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The accurate determination of the steering vector of a sensor

array that corresponds to a desired signal is often hindered by

uncertainties due to array imperfections, such as the presence of

a direction-of-arrival (DOA) estimation error, mutual coupling,

array sensor gain/phase uncertainties, and senor position

perturbations. Consequently, the performance of conventional

beamforming algorithms that use the nominal steering vector

may be significantly degraded. A new method for recursively

correcting possible deterministic errors in the estimated steering

vector is proposed here. It employs the subspace principle

and estimates the desired steering vector by using a convex

optimization approach. We show that the solution can be obtained

in closed form by using the Lagrange multiplier method. As

the proposed method is based on an extended version of the

conventional orthonormal PAST (OPAST) algorithm, it has

low implementation complexity, and moving sources can be

handled. In addition, a robust beamformer with a new error

bound that uses the proposed steering vector estimate is derived

by optimizing the worst case performance of the array after

taking the uncertainties of the array covariance matrix into

account. This gives a diagonally loaded Capon beamformer,

where the loading level is related to the bound of the uncertainty

in the array covariance matrix. Numerical results show that

the proposed algorithm performs well, especially at high

signal-to-noise ratio (SNR) and in the presence of deterministic

sensor uncertainties.
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I. INTRODUCTION

Adaptive beamforming using sensor arrays has

been widely used in various fields such as radar,

sonar, wireless communication, and microphone

array processing [1]. Basically, adaptive beamforming

aims to enhance the desired signal received while

suppressing the undesirable noise and interference.

Adaptive beamforming can be achieved by embedding

known training signals in the source signal transmitted

or, blindly, by utilizing the estimated steering vectors

of the sources. The steering vector is the signal gain

vector of the emitting source at a given coordinate

with respect to the array. It is therefore a function of

the source coordinate and the geometry of the array.

For a known array geometry, one can estimate the

steering vectors of the far-field sources and therefore

determine their directions-of-arrival (DOAs). Based

on the estimated steering vector of the desired signal,

the interference can be efficiently suppressed by

conventional adaptive beamforming algorithms,

such as the Capon beamformer [2]. However, the

steering vector in real systems may not be determined

accurately from the array geometry alone due to the

presence of uncertainties, such as sensor gain/phase

uncertainties, position variations, and mutual coupling

[3, 4]. Previous works show that these distortions

may dramatically degrade the performance of the

conventional beamforming methods. Therefore,

robust beamforming methods to address these

uncertainties have received great attention over the

last decades [5—10]. For instance, additional linear

constraints on the beampattern have been proposed

to better attenuate the interference and broaden the

response around the nominal look direction [5, 6].

Unfortunately, these constraints may reduce the degree

of freedom for suppressing undesired interference.

This effect is especially significant for arrays with

a small number of sensors. Another problem is that

these constraints are not explicitly related to the

uncertainty of the array steering vector [7, 8]. In [9]

and [10] quadratic constraint on the Euclidean norm

of the beamformer weight vector or the uncertainty of

the array steering vector has also been exploited. This

leads to another popular class of robust beamforming

techniques called diagonal loading (DL). In these

methods the array covariance matrix is loaded with

an appropriate multiple, called the loading level, of

the identity matrix in order to satisfy the imposed

quadratic constraint. However, it is somewhat difficult

to relate the loading level with the uncertainty bounds

of the array steering vector, which may not be

available in practice.

In this paper, instead of relying completely on

the norm constraints in the beamforming algorithm,

we focus on the problem of robust steering vector

estimation for beamforming. A new algorithm for

correcting possible deterministic errors in the steering

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 1 JANUARY 2013 489



vector is proposed. Though the steering vector of the

desired signal may be distorted by the imperfections

of the array, it is shown that the proposed algorithm

is capable of estimating the deterministic error in the

steering vector that results from, say, array gain/phase

uncertainties. In order to estimate this error, a

convex problem is formulated based on the subspace

principle. We show that the problem can be solved in

closed form, and, hence, an explicit expression of the

robust steering vector can be derived. A sensitivity

analysis of the derived robust beamformer to errors in

steering vector is also performed. It is found that the

variance of the beamformer weight vector is extremely

sensitive to the eigenvalues of the array covariance

matrix for a given error variance of the steering

vector. Thus, an approach to determine the loading

level of the robust Capon beamformer given the

proposed steering vector estimation and perturbation

bound of the array covariance matrix is proposed.

The resultant robust beamformer is obtained by

minimizing its worst case performance. The proposed

algorithm has an arithmetic complexity of O(N3),

which is comparable to the conventional diagonally

loaded Capon beamformer.

Another recent approach in [11] is to estimate the

mismatch using sequential quadratic programming.

The proposed method differs from this approach

in that it focuses on adaptive and recursive

implementations and provides an analytic solution

of the steering vector error with the help of the

subspace principle. Moreover, it is able to handle

dynamic cases with moving sources because it is

developed based on an extended orthonormal PAST

(OPAST) algorithm [12—14]. Alternatively, other

efficient algorithms such as [22]—[25] may also

be used. However, we only focus on the OPAST

algorithms due to page limitation. Finally, computer

simulation experiments are conducted to demonstrate

the excellent performance and effectiveness of the

proposed method over the conventional methods,

especially at high signal-to-noise ratio (SNR) and in

the presence of deterministic gain/phase uncertainties.

