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Demand Response Optimization for Smart Home
Scheduling Under Real-Time Pricing

K. M. Tsui and S. C. Chan, Member, IEEE

Abstract—Demand response (DR) is very important in the future
smart grid, aiming to encourage consumers to reduce their demand
during peak load hours. However, if binary decision variables are
needed to specify start-up time of a particular appliance, the re-
sulting mixed integer combinatorial problem is in general difficult
to solve. In this paper, we study a versatile convex programming
(CP) DR optimization framework for the automatic load manage-
ment of various household appliances in a smart home. In par-
ticular, an L; regularization technique is proposed to deal with
schedule-based appliances (SAs), for which their on/off statuses are
governed by binary decision variables. By relaxing these variables
from integer to continuous values, the problem is reformulated as
a new CP problem with an additional L, regularization term in
the objective. This allows us to transform the original mixed in-
teger problem into a standard CP problem. Its major advantage is
that the overall DR optimization problem remains to be convex and
therefore the solution can be found efficiently. Moreover, a wide va-
riety of appliances with different characteristics can be flexibly in-
corporated. Simulation result shows that the energy scheduling of
SAs and other appliances can be determined simultaneously using
the proposed CP formulation.

Index Terms—Convex programming, demand response, energy
consumption scheduling, energy management, L, regularization,
smart home.

I. INTRODUCTION

ITH THE promise of smart grids, power can be more
W efficiently and reliably generated, transmitted, and
consumed over conventional electricity systems. Through
the two-way flow of information between suppliers and con-
sumers, the grids can also adapt more readily to the increased
penetration of renewable energy sources and encourage users’
participation in energy savings and cooperation through de-
mand response (DR) mechanism. An important issue in smart
grids is therefore how to manage DR to reduce peak electricity
load and hence future investment in thermal generations and
transmission networks, and to better utilize renewable ener-
gies. Current DR schemes are usually implemented through
either incentive-based or time-based rates schemes [1], [17].
In incentive-based DR, customers enroll voluntarily in certain
rewarding programs and allow the operators to control directly
some of their electric appliances such as air conditioners to shed
loads during peak or emergency. On the other hand, time-based
rates scheme relies on dynamic pricing of electricity to regulate
electricity consumption and it can take many different forms,
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ranging from simple schemes such as scheduled time-of-use
pricing (TOUP), to peak-pricing (PP) which sets higher prices
only during critical peak periods, to real-time pricing (RTP)
specified at regular interval based on say the wholesale market
rates. To achieve this goal, utilities gather the information such
as the consumers’ usage of electricity from the smart meters,
and set the dynamic price level appropriately in order to reduce
the peak electricity load through the cooperation of customers.

In response to the dynamic price signals, the customers can
shift their demands automatically or manually, with the help of a
home energy management system (EMS), to the off-peak hours
so as to minimize their electricity payment. Therefore, the home
EMS plays an important role of automatically coordinating the
operating schedule of smart appliances with the consent of the
customers, who have the option to monitor and directly control
their own key appliances [2].

Developing efficient DR models of electrical appliances and
efficient optimization algorithms for coordinating their opera-
tions are thus two key problems in a EMS in a smart home,
which have received considerable attention recently [3]-[8]. In
general, the main objective of DR optimization is to minimize
the electricity bill or maximize their users’ satisfaction/comfort-
ability by continually monitoring the electricity price informa-
tion, allocating available resources and actively managing the
load of appliances. While the energy consumption of practical
electric appliances can be modeled from physical consideration,
the corresponding customer’s satisfaction is usually encapsu-
lated using the concept of utility function [5], [6], [11]. It may
be a concave function of the energy consumed by the appliances
and its values may be determined empirically by conducting
survey from customers or from experienced designers. Given
these functions, DR optimization seeks to find a reasonable op-
erating point or tradeoff where the electricity cost can be re-
duced or being controlled to a given level without significantly
discomforting the users.

