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Semi-Global Leader-Following Consensus of Linear
Multi-Agent Systems With Input Saturation via Low

Gain Feedback
Housheng Su, Michael Z. Q. Chen, Member, IEEE, James Lam, Fellow, IEEE, and Zongli Lin, Fellow, IEEE

Abstract—This paper investigates the problem of leader-fol-
lowing consensus of a linear multi-agent system on a switching
network. The input of each agent is subject to saturation. Low
gain feedback based distributed consensus protocols are devel-
oped. It is established that, under the assumptions that each agent
is asymptotically null controllable with bounded controls and
that the network is connected or jointly connected, semi-global
leader-following consensus of the multi-agent system can be
achieved. Numerical examples are presented to illustrate this
result.
Index Terms—Consensus, input saturation, leader-following,

low gain feedback.

I. INTRODUCTION

I N RECENT years, the problem of consensus of multi-agent
systems has received increasing interest in different fields

including biology, physics, computer science, and control engi-
neering (see, for example, [1] and the references therein). In-
deed, the spirit of consensus protocol is inspired by the pio-
neeringmodels of Reynolds [2] and Vicsek [3]. Other topics that
are highly relevant to consensus are synchronization [4]–[14],
swarming [15], [16], flocking [17]–[20] and rendezvous [21].
Consensus has been studied for many different agent dy-

namics including single-integrator kinematics [22]–[25],
double-integrator dynamics [26]–[29], high-order-integrator
dynamics [30], linear dynamics [31]–[38], and nonlinear dy-
namics [39]–[41]. The agents described by linear dynamics
[31]–[38] can be regarded as a generalization of agents with
single-integrator kinematics, double-integrator dynamics and
high-order-integrator dynamics. However, only a few works
on multi-agent consensus have taken input saturation into ac-
count [27], [42]–[44]. In particular, consensus in the presence
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of agent input saturation is investigated for agents governed
by single-integrator kinematics [42] and double-integrator
dynamics [27], respectively. A distributed projected consensus
algorithm is proposed for the constrained consensus problem
[43]. Consensus algorithms without using velocity measure-
ment for double-integrator dynamics subject to input saturation
are proposed in [44].
To the best of our knowledge, input saturation has not been

taken into account in the consensus of more general agent dy-
namics and in the leader-following consensus. This paper will
address the leader-following consensus of agents described by
general linear systems subject to input saturation. By utilizing
the low gain design technique [45]–[47], we will design con-
sensus algorithms that achieve semi-global leader-following
consensus of such agents on a switching network. The salient
features of the algorithms proposed in this paper are as follows.
Generally speaking, this paper extends the consensus of linear
multi-agent systems in [31]–[38] to the case with input satura-
tion, and extends the consensus with input saturation in [27],
[42]–[44] to the consensus of more general agent dynamics.
In contrast to the known results on the consensus of linear
multi-agent systems in [31], [33]–[38] and the consensus with
input saturation in [27], [42]–[44], the proposed consensus
algorithms are analyzed on both connected and jointly con-
nected networks. Differently from the analysis method for the
consensus on jointly connected networks in [32], our method
is less complicated as it does not need the rule of labeling.
Besides taking input saturation into account, another distinct
feature of our algorithms, in comparison with existing works
on consensus of agents whose dynamics are described by linear
systems [31]–[38], is that they do not require any knowledge
of the interaction network topology, that is, the knowledge of
eigenvalues of the coupling matrix of the network.

II. PROBLEM STATEMENT

We consider a group of agents with general linear dy-
namics, labeled as . The motion of each agent is de-
scribed by

(1)

where is the state of agent ,
is the control input acting on agent , and

is a saturation function defined as

for some constant . For nota-
tional convenience, we also define
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and . The dynamics of the leader,
labeled as , is described by

(2)

The problem of semi-global leader-following consensus for
the agents and leader described above is the following: For any
a priori given bounded set , construct a control law
for each agent , which use only local information from neighbor
agents, such that

as long as for all .
Assumption 1: The pair is asymptotically null con-

trollable with bounded controls, that is,
1) is stabilizable;
2) All the eigenvalues of are in the closed left-half

-plane.
Definition 1: A set is said to be a positively invariant set

with respect to if implies , ,
where is a locally Lipschitz map from a domain

into .
In this paper, the notation denotes a positive definite

matrix , and the notation denotes a nonnegative defi-
nite matrix .