The paper is organized as follows. The problem

formulation and standard Capon beamforming are

briefly introduced in Section II. The proposed robust

steering vector estimation for beamforming is given

in Section III. In Section IV numerical examples are

conducted to demonstrate the excellent performance

and effectiveness of the proposed methods, and

finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Consider an antenna array with N sensors

impinged by K +1 narrowband uncorrelated

signals, which include one desired signal and K

interferences. Here we assume that K +1<N. The

N £ 1 array output x(t) observed at the tth snapshot

consists of the outputs of the N sensors, i.e., x(t) =
[x1(t),x2(t), : : : ,xN(t)]

T with [¢]T denoting the matrix
transpose. More precisely the array output can be

written as
x(t) = s(t) + i(t) +n(t) (1)

where s(t) = a(μ0)s0(t), i(t) =
PK
k=1 a(μk)sk(t), n(t) are

the desired signal, interference, and noise components,

respectively. Moreover, a(μ0) and fa(μk)gKk=1 are,
respectively, the steering vectors of the desired signal

and interferences. For an ideal uniform linear array,

a(μ) = [1,ej2¼¸
¡1d sinμ, : : : ,ej2¼¸

¡1(N¡1)d sinμ]T with ¸, d,
and μ denoting the carrier wavelength, inter-sensor
spacing, and DOA, respectively. In this paper the

noise is considered to be an additive white Gaussian

noise (AWGN) with zero mean and covariance matrix

¾2I, where I is an identity matrix. The sensor outputs
are linearly combined by a beamformer to form the

desired output:
y(t) =wHx(t) (2)

where [¢]H denotes Hermitian transposition and
w is the N £1 complex weight vector of the
beamformer. The objective is to maximize the

signal-to-interference-plus-noise ratio (SINR)

SINR=
¾20 jwHa0j2
wHRi+nw

(3)

where a0 denotes a(μ0) for simplicity, ¾
2
0 = E[s(t)s

H(t)]

is the power of the desired signal, Ri+n = E[(i(t) +
n(t))(i(t) +n(t))H] is the covariance matrix of

interference-plus-noise, and E[¢] denotes the statistical
expectation. Alternatively, the optimal weight vector

is obtained by solving the following optimization

problem [2]
minwHRw

s.t. wHa0 = 1
(4)

where R= E[x(t)xH(t)] is the covariance matrix of the

array output. It is known that the solution of (4) is

given by

wMVDR =
R¡1a0
aH0R

¡1a0
(5)

which is called minimum variance distortionless

response (MVDR) beamformer or the Capon

beamformer. It should be noted that this beamfomer

is obtained based on the assumption that the array

response or the steering vector of the desired signal,

i.e., a0, is known accurately. However, as mentioned
earlier, a0 is subject to uncertainties due to various
imperfections of the array and DOA estimation error.

Hence, the true steering vector a of the desired signal
should be written as

a= a0 +¢ (6)

where ¢ denotes the uncertainty in a0. Once ¢ is

known, one just needs to replace a0 in (5) by a to
get the optimal MVDR beamformer. In practice,
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the uncertainty ¢ is generally unknown to users,

and the performance of the beamformer (5) will

degrade considerably when ¢ is simply ignored.

Hence, a number of robust methods have been

proposed to take this uncertainty into account. For

instance, by assuming that the true steering vector lies

within an ellipsoid centered at a0, the robust Capon

beamforming (RCB) [7] or the robust minimum

variance beamforming (RMVB) [8] algorithm can

be employed to solve for a. However, both of these
methods require a priori knowledge of the ellipsoid,

such as its norm bound.

In general the uncertainty ¢ in (6) consists of two

error components, namely 1) the deterministic error

which changes only slowly with time as a result of

sensor gain/phase uncertainties and location errors,

etc., and 2) the stochastic error which results from

other stochastic variations, such as sensor noise on the

initial DOA estimation. In the following section a new

approach is introduced to estimate a correction to a0
by taking advantage of the subspace principle.

III. ROBUST STEERING VECTOR ESTIMATION FOR
BEAMFORMING

A. Robust Steering Vector Estimation

In practice the nominal steering vector a0 is
usually obtained by a DOA estimation algorithm

given the array geometry. Due to uncertainties of

the array, such as aforementioned sensor locations or

gain/phase uncertainties, the steering vector computed

from the given array geometry may deviate from the

true one. Therefore, the nominal steering vector a0
may be subject to a deterministic error ¢ from the

true steering vector a.
Since the subspace principle is an effective

approach in high-resolution DOA estimation, we

propose a new method to determine this deterministic

correction ¢ by using the subspace approach.

In general, the uncertainty ¢ should lie inside a

hypersphere with radius "

ka¡ a0k2 = k¢k2 · ": (7)

Conventionally, the error bound parameter " is

assumed to be known, e.g., [7]. Since this knowledge

may not be accurately available in practice, we

propose to estimate the uncertainty ¢ directly without

the prior knowledge of ".