As such, DR is intimately related to mathematical program-
ming or optimization. Among the various algorithms proposed,
linear programming (LP) [3], [4] and convex programming (CP)
[5] based algorithms are very attractive because the problem
can be solved efficiently in polynomial time complexity and
the optimality of the solution is guaranteed [9]. The latter, in
particular, is more general in the sense that most typical appli-
ance models can be easily incorporated. Examples of these ap-
pliances include heating, ventilation, and air conditioning sys-
tems, whose physical models depend on environmental factors
such as building structure, weather, thermal dynamics, etc. [5],
[6], [8], [10]. In the CP approach, the appliances’ models are
usually chosen as convex or concave functions in order to ob-
tain an overall convex problem. For more complicated problem
formulation, heuristic algorithms may be required. For instance,
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binary particle swarm optimization (PSO) algorithm was used
in [6] to solve the mixed integer problem, where binary deci-
sion variables are required to determine on/off status of the ap-
pliances. Putting such appliance in the CP framework results
in so called convex mixed integer nonlinear program (MINLP),
which is in general difficult to solve [12]. Despite the generality
of the heuristic algorithms, the optimality of the solution is not
guaranteed due to premature convergence, and their complex-
ities are relatively higher than the CP approach, especially for
large scale problems.

In this paper, we consider a single household scenario given
the price information, and propose a versatile CP framework for
the load management of various household appliances for sup-
porting DR through EMS in a smart home. Apart from some
typical appliances that naturally fit into the CP framework, the
proposed problem formulation is able to handle more general
schedule-based appliances (SAs), for which their on and off sta-
tuses are the main concern. In the proposed approach, the bi-
nary decision variables associated with the on/off statuses are
first relaxed from integer to continuous values so as to avoid the
use of more complicated MINLP. An additional L; regulariza-
tion term is then incorporated in the objective function so that
the design problem can be reformulated as a new CP problem.
The purpose of this regularization term is to enforce the relaxed
continuous variables associated with the best starting sched-
ules to be as large as possible, while keeping others as close to
zero as possible. By so doing, the relaxed continuous variables
can serve the role of the binary decision variables in picking
the best schedules of the appliances in the original mixed in-
teger problem. The major advantage of the proposed approach
is that the overall DR optimization problem remains convex and
its complexity is only polynomial time thanks to efficient large
scale optimization algorithm using say interior point method. In
addition, the proposed CP formulation with L; regularization is
able to solve a subclass of convex MINLP problem, which has
not been reported before to our best knowledge. Therefore, com-
paring with other existing works, our finding is very useful in the
sense that a wider range of appliances as well as more flexible
operating schedules, which involve binary decision variables,
can be supported under the same CP framework. Simulation re-
sult shows that the energy scheduling of SAs as well as other ap-
pliances can be determined simultaneously and efficiently using
the proposed CP formulation.

The paper is organized as follows: In Section II, the system
model and the problem formulation of DR optimization under
the CP framework are presented. The novel concept of L; regu-
larization technique for schedule-based appliances is presented
in Section I1I and models of other common appliances are intro-
duced in Section IV. To illustrate the effectiveness of the pro-
posed approach, simulation results are provided and discussed
in Section V. Conclusions are drawn in Section VL.

II. DEMAND RESPONSE OPTIMIZATION IN SINGLE HOUSEHOLD
SCENARIO

Consider the optimization in a smart home, where most elec-
tric appliances (smart appliances) are networked together and
are controlled by a home EMS as shown in Fig. 1. The set of
controllable appliances is collectively denoted by A. We assume
that the DR optimization problem is carried out in a finite time
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Fig. 1. Demand response optimization in a smart home through a home energy
management system (EMS).
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horizon for all ¢t € T = 1,2,...,T, where T is arbitrary but
finite. Further, we assume that each appliance ¢ € A consumes
an energy of ¢, ; attime t € T.

Conceptually, we shall minimize an objective function which
measures: 1) the total cost of using the appliances in 7" and 2)
the users’ dissatisfaction, subject to the operating constraints of
the appliances and power supply. More precisely, if u; and the
total energy consumed at time ¢ and P;(u) is the electricity price
at time ¢ for consumption of u,, then the total cost is given by
> e Pr(u:). On the other hand, if the users’ dissatisfaction of
the appliance @ € A is modeled as C,,(é,) where €,_; denotes
the quantity associated with the energy assumption e, , for no-
tational convenience, then the DR problem can be written as

min Z Py(u) + Z Z Cul€art)

teT teT acA
subject to operating constraints.

