [17–20]. The ease to monitor

Mg2+ influx using NPE-ADPR as described in this study should

facilitate this kind of investigations.

Likewise, the tool developed in this study should benefit

investigations of the role of Zn2+ as an important regulator

implicated in diverse cellular processes. Indeed, we show that

uncaged NPE-ADPR can induce Zn2+ influx via TRPM2 in the

presence of low concentration of extracellular Zn2+. Intracellular-

ly, Zn2+ not only serves as an allosteric ion for transcription factors

and metabolic enzymes, but also can modulate a variety of ion

channels in a concentration dependent manner [48–50]. For

example, TRPM3 and TRPM7 are both Zn2+ permeable [51,52],

while Zn2+ reversibly inhibits TRPM1 [53]. Similarly, high

concentration of extracellular Zn2+ inhibited the ability of ADPR

to activate TPRM2 for cation entry [41]. Here we showed that the

absence or a low concentration of extracellular Zn2+ had no

inhibitory or enhancive effects on TPRM2 gating. Future work is

required to assess whether extracellular stimuli could change

intracellular Zn2+ concentration via ADPR/TRPM2, and to

determine the residues responsible for Zn2+ passage in TRPM2.

Figure 5. Characterization of the NPE-ADPR induced Zn2+ influx. (A) Pretreatment of Jurkat cells with Zn2+ did not affect the ability of the
photolyzed NPE-ADPR (30 mM) to induce Ca2+ influx in Fluo-4 loaded human Jurkat cells. (B) Uncaging of intracellular NPE-ADPR induced intracellular
Zn2+ increases in a concentration dependent manner in FluoZin-3 loaded human Jurkat cells. The * symbols indicate the results of t Test analysis,
p,0.05, compared with cells loaded with buffer only. (C) Pretreatment of FluoZin-3 loaded Jurkat cells with 8-Br-ADPR (100 mM), or knockdown of
TRPM2, or removal of extracellular Zn2+ markedly inhibited uncaged NPE-ADPR (100 mM)-induced Zn2+ influx in FluoZin-3 loaded human Jurkat cells.
The * symbols indicate the results of t Test analysis, p,0.05, compared with cells without pretreatment. (D) Uncaging of NPE-ADPR induced Zn2+

influx in FluoZin-3 loaded HEK293 cells that transiently express TRPM2-CFP. Data quantifications of [Zn2+]i peak induced by drug treatment in (B), (C),
and (D) were expressed as mean 6 S.E., n = 30–40 cells. In (A), (B), (C), and (D), after Fluo-4 or FluoZin-3 loaded cells were incubated with NPE-ADPR,
extracellular NPE-ADPR was then removed before UV photolysis to start Ca2+ or Zn2+ measurement.
doi:10.1371/journal.pone.0051028.g005
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Figure 6. The effect of temperature on cation entry in Jurkat cells after uncaging of NPE-ADPR. (A), (B), and (C) The photolyzed NPE-
ADPR (30 mM)-induced increases of intracellular Ca2+ (A), Mg2+ (B), and Zn2+ (C) were enhanced in high temperature in human Jurkat cells in regular
HBSS. In (A), (B), and (C), after dye loaded cells were incubated with NPE-ADPR, extracellular NPE-ADPR was then removed before UV photolysis to
start measurement. Data quantifications of peak induced by drug treatment in (A), (B), and (C) were expressed as mean 6 S.E., n = 30–40 cells. The *
symbols indicate the results of t Test analysis, p,0.05.
doi:10.1371/journal.pone.0051028.g006
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Figure 7. The effect of pH on cation entry in Jurkat cells after uncaging of NPE-ADPR. (A), (B), and (C) The photolyzed NPE-ADPR (30 mM)-
induced increases of intracellular Ca2+ (A), Mg2+ (B), and Zn2+ (C) were inhibited by acidic pH in human Jurkat cells in regular HBSS. In (A), (B), and (C),
after dye loaded cells were incubated with NPE-ADPR, extracellular NPE-ADPR was then removed before UV photolysis to start measurement. Data
quantifications of peak induced by drug treatment in (A), (B), and (C) were expressed as mean 6 S.E., n = 30–40 cells. The * symbols indicate the
results of t Test analysis, p,0.05, compared with cells incubated in pH 5.0.
doi:10.1371/journal.pone.0051028.g007
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Materials and Methods