Based on the subspace principle, we know that the

true steering vector a is orthogonal to the N £ (N ¡
K ¡ 1) noise subspace Un, i.e.,

UHn a=U
H
n (a0 +¢) = 0: (8)

Generally, it is assumed that K +1<N and the

ambient noise is AWGN so that Un can be obtained
from the eigenvalue decomposition (EVD) of the

covariance matrix R and so that Un consists of the
N ¡K ¡1 eigenvectors corresponding to the N ¡K

¡1 smallest eigenvalues. However, the computational
complexity of EVD may be prohibitive for some

real-time applications. Therefore, the subspace

tracking algorithm is employed in this paper to reduce

the arithmetic complexity and to handle scenarios

involving moving sources.

Though the true steering vector is unknown, it

usually lies within a small region around the nominal

steering vector. Therefore, it is natural to choose the

smallest ¢ such that (8) is satisfied. On the other

hand, since the noise subspace is estimated, say by

subspace tracking algorithms, slight tracking errors

are inevitable, and it will depend on the speed of the

moving sources and other stochastic errors, such as

sensor noises. To address this issue, it is assumed that

true subspace is given by Un = Ûn+ ±Un, where Ûn is

the estimated noise subspace and ±Un is the estimation

error due to sensor noise or other stochastic errors.

Consequently, (8) becomes

(Ûn+ ±Un)
H(a0 +¢) = 0: (9)

It should be noted that ¢ represents the deterministic

part of the errors which arise from, say gain/phase

mismatch and location errors, which are assumed to

be invariant. On the other hand, the estimation error

±Un, which may arise from sensor noise, etc., is a

random matrix. Though its exact value is unknown,

for well-designed systems, it is reasonable to assume

that it is zero mean. Moreover, we show that the

determination of ¢ is benefited from the knowledge

of its covariance

C±U = E[±Un±U
H
n ]: (10)

Furthermore, since Un is estimated by the subspace

tracking algorithm, the stochastic error appears as

an instantaneous variation of the subspace, and

hence, its covariance matrix can be approximately

estimated from the subspace tracking algorithm.

This is explained in detail in Section III-B when the

tracking of the subspace is investigated. Therefore,

the proposed method is particularly useful for the

DOA tracking scenario, where the subspace can be

continuously tracked. This is, however, different

from conventional robust beamforming methods,

which usually do not take subspace tracking into

account.

Next, we focus on the determination of ¢. First of

all, we rearrange (9) as

ÛHn (a0 +¢) =¡±UHn (a0 +¢): (11)

By taking the Euclidean norm on both sides of (11),

one gets

kÛHn (a0 +¢)k2 = (a0 +¢)H(±Un±UHn )(a0 +¢):
(12)

LIAO, ET AL.: RECURSIVE STEERING VECTOR ESTIMATION AND ADAPTIVE BEAMFORMING 491



Moreover, by taking expectation over ±Un on both

sides of (12), we have

kÛHn (a0 +¢)k2 = (a0 +¢)HC±U(a0 +¢): (13)

Since both C±U and ¢ are typically small, the right

hand side can be approximated by omitting the

terms that involve the product of C±U and ¢ as

follows

(a0 +¢)
HC±U(a0 +¢)¼ aH0C±Ua0

¢
=³: (14)

As a result, the linear equality (8) is modified

to kÛHn (a0 +¢)k2 ¼ ³, which is then relaxed to the
following quadratic inequality

kÛHn (a0 +¢)k2 · ³ (15)

since typically only the bounds on the uncertainties

are required. Consequently, the problem at hand

is to minimize the Euclidean norm of ¢ while

satisfying (15):

mink¢k2

s.t. kÛHn (a0 +¢)k2 · ³:
(16)

It is noted that (16) is a convex quadratically

constrained quadratic programming problem, and

hence, an optimal solution does exist. We now employ

the Lagrange multiplier method to solve for this

solution. The Lagrangian L associated with (16) is

given by

L(¢,¸) = k¢k2 +¸(kÛHn (a0 +¢)k2¡ ³) (17)

where ¸ > 0 is the Lagrange multiplier and we have

excluded the trivial solution ¢= 0. By setting the

partial derivative of (17) with respect to ¢ to zero,

one gets the first-order necessary condition for

optimality as follows

¢+¸ÛnÛ
H
n ¢+¸ÛnÛ

H
n a0 = 0:

On the other hand, since the problem is convex and

the objective function is differentiable, any stationary

point is also the global solution. Hence, the optimal

solution ¢̂ to (16) is given by

¢̂=¡¸(I+¸ÛnÛHn )¡1ÛnÛHn a0: (18)

A common way to determine ¸ is to substitute (18)

back to the equation kÛHn (a0 +¢)k2 = ³, and it, in
general, gives rise to a nonlinear equation in ¸.