Since our main focus is on single household scenario, we simply
assume that the price function is known either from the RTP in-
formation of the power utilities or from the forecasted values,
if forward planning is required. It can also be seen that the de-
tailed formulation of the constraints and users’ dissatisfaction
functions depend on the particular types of electric appliances.
Therefore, for a systematic illustration, we assume in this paper
that the smart home is equipped with the following types of ap-
pliances:

a) Schedule-based appliances with interruptible load (SA-
IL): This refers to the class of appliances, which are al-
lowed to run at any time within a user’s defined time in-
terval, and its load is interruptible in the sense that it can
be shut down during operation. An example is the pool
pump considered in [6].

b) Schedule-based appliances with uninterruptible load (SA-
UL): Unlike SA-IL, this refers to the class of appliances,
which are required to follow predefined steps of opera-
tion, and the operation has to be run to completion once it
starts. An example is the laundry machine which cannot
perform drying before washing

c) Battery-assisted appliances (BAs): This refers to the class
of appliances where an internal battery is equipped. The
advantages of which include their ability to 1) offer ad-
ditional energy source during the peak hours and hence
more efficient use of the overall energy, 2) harvest any
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possible renewable energies, and 3) provide more stable
power supply in case of emergencies.

d) Model-based appliances (MAs): This refers to the class of
appliances whose energy consumption can be described
by physical models. Such physical models facilitate the
direct load control of the appliances and are usually char-
acterized by a linear dynamical equation [5], [6], [8], [10].

Note that for the former two types of appliances, the EMS
needs to decide when they should start or shut down, rather
than how much energy they consumed. Usually, binary decision
variables are required to indicate their on/off status, and there-
fore the resulting DR optimization problem becomes a combi-
natorial mixed integer problem, which is in general difficult to
solve [12]. In this paper, we shall propose a L; regularization
technique to transform the mixed integer problem to a standard
CP, which can be solved more readily. More details will be dis-
cussed in Section III.

Under the proposed CP framework, the above four types
of appliances are treated in a unified manner, and they can be
mainly characterized by the following two aspects:

a) Characteristic function: As mentioned earlier, C, (¢, ) can

be used to quantify the user’s dissatisfaction on the energy
assumption ¢, ; or the physical quantity associated with
¢q,t (€.g., temperature of air-conditioner), which are col-
lectively denoted by €, ; for notational convenience. A
typical example includes the linear “energy equivalent”
cost function with Cy(€,¢) = 84 4€q., Where 6, is a
monetary benefit derived by the users [6]. This monetary
value is set to increase the cost of the objective function if
the service offered by the appliance cannot be met. An-
other example is the utility function considered in [5],
where C, (¢, ;) is generally described by a continuously
differentiable convex (non-increasing) function of €, ;.
Therefore, C, (€,+) is used to counter the further decrease
ine, ¢ (and hence electricity payment) if the user feels un-
comfortable increasingly. We can see that the basic idea
of both approaches is to establish a realistic measure that
not only takes the actual users’ need into account, but
also prevents the EMS from solely minimizing the energy
consumption/electricity payment and hence scarifying the
users’ comfortability.
In this paper, we shall also use the characteristic func-
tion C,(€,) to describe the property of the SAs. More
precisely, it is called Ly regularization term which al-
lows us to relax the binary decision variables involved
in the original mixed integer problem from integer to
continuous values. Since the L; regularization term is
convex, the overall DR optimization problem remains to
be convex. Hence, the difficult mixed integer problem
can be avoided.

b) Convex constraint: As mentioned before, such con-
straints are related to the operating constraints of the
appliance a € A, and they are assumed to have the form
of linear equality L, +(¢,,) = 0 and convex inequality
F,i(en:) < 0, where L, .(€,:) and F,,;(€,.) are
respectively linear and convex functions of e, ; or the
physical quantity associated with e, ;. A simple example
of linear equality is the total energy F°" required for the
operation of appliance a € A, thatis ), pc.r = B
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For the convex inequality, an example is the minimum
or maximum bound of the energy required by the appli-
ance, that is E(‘fi“ < eq, < EF. More details will be
discussed in Sections III and IV.