Chemistry
All of the chemical reagents were purchased from Sigma. The

caged group 1-(2-nitrophenyl) diazoethane (compound 3) was first

synthesized as described previously [54]. Next ADPR (compound

4, 50 mg, 0.089 mmol) dissolved in 3 mL ice-cold water was

mixed with 3 mL 1-(2-nitrophenyl) diazoethane (compound 3)

dissolved in diethyl ether. The resulting biphasic mixture was

vigorously stirred at 4uC in darkness for 3 h, and subsequently the

ether layer was drawn off. 3 mL diazoethane reagent treatment

procedure was then repeated three more times. Finally, purifica-

tion of the water layer was performed by HPLC on a C18 reversed

phase column, eluting with a linear gradient of 0–30% CH3CN in

water within 30 min. Four peaks were collected, and peak A gave

rise to the light yellow solid compound 5 (15.2 mg, 24%).

According to the 1H NMR spectrum, this caged structure

represented a mixture of more than one mono-caged isomers

(Figure 1A). They were all efficiently photolyzed into ADPR under

UV flash as detected by HPLC analysis (Figure 2A). 1 H NMR

(400 MHz, DMSO-d6) d8.42, 8.17 (s, each 1 H), 8.0-7.0 (m, 4 H),

5.92 (d, 1 H, J = 4 Hz), 4.93 (m, 1 H), 4.56 (m, 1 H), 4.23-4.18 (m,

2 H), 4.07-3.97 (m, 4 H), 1.24 (d, 3 H, J = 8 Hz). 31P NMR

(100 MHz, DMSO-d6) d-1.22, -2.04 ppm (Figures S1A and 1B).

High resolution mass spectrometry (electrospray ionization,

negative) for C23H30N6O16P2, calculated 707.1194 [M-1]2, found

707.1120.

In addition, peak D was collected and characterized as a caged

structure containing five NPE groups (Figure 1A). 1 H NMR

(400 MHz, DMSO-d6) d8.40, 8.16 (s, each 1 H), 7.88-7.48 (m, 20

H), 5.92 (d, 1 H, J = 4 Hz), 5.11 (q, 5 H, J = 8 Hz), 4.93 (m, 1 H),

4.56 (m, 1 H), 4.27-4.23 (m, 2 H), 4.06-3.98 (m, 4 H), 1.37 (d, 15

H, J = 8 Hz). 31P NMR (100 MHz, DMSO-d6) d-11.03, -

11.25 ppm.

8-Br-ADPR was synthesized and purified as described previ-

ously [38].

Cell Culture
The human Jurkat T-lymphocytes and human embryonic

kidney (HEK) 293 cells were both obtained from ATCC (Manassas,

VA). Jurkat cells were normally cultured in RPMI medium 1640

(Invitrogen) supplemented with 10% fetal bovine serum (FBS), 100

units/ml penicillin/streptomycin, and 2 mM Hepes buffer

(pH 7.4) at 5% CO2 and 37uC. HEK293 cells were cultured in

DMEM medium (Invitrogen) supplemented with 10% FBS and

100 units/ml penicillin/streptomycin at 5% CO2 and 37uC.

Transient transfection
HEK293 cells were plated at a density of 36105 cells/well in 6-

well plates. On the next day, 2 hours before transfection, the

medium was changed to an antibiotic-free medium. The pCI-

CFP-hTRPM2 or empty vector pCI-CFP was then transfected

into cells by LipofectamineTM 2000 (Invitrogen). 24 hours after

transfection, the medium was changed to regular medium, and

TRPM2-CFP or CFP positive cells were finally used for Ca2+,

Zn2+, or Mg2+ measurement after another 24 hours.

Imaging measurements
Imaging measurements were performed as described previously

[42,55,56]. Jurkat cells (26105 cells/well) or HEK293 cells (66104

cells/well) were plated in 24-well plates coated with 100 or 10 mg/

ml poly-L-lysine (Sigma, P6282) respectively and both were

incubated in serum free medium at 37uC overnight for adherence.