Fortunately, we show below that a closed-form

solution of ¸ can be obtained. First, we assume that

the noise subspace Ûn is orthogonally obtained, i.e.,

Ûn satisfies

ÛHn Ûn = I:

Then, the term (I+¸ÛnÛ
H
n )
¡1 on the right side of (18)

can be simplified to

(I+¸ÛnÛ
H
n )
¡1 = I¡¸Ûn(I+¸ÛHn Ûn)¡1ÛHn
= I¡ ¸

1+¸
ÛnÛ

H
n (19)

with the help of the matrix inverse lemma (I+AB)¡1

= I¡A(I+BA)¡1B. Substituting (19) into (18) one
gets

¢̂=¡¸
μ
I¡ ¸

1+¸
ÛnÛ

H
n

¶
ÛnÛ

H
n a0

=¡¸
μ
ÛnÛ

H
n ¡

¸

1+¸
ÛnÛ

H
n ÛnÛ

H
n

¶
a0

=¡ ¸

1+¸
ÛnÛ

H
n a0: (20)

Then, substituting (20) into the constraint of the

problem in (16), one gets the following equation on ¸°°°°ÛHn μa0¡ ¸

1+¸
ÛnÛ

H
n a0

¶°°°°2
=

°°°°ÛHn a0¡ ¸

1+¸
ÛHn ÛnÛ

H
n a0

°°°°2
=

°°°° 1

1+¸
ÛHn a0

°°°°2 = ³: (21)

Consequently, ¸ is given by

¸= ®¡1¡ 1 (22)

where ® is defined as

®= (³¡1aH0 ÛnÛ
H
n a0)

¡1=2: (23)

Finally, by substituting (23) into (21), we obtain the

following closed-form solution to the problem in

(16) as

¢̂= (®¡ 1)ÛnÛHn a0: (24)

From (10) and (14) it can be seen that when ±Un! 0,

we have C±U! 0 and ³! 0. Consequently, the value

of ® is approximately zero, and the solution in (24)

reduces to ¢̂=¡ÛnÛHn a0. Careful examination shows
that this is the solution of the conventional projection

approach [20, 21]. Therefore, the proposed approach

offers an alternative interpretation to the conventional

projection approach and extends it further to include

possible uncertainties that arise from tracking or

other stochastic errors. One of its main advantages

is that a simple analytical solution is available that

greatly simplifies the implementation. We now

discuss the recursive tracking of the subspace and the

determination of C±U.

B. Noise Subspace Tracking and Robust Beamforming

As mentioned previously the noise subspace Un
can be estimated by EVD of the array covariance
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matrix R. However, the complexity of EVD may
be prohibitive in some practical implementations,

especially for antenna arrays with a large number of

elements. More importantly, EVD may not be feasible

for dynamic environments where moving sources are

involved. A number of subspace tracking algorithms

have been proposed to deal with this problem in the

last decades [12—14].

Though most of these algorithms focus on signal

subspace tracking, they can also be extended to noise

subspace tracking since the noise and signal subspaces

are related by

Ũn(t) = I¡ Ûs(t)[ÛHs (t)Ûs(t)]¡1ÛHs (t) (25)

where Ûs(t) is the estimated signal subspace. It can be
seen that the subspaces are now functions of the time

index t since the subspaces are tracked continuously.

Despite the simple relationship the complexity of (25)

is still O(N3) due to the matrix inversion operation.

Fortunately, with the use of the OPAST algorithm

[14], the signal subspace Ûs(t) when estimated is

orthogonal, and hence, ÛHs (t)Ûs(t) = I. Consequently,
(25) can be reduced to

Ũn(t) = I¡ Ûs(t)ÛHs (t) (26)

which provides a more efficient mean for computing

the noise subspace. Furthermore, it is known that

Ûn(t)Û
H
n (t) + Ûs(t)Û

H
s (t) = I. This implies that Ũn(t) =

Ûn(t)Û
H
n (t). Therefore, if the noise subspace is

obtained as (26), the uncertainty of the steering

vector at time t can be estimated according to (24),

as follows:

¢̂(t) = (®(t)¡ 1)Ũn(t)a0(t) (27)

where ®(t) = (³¡1(t)aH0 (t)Ũn(t)a0(t))
¡1=2 and ³(t) =

aH0 (t)C±U(t)a0(t).
We now extend the OPAST algorithm to

recursively track the noise subspace Ũn(t) and the
covariance C±U required by our robust steering vector
estimation algorithm. According to the extended

OPAST algorithm shown in Table I, the orthogonal

signal subspace Ûs(t) is recursively updated as

Ûs(t) = Ûs(t¡ 1)+ ẽ(t)gH(t) (28)

where ẽ(t) and g(t) are defined in Table I. Substituting

Ûs(t) into (26) one gets

Ũn(t) = Ũn(t¡ 1)+ ±Ũn(t) (29)

where

±Ũn(t) =¡Ûs(t¡ 1)g(t)ẽH(t)¡ ẽ(t)g(t)ÛHs (t)
¡kg(t)k2ẽ(t)ẽH(t): (30)

It can be seen that the noise subspace can now be

estimated recursively from the signal subspace with

low arithmetic complexity. We also notice that (30)

TABLE I

The Extended OPAST Algorithm for Noise Subspace and its

Covariance Tracking

Initialize P(0), Us(0), Un(0) and C±U(t)

For t = 1,2, : : :, do

y(t) = ÛHs (t¡ 1)x(t)
h(t) = P(t¡ 1)y(t)
g(t) = h(t)=[¯+ yH(t)h(t)]