III. MAIN RESULTS

A. Consensus on a Connected Switching Network

We consider the problem of semi-global leader-following
consensus when the network is switching. The network
consisting of agents is described by an undirected
graph . In this graph, the set of vertices

represents the agents in the group and the
time-varying set of edges ,
containing unordered pairs of vertices, represents neighboring
relations among the agents. Vertices and are said to be
adjacent if . We define the adjacency matrix

of graph as if ,
and otherwise. The Laplacian of graph with
adjacency matrix is given by ,
where the degree matrix is a diagonal matrix with

diagonal elements . Denote the eigen-
values of as .
Then, with a corresponding eigenvector

. Moreover, if is a connected
graph, then [48]. The -dimensional graph
Laplacian is defined as , where is the
identity matrix of order and stands for the Kronecker
product.
Let be a graph generated by graph and the

leader, be the symmetric Laplacian of the undi-
rected graph consisting of agents, and matrix

, where
is a switching signal whose value at time is the index of the
graph at time and is finite. If agent is a neighbor of the
leader at time , then ; otherwise, .

Lemma 1 [49]: Let be the symmetric Laplacian of an undi-
rected graph consisting of agents. Let be the graph con-
sisting of the agents and a leader and containing a spanning
tree with the leader as the root vertex. Then, , where

.
Lemma 2 [40]: Let and be the symmetric Laplacians

of graphs and consisting of agents, respectively. Let
be a graph consisting of the agents and a leader and

containing a spanning tree. Let be a graph generated by
adding some edge(s) among the agents into graph . Then,

.
Remark 1: Let be a spanning tree consisting of the

agents and a leader, and be a graph generated by adding
some edge(s) among the agents into the graph . Let
and be, respectively, the corresponding symmetric Lapla-
cians of and the consisting of the agents. Then,

. Since the number of the vertices
of the spanning tree is finite and fixed, the number of possible
spanning trees consisting of the agents and the leader is fi-
nite. Therefore, one can get the minimum value of ,
that is, , using an exhaustive search method.
Assumption 2: The graph consisting of the agents

and the leader contains a spanning tree rooted at the leader all
the time.
Lemma 3 [45]: Let Assumption 1 hold. Then, for each
, there exists a unique matrix that solves the

ARE

Moreover, .

The low gain feedback design for the multi-agent system (1)
is carried out in two steps.
Low gain based consensus algorithm:
Step 1. Step 1. Solve the parametric algebraic Riccati equa-

tion (ARE)

(3)

where is a positive constant.
The existence of a unique positive definite solution

for ARE (3) is established in Lemma 3.
Step 2. Step 2. Construct a linear feedback law for agent as

(4)

The fact that , as established in
Lemma 3, motivates the term of low gain feedback.

Remark 2: In the above design algorithm, each agent only ac-
quires the state information of its neighbors. Furthermore, no in-
formation of the network topology is required. Only the number
of agents is needed to determine the value of .
Theorem 1: Consider a multi-agent system of agents with

general linear dynamics (1) and a leader with dynamics (2). Sup-
pose that Assumptions 1 and 2 hold. Then, the agent control in-
puts as given by (4) achieve semi-global consensus of the
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multi-agent system. That is, for any a priori given bounded set
, there is an such that, for each given ,

as long as for all .
Proof: Denote the difference between the states of agent

and the leader as . Then, we have

(5)

for which let us consider the Lyapunov function

(6)

where, for notational convenience, we have defined
.

Let be a constant such that

(7)

Such a exists since is bounded and by Lemma

3.
Let , and let

be such that, for each , implies that

(8)

where for . The existence of such an

is again due to the fact that .