The adherent cells were incubated with 2 mM Fluo-4 AM

(Invitrogen, F14201), or FluoZin-3 AM (Invitrogen, F24195), or

Mag-Fura-2 (Invitrogen, M1292) in Hanks’ balanced salt solution

(HBSS) in darkness at 37uC. The cells were then washed with HBSS

Table 1. Composition of different test solutions (in mM).

Solutions (A–L) CaCl2 MgCl2 MgSO4 KCl KH2PO4 NaHCO3 NaCl Na2HPO4 ZnSO4 NMDG-Cl1 D-Glucose

A.Standard HBSS2 1.26 0.493 0.407 5.33 0.441 4.17 137.93 0.338 0 0 5.56

B. Ca2+ free HBSS3 0 0 0 5.33 0.441 4.17 137.93 0.338 0 0 5.56

C. Mg2+ buffer4 1.26 0.493 0.407 5.33 0.441 4.17 137.93 0.338 0 0 5.56

D. Mg2+ free buffer5 2.16 0 0 5.33 0.441 4.17 137.93 0.338 0 0 5.56

E. Zn2+ buffer6 1.26 0.493 0.407 5.33 0.441 4.17 137.93 0.338 0.03 0 5.56

F. Zn2+ free buffer7 1.26 0.493 0.407 5.33 0.441 4.17 137.93 0.338 0 0 5.56

G. Ca2+ free buffer8 0 0.493 0.407 5.33 0.441 4.17 137.93 0.338 0 0 5.56

H. Ca2+ free buffer9 0 0 0 5.33 0.441 4.17 137.93 0.338 0.03 0 5.56

I. Mg2+ free buffer10 2.16 0 0 5.33 0.441 4.17 137.93 0.338 0 0 5.56

J. Mg2+ free buffer11 2.16 0 0 5.33 0.441 4.17 137.93 0.338 0.03 0 5.56

K. Na+ free buffer12 1.26 0.493 0.407 5.33 0.441 0 0 0 0 142.7 5.56

L. Na+ free buffer13 1.26 0.493 0.407 5.33 0.441 0 0 0 0.03 142.7 5.56

1: N-methyl-D-glucamine chloride;
2: Invitrogen, 14025;
3: Invitrogen, 14175;
4,5: Mg2+ (+/2) buffer for magnesium measurement;
6,7: Zn2+ (+/2) buffer for zinc measurement;
8: Ca2+ (2) buffer for magnesium measurement;
9: Ca2+ (2) buffer for zinc measurement;
10: Mg2+ (2) buffer for calcium measurement;
11: Mg2+ (2) buffer for zinc measurement;
12: Na+ (2) buffer for calcium and magnesium measurement;
13: Na+ (2) buffer for zinc measurement.
doi:10.1371/journal.pone.0051028.t001
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Figure 8. The effects of extracellular cations on NPE-ADPR induced cation entry in Jurkat cells. (A) The effects of varied cation
compositions on uncaged NPE-ADPR induced Ca2+ influx in Fluo-4 loaded human Jurkat cells. (B) The effects of varied cation compositions on
uncaged NPE-ADPR induced Zn2+ influx in FluoZin-3 loaded human Jurkat cells. (C) The effects of varied cation compositions on uncaged NPE-ADPR
induced Mg2+ influx in Mag-Fura-2 loaded human Jurkat cells. In (A), (B), and (C), extracellular NPE-ADPR was removed before UV photolysis to start
Ca2+, Zn2+, or Mg2+ measurement. Data quantifications of peak induced by drug treatment in (A), (B), and (C) were expressed as mean 6 S.E., n = 30–
40 cells. The * symbols indicate the results of t Test analysis, p,0.05.
doi:10.1371/journal.pone.0051028.g008
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twice and incubated in 200 mL of different test solutions (A–L,

Table 1). Thereafter, the cells were put on the stage of an Olympus

inverted epifluorescence microscope and incubated with or without

caged ADPR in the presence or absence suramin (# 574625,

CalBiochem) for 60 min followed by UV (370 nm) flash for 1 s to

photolyze the caged structure, which was repeated every 7 s during

the measurement of fluorescence intensity at 480 nm for Fluo-4 and

FluoZin-3 using a 206objective. Images were collected by a CCD

camera every 7 s and analyzed by the cell R imaging software. For

Mag-Fura-2 measurements, fluorescence was measured using the

same imaging system, operating in ratio mode with emission set at

510 nm and alternating excitation at 340 and 380 nm every 4 s. For

the measurements under different temperatures, an incubation

system (Olympus, MIU-IBC) was applied.