P(t) = ¯¡1TrifP(t¡ 1)¡ g(t)hH(t)g
e(t) = x(t)¡ Ûs(t¡ 1)y(t)
¿ (t) = kg(t)k¡2((1+ ke(t)k2kg(t)k2)¡2 ¡ 1)
ẽ(t) = ¿(t)Ûs(t¡ 1)g(t) + (1+ ¿(t)kg(t)k2)e(t)
Ûs(t) = Ûs(t¡ 1)+ ẽ(t)gH(t)
±Ũn(t) =¡Ûs(t¡ 1)g(t)ẽH(t)¡ e(t)g(t)ÛHs (t)¡kg(t)k2ẽ(t)ẽH(t)
Ũn(t) = Ũn(t¡ 1)+ ±Ũn(t)
C±U(t) = ¯C±U(t¡ 1)+ (1¡¯)±Ũn(t)±ŨHn (t)

end t

provides us with the instantaneous perturbation of

the noise subspace from which its covariance can be

efficiently estimated. More precisely we propose to

estimate the covariance of the noise subspace, i.e.,

C±U(t), recursively as follows

C±U(t) = ¯C±U(t¡1)+ (1¡¯)±Ũn(t)±ŨHn (t) (31)

where 0< ¯ · 1 is a forgetting factor. Once the noise
subspace Ũn(t) and the covariance C±U(t) are obtained,
the value of the bound ³(t) and the uncertainty of

steering vector ¢̂(t) can be estimated according to

(14) and (27), respectively. Accordingly, the steering

vector can be updated as â(t) = a0(t)+ ¢̂(t). The

conventional MVDR beamformer can thus be invoked

to obtain a new robust beamformer by replacing a0(t)
in (5) by â(t). Hence, the following robust MVDR
(R-MVDR) beamformer is proposed as

wR-MVDR(t) =
R¡1(t)(a0(t) + ¢̂(t))

(a0(t) + ¢̂(t))R
¡1(t)(a0(t) + ¢̂(t))

:

(32)

It should be noted that for online implementations and

moving sources, the covariance matrix R(t) should
also be recursively estimated, say by the popular

formula

R(t) = ¯R(t¡ 1)+ (1¡¯)x(t)xH(t): (33)

C. Sensitivity Analysis and Modification of the
R-MVDR Beamformer

So far, it has been shown that a new R-MVDR

beamformer can be obtained by exploiting the OPAST

algorithm. In this section, we briefly analyze its

sensitivity to the error in the steering vector, and we

show that the proposed beamformer can be extended

further to take the error of the array covariance matrix

into account. To begin with, we assume that R(t) is
nonsingular and denote its EVD by U(t)¤(t)UH(t),
where ¤(t) and U(t) compose the eigenvalues and
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eigenvectors, respectively. Moreover, U(t) is an

orthogonal matrix that satisfies U(t)UH(t) = I. Here,
it is considered that the stochastic error in a(t) is ±a(t)

with zero mean, then (32) can be rewritten as

w̃R-MVDR(t) =
U(t)¤¡1(t)UH(t)(a0(t) +¢(t))

(â0(t) + ±a(t))
HU(t)¤¡1(t)UH(t)(â0(t) + ±a(t))

=
®0(t)wR-MVDR(t) +U(t)¤

¡1(t)UH(t)±a(t)
(â0(t) + ±a(t))

HU(t)¤¡1(t)UH(t)(â0(t) + ±a(t))

(34)

where â0(t) = a0(t) + ¢̂(t) and ®0(t) = â
H
0 (t)R

¡1(t)â0(t).
Define

W̃R-MVDR(t) =U
H(t)w̃R-MVDR(t) (35a)

WR-MVDR(t) =U
H(t)wR-MVDR(t) (35b)

Â0(t) =U
H(t)â0(t) (35c)

±A(t) =UH(t)±a(t): (35d)

We have

WR-MVDR(t) =
®0(t)W0(t) +¤

¡1(t)±A(t)
(A0(t) + ±A(t))

H¤¡1(t)(A0(t)+ ±A(t))
:

(36)

Hence, the mean of the weight vector is approximately

given by

E[W̃R-MVDR(t)]

¼ ®0(t)WR-MVDR(t)

E[(Â0(t) + ±A(t))
H¤¡1(t)(Â0(t) + ±A(t))]

=
®0(t)WR-MVDR(t)

ÂH0 (t)¤
¡1(t)Â0(t) + tr(¤¡1(t)C±A)

(37)

where C±A(t) = E[±A(t)±A
H(t)] and we have truncated

the higher order terms in the expansion of the

delta method [27], so that E[W̃R-MVDR(t)] can be

approximated by evaluating the expectation of its

numerator and denominator separately. Furthermore,

if C±A(t) is small so that the second term in the

denominator is small compared with the first term,

which is the usual case, then

E[W̃R-MVDR(t)]¼
®0(t)WR-MVDR(t)

ÂH0 (t)¤
¡1(t)Â0(t)

=WR-MVDR(t)