Thus, for any , the dynamics of (5) remains linear
within . Consequently, we can evaluate the derivative of
along the trajectories of the agents within the set as

(9)

Recalling from [22] the fact that for any ,
,

where , and using the identity

we can continue (9) as follows:

(10)

The symmetry of matrix implies that there exists
an orthogonal matrix and such
that

Thus, (10) can be further continued as

This implies that the trajectory starting from the level set
will converge to the origin asymptotically as time

goes to infinity, which in turn implies that

This completes the proof.
Assumption 3: The graph consisting of the N agents and

the leader is fixed and contains a spanning tree rooted at the
leader.
The following corollary is a special case of Theorem 1 for the

case of a fixed network.
Corollary 1: Consider a multi-agent system of agents with

general linear dynamics (1) and a leader with dynamics (2). Sup-
pose that Assumptions 1 and 3 hold. Then, the agent control in-
puts as given by (4) achieve semi-global consensus of the
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multi-agent system. That is, for any a priori given bounded set
, there is an such that, for each ,

as long as for all .

B. Consensus on a Jointly Connected Switching Network

It can be seen that Assumption 2 requires the agents to stay in
touch with the leader all the time in order to track the leader. It
is, however, more practical to require only that the agents get in
touch, directly or indirectly, with the leader from time to time.
Assumption 4: There exists an infinite sequence of con-

tiguous, nonempty, and uniformly bounded time-intervals
, , and there are switching topologies

in each uniformly bounded time-intervals (that is,
there exists a finite sequence of contiguous and nonempty
time-subintervals , , with ,

and for some constant , and
the interconnection topology does not change during each of
such time-subintervals) such that across each time interval there
exists a joint path from the leader to every agent. In other words,
the neighboring graph has a jointly spanning tree across
each uniformly bounded interval , , with

and for some constant .
Assumption 5: There exists a which satisfies ARE

(3) and .
Remark 3: Assumption 5 requires that be marginally

stable, that is, all the eigenvalues of are in the closed left-half
-plane, with those on the imaginary axis simple.
Theorem 2: Consider a multi-agent system of agents with

general linear dynamics (1) and a leader with dynamics (2). Sup-
pose that Assumptions 1, 4, and 5 hold. Then, the agent control
inputs as given by (4) achieve semi-global consensus of the
multi-agent system. That is, for any a priori given bounded set

, there is an such that, for each ,

as long as for all .
Proof: Let us again consider the Lyapunov function (6),

where the positive definite solution satisfies Assumption
5. Let us choose as in the proof of Theorem 1. We
will first show that the set is
positively invariant. The derivative of along the trajectories
of the agents in the set is given by

(11)

Because of the symmetry ofmatrix , there exists
an orthogonal matrix and ,
such that

(12)

Therefore, the set is positively invariant. From (12),
exists. Considering the infinite sequences

, and using Cauchy’s convergence cri-
teria, one has that, for any , there exists a positive number

such that ,

Therefore,

Consequently, for ,
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which implies that, for ,

Thus, one has

By Assumption 4 and Lemma 1, we have

By Lemma 2 and Assumption 5,

which implies that

Fig. 1. The interaction network.

that is,

This completes the proof.

IV. NUMERICAL EXAMPLES

A. Consensus on Fixed Networks

The simulation is performed with four agents and one leader.
The system matrices are chosen as

It is straightforward to verify that is asymptotically
null controllable with bounded controls (ANCBC). The initial
states , , and of all agents are randomly chosen
from box , respectively, and
the initial state of the leader is chosen as . The
interaction network is chosen as in Fig. 1. The arrows represent
informed agents. The Laplacian and the matrix are as fol-
lows:

The minimum eigenvalue of is 0.2679. Here, we do
not use the information of the interaction network topology.
Since there are four agents and a leader in the group, using an
exhaustive search method, we can obtain the minimum eigen-
value of the possible spanning trees consisting four agents and a
leader, . Therefore, we can choose

. For ,
and , by using standard numerical software, we ob-
tain positive definite matrices,
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Fig. 2. Leader-following consensus of 4 agents with a leader under control
protocol (4).