Data Analysis
In each measurement, intracellular concentration of calcium,

zinc, or magnesium was calculated using the general formula,

[Ca2+]i = Kd(F-Fmin)/(Fmax-F) (Kd = 345 nM), [Zn2+]i = Kd(F-Fmin)/

(Fmax-F) (Kd = 15 nM), or [Mg2+]i = Kd(R-Rmin)/(Rmax-R)

(Kd = 1.45 mM), respectively. Kd is the dissociation constant for

Ca2+ or Mg2+ or Zn2+ binding to the indicator, F is the

fluorescence intensity with Fluo-4 or FluoZin-3, and R is the

ratio between emission at 340 and 380 nm with Fura-2. For Fluo-

4, Fmax was determined by exposing cells to 10 mM Ca2+ and

5 mM ionomycin, and Fmin was determined by the addition of

4 mM EGTA and 5 mM ionomycin to cells. For FluoZin-3, Fmax

was determined by exposing cells to 1 mM Zn2+ and 20 mM

pyrithion, and Fmin was determined by the addition of 50 mM

TPEN (N, N, N9, N9-tetra- (2-picolyl) ethylenediamine) and

20 mM pyrithion to cells. For Mag-Fura-2, Rmax was determined

by exposing cells to 30 mM Mg2+ and 5 mM ionomycin, and Rmin

was determined by the addition of 10 mM EGTA and 5 mM

ionomycin to cells. Significant differences of peak ion level

between groups were determined by the Student’s t test, in which

* p,0.05 was validated to be significant.

Supporting Information

Figure S1 NPE-ADPR (30 mM) did not evoke any Ca2+
changes in Jurkat cells without UV uncaging, and UV illumination

in the absence of NPE-ADPR also failed to induce Ca2+.

(PDF)

Figure S2 Direct application of ADPR to the medium induced

cytosolic Ca2+ increase in Fluo-4 loaded human Jurkat cells

incubated in the regular HBSS (purple line), and uncaging of

NPE-ADPR induced cytosolic Ca2+ increase in Fluo-4 loaded

Jurkat cells in the absence of external Ca2+ (orange line).

(PDF)

Figure S3 Combination of suramin with 8-Br-ADPR or

TRPM2 knockdown completely blocked the photolyzed NPE-

ADPR (30 mM) induced [Ca2+]i increases in Jurkat cells. The

Fluo-4 loaded Jurkat cells in the regular HBSS were continuously

incubated with NPE-ADPR throughout the experiments.

(PDF)

Figure S4 The DIC and fluorescence images of HEK293 cells

that transiently express TRPM2-CFP.

(PDF)

Figure S5 NPE-ADPR (300 mM) did not evoke any Mg2+

changes in Jurkat cells without UV uncaging, and UV illumination

in the absence of NPE-ADPR also failed to induce Mg2+.

(PDF)

Figure S6 The anti-CD3 antibody, OKT3 (2 mg/ml), markedly

induced Ca2+ increases in Fura-2 loaded Jurkat cells, whereas it

failed to induce any fluorescence changes on Maga-Fura-2 loaded

cells.

(PDF)

Figure S7 NPE-ADPR (100 mM) did not evoke any Zn2+

changes in Jurkat cells without UV uncaging, and UV illumination

in the absence of NPE-ADPR also failed to induce Zn2+.

(PDF)

Figure S8 The Jurkat cells were incubated with NPE-ADPR or

ADPR in regular HBSS for 5 min. The concentrations of NEP-

ADPR or ADPR in HBSS before and after incubation were

measured by UV absorbance (265 nM) and subsequently

calibrated against respective standard concentration curves. Data

were expressed as mean 6 S.D. from three independent

experiments. The * symbols indicate the results of t Test analysis,

p,0.05.

(PDF)
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