(38)

since ®0(t) = â
H
0 (t)R

¡1(t)â0(t) = Â
H
0 (t)¤

¡1(t)Â0(t). The
perturbation of WR-MVDR(t) due to ±A(t) is thus

±WR-MVDR(t)¼ ®¡10 (t)¤¡1(t)±A(t): (39)

Let C±W(t) = E[±WR-MVDR(t)±W
H
R-MVDR(t)], we have

tr(C±W(t))¼ tr(E[®¡20 (t)¤¡1(t)±A(t)±AH(t)¤¡1(t)])
= tr(®¡20 (t)¤

¡1(t)C±A¤
¡1(t))

= ®¡20 (t)
NX
i=1

¸¡2i (t)C±A,i(t) (40)

where C±A,i(t) and ¸i(t) are the ith diagonal entry

of C±A(t) and ¤
¡1(t), respectively. It is noted that

tr(C±W(t)) increases with the variance C±A(t).

More importantly it can be seen that wR-MVDR(t) is

extremely sensitive to eigenvalues of R(t), especially

when R(t) is ill-conditioned. Hence, even if C±A(t)

is not very large, the perturbation in R(t) results in

significant variation of wR-MVDR(t). In this case one

cannot obtain a proper beamformer even though the

true steering vector is known.

An effective method is to employ robust

beamforming approaches. For instance, the DL

method, which is closely related to ridge regression in

reducing the variance of the estimator while scarifying

slightly the bias, is commonly used. The regularized

solution is given by adding a small diagonal matrix

to R(t):

w̄R-MVDR(t) =
(R(t)+¹I)¡1â(t)

âH(t)(R(t)+¹I)¡1â(t)
(41)

where ¹¸ 0 is the DL level. Though the beamformer
is now biased, the variance is

tr(CR ±W(t))¼
NX
i=1

C±A,i(t)(¸i(t) +¹)
¡2

(AH0 (t)(¤(t) +¹I)
¡1(t)A0(t))2

(42)

which decreases with increasing value of ¹. However,

it is well known that the DL level is somewhat

difficult to determine in practice. One conventional

way to deal with this problem is to estimate the noise

power ¾2n and to select the regularization parameter ¹

as min(·¾2n ,¾
2
min), where · is a user-defined constant

and ¾2min is the minimum loading level. Usually, ·

is chosen as 10 to combat the uncertainties of the

steering vector and covariance matrix. Unfortunately,

it is shown in much of the literature that such a

fixed diagonal level cannot provide satisfactory

performance. A number of robust beamforming

algorithms have, therefore, been proposed by

assuming that the steering vector and/or covariance

matrix are known imprecisely and that they lie within

certain bounds [7—9], [15—17].

In this paper, we estimate the perturbation bound

of the array covariance matrix R(t) so that it can be

utilized in these robust beamforming algorithms.

Moreover, it is adopted to determine the loading

level of the conventional DL method, which yields a

simple but robust beamformer. First, let the true and

mismatched array covariance matrices be R̃(t) and

R(t), respectively. Hence, we have

R̃(t) =R(t) + ±R(t) (43)

where ±R(t) is the error matrix due to the perturbation

of R(t) and it is assumed to be bounded by a certain

known or estimated parameter °(t), i.e.,

k±R(t)k · °(t): (44)
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Fig. 1. (a) DOA tracking using extended OPAST in stationary

case with SNR=¡5 dB. (b) Output SINR of various
beamformers in stationary case with SNR=¡5 dB.

Consequently, the problem in (4) can be rewritten as

minwH(t)(R(t) + ±R(t))w(t)

s.t. wH(t)â(t) = 1, k±R(t)k · °(t)
(45)

which can further be rewritten as the following

problem of minimizing the worst case output power

min
w

max
k±R(t)k·°

wH(t)(R(t) + ±R(t))w(t)

s.t. wH(t)â(t) = 1:

(46)

In order to solve (46), we first solve the problem

max
±R(t)

wH(t)(R(t) + ±R(t))w(t)

s.t. k±R(t)k · °(t)
(47)

whose solution is given by [17]

±R(t) = °(t)
w(t)wH(t)

kw(t)k2 : (48)

After some manipulation the problem (46) can finally

be reformulated as

minwH(t)(R(t) + °(t)I)w(t)

s.t. wH(t)â(t) = 1:
(49)

Fig. 2. (a) DOA tracking using extended OPAST in stationary

case with SNR= 5 dB. (b) Output SINR of various beamformers

in stationary case with SNR= 5 dB.

Apparently, the solution of the problem in (49) is

given by

wR-MVDR-WC(t) =
(R(t) + °(t)I)¡1â(t)

âH(t)(R(t) + °(t)I)¡1â(t)
: (50)

Comparing the worst case solution (50) with that

in (41), the loading level ¹ is directly related to the

perturbation bound of the covariance matrix °(t) in

(44). In real systems, it may be able to select the

perturbation bound °(t) based on prior information.

In this paper the instantaneous variation of the array

covariance matrix, i.e., R(t)¡R(t¡1), is adopted to
estimate the perturbation bound. More precisely, such

a bound is assumed to be proportional to the norm of

the instantaneous variation °(t) = kkR(t)¡R(t¡ 1)k.
In fact, it is found experimentally that °(t) can be

chosen from a wide range, with k between 1% to

20%, without significantly affecting the performance.