Fig. 3. Leader-following consensus of 4 agents with a leader applying con-
sensus algorithm (13) and consensus algorithm (4).

each of which satisfies condition (3). Fig. 2 shows the consensus
of the four agents under control protocol (4) and the leader.
Fig. 2(a) and 2(b) plot respectively the evolution of the state
difference between the four agents and the leader and the con-

trol of the four agents when . Fig. 2(c) and 2(d) plot
respectively the evolution of the state difference between the
four agents and the leader and the control of the four agents
when . Fig. 2(e) and 2(f) plot respectively the evo-
lution of the state difference between the four agents and the
leader and the control of the four agents when . It is
obvious from Fig. 2 that the control protocol (4) is capable of
achieving stable consensus motion, and for the same initial con-
ditions, as the value of decreases, the state peaks slowlier to a
higher value before convergence while the peak value of each
control input decreases. This indicates the semi-global nature of
the consensus in the presence of agent input saturation.
In Fig. 3, we compare the consensus algorithm (4) proposed

in this work with the consensus algorithm in [32]. The simula-
tion is also performed with four agents and one leader, and the
interaction network is also chosen as in Fig. 1. The system ma-
trices are chosen as

It is easy to see that is asymptotically null control-
lable with bounded controls (ANCBC). The initial states ,
, , and of all agents are randomly chosen from box

, respectively, the initial
state of the leader is chosen as , and the con-
stant in the saturation function is chosen as 10. If we use the
consensus algorithm in [32], the control inputs can be written as
follows:

(13)

where

(14)

Since , we can use

to get a to satisfy the inequality (14). For the consensus al-
gorithm (4) proposed in this work, we choose . By
using standard numerical software, we obtain positive definite
matrices,

Fig. 3(a) and 3(b) plot respectively the evolution of the state dif-
ference between the four agents and the leader and the control of
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Fig. 4. The interaction networks. (a) . (b) .

the four agents by using the consensus algorithm (13). Fig. 3(c)
and 3(d) plot respectively the evolution of the state difference
between the four agents and the leader and the control of the
four agents by using the consensus algorithm (4). We can see
that all agents reach a common state by using the consensus al-
gorithm (4), and the magnitude of the control is less than the
constant . However, due to input saturation, the agents may
not achieve state consensus by using the consensus algorithm
(13).

B. Consensus on Switching Networks

The simulation is again performed with four agents and one
leader. The system matrices are chosen as

It is straightforward to verify that is asymptotically
null controllable with bounded controls (ANCBC). Initial states
and of all agents are randomly chosen from box
, respectively, and the initial state of the leader is chosen

as . The two interaction networks, that is, and ,
are chosen as shown in Fig. 4, and each network is active for
half time in each time-interval. Therefore, there is a jointly con-
nected path from the leader to every agent in each time-interval.
Since there are four agents and a leader in the group, we can ob-
tain the minimum eigenvalue of the possible spanning trees con-
sisting four agents and a leader, ,
using an exhaustive search method. Therefore, we can choose

. For ,
and , by using standard numerical software, we find
obtain positive definite matrices

each of which satisfies Assumption 5. Fig. 5 shows the con-
sensus of the four agents under control protocol (4) and the
leader. Fig. 5(a) and 5(b) plot respectively the evolution of the
state difference between the four agents and the leader and the
control of the four agents when . Fig. 5(c) and 5(d)

Fig. 5. Leader-following consensus of 4 agents with a leader under consensus
algorithm (4) on switching networks.

plot respectively the evolution of the state difference between
the four agents and the leader and the control of the four agents
when . Fig. 5(e) and 5(f) plot respectively the evolu-
tion of the state difference between the four agents and the leader
and the control of the four agents when . It is obvious
from Fig. 5 that the control protocol (4) is capable of achieving
stable consensus motion, and for the same initial conditions, as
the value of decreases, the peak value of each control input
decreases, indicating the semi-global nature of the consensus in
the presence of agent input saturation.

V. CONCLUSIONS

In this paper, we have investigated semi-global leader-fol-
lowing consensus of multi-agent linear systems with input
saturation on switching networks. We have used a low gain
feedback strategy to design distributed consensus algorithms,
without requiring any knowledge of the interaction network
topology. Under the assumption that the system is asymptoti-
cally null controllable with bounded controls and the networks
are connected or jointly connected, all the agents in the group
asymptotically synchronize with the leader, both from any
a priori given bounded set of initial conditions. Finally, nu-
merical examples have been provided for consensus on fixed
networks and switching networks to illustrate the effectiveness
of the proposed protocols.
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