Hence, the choice of °(t) is not a crucial problem

if the value of °(t) is not too large. For illustrative

purposes we choose °(t) = kkR(t)¡R(t¡ 1)k with
k = 10% in Section IV. Finally, the proposed robust

steering vector estimation and diagonally loaded

MVDR beamformer based on worst case performance
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Fig. 3. (a) DOA tracking using extended OPAST in stationary

case with gain/phase uncertainties and SNR=¡5 dB. (b) Output
SINR of various beamformers in stationary case with gain/phase

uncertainties and SNR=¡5 dB.

TABLE II

Main Steps of the Proposed Algorithm

Step 1) Update the covariance matrix R(t) recursively as

R(t) = ¯R(t¡ 1)+ (1¡¯)x(t)xH(t).
Step 2) Update the signal subspace using the OPAST

algorithm as Ûs(t) = Ûs(t¡ 1)+ ẽ(t)gH(t).
Step 3) Compute the noise subspace with the estimated signal

subspace as Ũn(t) = I¡ Ûs(t)ÛHs (t) and the covariance
matrix C±U(t) based on the extended OPAST algorithm

as C±U(t) = ¯C±U(t¡ 1)+ (1¡¯)±Ũn(t)±ŨHn (t).
Calculate ³(t) as (14).

Step 4) Use the estimated noise subspace Ũn(t), ³(t) and the

given nominal steering vector a0(t) to compute the

uncertainty in the steering vector as (27).

Step 5) Update the steering vector as â(t) = a0(t) + ¢̂(t).

Step 6) Compute the beamformer as (50) with the estimated

â(t) and °(t).

optimization (R-MVDR-WC) is summarized in

Table II.

We now briefly discuss the arithmetic complexity

of the proposed algorithm. In step 1, the covariance

matrix can be efficiently updated in O(N2) complexity.

In step 2, the signal subspace can be updated in

O(N(K +1)) complexity. The complexity in step 3 is

Fig. 4. (a) DOA tracking using extended OPAST in stationary

case with gain/phase uncertainties and SNR= 5 dB. (b) Output

SINR of various beamformers in stationary case with gain/phase

uncertainties and SNR= 5 dB.

O(N3), which is larger than the previous two steps due

to the matrix product ±Ũn(t)±Ũ
H
n (t). The complexity in

step 6 is also O(N3) FLOPs due to the required matrix

inversion process. Hence, the proposed method is of

the same order as other conventional algorithms, such

as Capon beamforming, RCB, and DL.

IV. NUMERICAL EXAMPLE

In order to evaluate the performance of the

proposed algorithm, a uniform linear array (ULA)

with N = 10 sensors separated by a half-wavelength

is considered. The noise is assumed to be AWGN

with a power of 0 dB. One desired signal and two

interferences are assumed to impinge on the array

from far-field. In the first two examples, the DOA

of the desired signal is assumed to be fixed at 0±,
whereas in the last two examples, the DOA of the

desired signal is considered to be time varying and

is given by 10± £ 10¡3t, 0· t· 1000, where t is the
index of snapshots. For all simulation, the DOAs

of the two interferences are fixed to be 40± and
60±. The powers of the interferences are fixed to be
30 dB, i.e., the interference-to-noise ratio (INR) is

30 dB. The noise subspace is obtained by using the
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Fig. 5. (a) DOA tracking using extended OPAST in dynamic

case with SNR=¡5 dB. (b) Output SINR of various
beamformers in dynamic case with SNR=¡5 dB.

extended OPAST subspace tracking method as shown

in Table I, where the forgetting factor is ¯ = 0:99. The

perturbation bound of the array covariance matrix is

estimated as °(t) = kR(t)¡R(t¡ 1)k£10%. In all
examples the signal-plus-interference number and

hence the signal subspace rank used in the extended

OPAST are assumed to be known, and they are equal

to 3. In practice the subspace rank can be estimated

by using, say, the minimum description length (MDL)

algorithm.

For comparison the following conventional

algorithms are also tested: 1) the conventional DL

beamformer with a fixed loading level of 10; 2) the

RCB [7] with the error bound equal to "= 3:2460,

which corresponds to a 2± DOA mismatch when
the DOA of the desired signal is 0±, and 3) the
worst case method [18]. In the simulations the

DOA of the desired signal is first estimated using

the conventional ESPRIT algorithm [26] with the

tracked signal subspace Ûs(t). Then, the proposed

robust beamforming, as well as other conventional

algorithms, is invoked based on the estimated DOA.

The performances of all these methods are compared

in terms of the output SINR.

Fig. 6. (a) DOA tracking using extended OPAST in dynamic

case with SNR= 5 dB. (b) Output SINR of various beamformers

in dynamic case with SNR= 5 dB.

Example 1. Stationary Case: In the first example

we test the performance of the proposed method

in a stationary case, i.e., the desired signal has a

fixed DOA, which is assumed to be 0±. We assume
that there are no other uncertainties except the

DOA mismatch due to the accuracy of the DOA

tracking algorithm. The output SINR at each time

instant is calculated according to (3). Figures 1 and

2 show the tracked DOA of the desired signal and

the output SINR of various beamformers with a

low SNR of ¡5 dB and a relatively high SNR of
5 dB, respectively. From these two figures it can

be seen that when the SNR is low, the tracking

algorithm converges slowly. Hence, there is a

large DOA mismatch before convergence. Also, it

can be seen that the proposed beamformer gives

a better performance when there is a large DOA

mismatch. On the other hand, when the tracking

algorithm converges, the DOA of the desired signal

can be estimated with high accuracy. Therefore, all

beamformers can give excellent performance, which is

almost identical to the optimal one.

Example 2. Stationary Case with Array Gain/Phase

Uncertainties: In order to test the robustness of

the proposed method against array imperfections,
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Fig. 7. (a) DOA tracking using extended OPAST in dynamic

case with gain/phase uncertainties and SNR=¡5 dB. (b) Output
SINR of various beamformers in dynamic case with gain/phase

uncertainties and SNR=¡5 dB.

in this example, the array gain/phase uncertainties

are considered. It is known that these uncertainties

usually lead to a degradation of the DOA estimation

and beamforming performance. Following the last

example, in this simulation, each sensor (except the

first reference sensor) is further assumed to suffer

from a gain/phase uncertainty of the form ½ie
jÁi ,

2· i·N. Both the gain and phase uncertainties are
assumed to be uniformly distributed as ½i »U(0:8,1:2)
and Ái »U(¡¼=5,¼=5). For simulation a fixed set of
the gain/phase uncertainties is taken as: f½igNi=2 =
f1:0369,09695,1:0033,1:0176,1:0560,1:0309,
0:9665,1:0718,1:0690g and fÁigNi=2 = f¡0:2916,
¡0:2947,0:2547,0:4015,0:1534,0:3667,¡0:3193,
¡0:4652,¡0:1343g. The resultant DOA tracking
and output SINR are shown in Fig. 3 and Fig. 4.

Obviously, we can notice that the accuracy of DOA

tracking is considerably degraded due to the existence

of array gain/phase uncertainties. As can be seen

in Fig. 3(a) and Fig. 4(a), there is a larger DOA

mismatch even after the convergence of the tracking

algorithm compared with the case without array

gain/phase uncertainties. However, it can be seen that

the proposed method outperforms the conventional

Fig. 8. (a) DOA tracking using extended OPAST in dynamic

case with gain/phase uncertainties and SNR= 5 dB. (b) Output

SINR of various beamformers in dynamic case with gain/phase

uncertainties and SNR= 5 dB.

ones and nearly achieves optimal performance.

Careful examination also shows that the performance

of the conventional RCB deteriorates due to such

uncertainties. Since the worst case beamformer [18]

takes the uncertainties in the array covariance matrix

into account, it is able to achieve a better performance

than that of RCB.

Example 3. Dynamic Case: The settings in this

example are identical to those in Example 1, except

that the DOA of the desired signal is time varying

and given by 10± £ 10¡3t, 0· t· 1000, where t is
the index of snapshots. Figure 5 and Fig. 6 show the

DOA tracking results and output SINR with SNR

of ¡5 dB and 5 dB, respectively. Compared with
the stationary case, it can be noticed that there is a

much larger DOA mismatch due to the dynamic of

the desired signal. However, we can find that after

convergence, all the methods can still successfully

suppress the undesired interference and achieve

excellent performance.

Example 4. Dynamic Case with Array Gain/Phase

Uncertainties: It has been shown in Example 2 that

when there are array gain/phase uncertainties, the

DOA cannot be well tracked even in a stationary
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case. In this example, we show the performance of

the proposed method in a time-varying case with array

gain/phase uncertainties. Again, the dynamic model

of the desired signal is assumed to be the same as

that in Example 3. The DOA tracking results and

output SINRs for the SNRs at ¡5 dB and 5 dB are
shown, respectively, in Fig. 7 and Fig. 8. As expected

the DOA tracking performance degrades due to the

array gain/phase uncertainties. Furthermore, it can be

seen that the conventional methods are significantly

influenced by such uncertainties, especially at higher

SNRs. On the contrary, the proposed method can still

achieve an excellent performance.

V. CONCLUSIONS

A new method for correcting possible deterministic

errors in the steering vector due to sensor uncertainties

is presented. It uses the subspace principle, and the

resulting problem can be formulated as a convex

problem and solved in closed form. Using an extended

OPAST algorithm, the algorithm is further extended

to handle scenarios involving moving sources

while requiring low complexity. An analysis on

the perturbation of beamforming weights due to

DOA estimation errors is also performed, and it

suggests that the former is also highly sensitive to

the eigenvalues of the estimated covariance matrix.

Hence, a new adaptive beamformer, which minimizes

the worst case performance of the array subject to

covariance matrix uncertainties, is also presented.

The resultant beamformer resembles the diagonally

loaded Capon beamformer with the loading level

given by a bound on the uncertainties in the array

covariance matrix, which can be estimated recursively.

Simulation results show that the proposed algorithm

can offer satisfactory performance, especially at high

SNR levels and in the presence of deterministic sensor

uncertainties.
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