Incorporation of Renewable Energy: Apart from the appli-
ances, the possible utilization of distributed renewable energy
sources such as rooftop solar electric systems and small wind
turbines is also considered in the system model in this paper.
Assuming that a renewable energy source can deliver a power
of v; up to a predicted maximum time-varying power of V()
at time £, the net energy request from the user is given by u; =
Za cA Cat—Urat time t. Similar to most previous related works,
we assume that the EMS receives from the utility company
the price information and if necessary perform forecasting so
that it is known for all # € T, and it is denoted by a known
price function P;(u;). Based on the price information, the EMS
will attempt to optimize the load scheduling by minimizing the
total cost », .p Pi(u). For example in RTP model, we have
Pi(uy) = p; - ug, where p, is the unit price set by the utility
company at time %.

Consequently, the DR optimization problem can be further
refined as follows:

min Z Pi(ug) + Z Z Co(€ur) (1a)
teT 1T a€A
st up > maX{O,Zea,t —vt} , teT, (1b)
acA
0<uy, <V(), teT, (1c)
La.t(ga,t) = 0, a € A, t e T, (1d)
Foi(én) <0, a€A tel, (1e)

where the constraint (1b) ensures that the electricity provided
by the utility company at time ¢ is always positive. Note that the
above problem can alternatively be rewritten as a maximization
problem, which optimizes the user’s satisfaction (—C,(€,))
minus the electricity cost P;(u;), see [5] for example. For the
sake of presentation, we will focus on the problem formulation
in (1).

In the rest of the paper, we assume that the functions F;(e),
C,(®) and F, ,(e) are all convex so that the overall problem
can be solved optimally using CP. In fact, the problem formula-
tion is very general because the characteristics of most typical
household appliances can be casted under this framework. Next,
we will discuss the models of some typical appliances, with par-
ticular emphasis on SAs.

III. APPLICATION OF L1 REGULARIZATION TO
SCHEDULE-BASED APPLIANCES

In conventional DR optimization problem, it is common to
assume that the energy consumption e, of an appliance is a
continuous variable which can be optimized to accommodate
the user’s need. This assumption fits nicely into the CP frame-
work, such as the problem in (1). However, some appliances
may not simply satisfy this assumption in the sense that ¢, , only
takes on discrete values. Taking the work in [6] as an example,
the pool pump is required to run continuously at a fixed rating
once it starts, but it has to shut down to save energy after its
daily task is completed. Consequently, for such appliances, the
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EMS needs to decide when it should start or shut down, rather
than how much energy it consumes. As mentioned in Section II,
we refer these types of appliances as SAs. In the presence of
SAs, the problem in (1) would turn into a convex mixed integer
nonlinear program (MINLP), which is known to be NP hard
[12]. For general convex functions, solving a convex MINLP
still poses a great challenge especially when the computational
time is of great concern. Currently, state-of-the art commercial
solvers such as CPLEX and MOSEK are capable of solving two
important subclasses of convex MINLP, namely, mixed integer
linear program (MILP) (i.c., when P;(e), C,(e) and F, ,(e) are
linear functions) and mixed integer second-order cone program
(MISOCP) (i.e., when P;(e), C,(e) and F, ,(e) are second-
order cone functions). However, the restrictions of nonlinear
functions involved and computational complexity may still limit
appliances with general convex functions or constraints to be in-
corporated.

In what follows, we shall discuss the problem formulation
involving SA-IL and SA-UL mentioned in Section II. For these
two types of appliances, auxiliary binary decision variables are
required for the EMS to determine their on/off statuses. To avoid
the difficult convex MINLP, we will also discuss a L; regular-
ization technique to get rid of the binary decision variables such
that the original convex MINLP can be transformed into a stan-
dard CP problem. Therefore, the convexity of the problem in (1)
can be maintained and its generality allows us to incorporate a
wide variety of appliances that can be described by the convex
characteristic functions and constraints.

A. Schedule-Based Appliance With Interruptible Load (SA-IL)

For the SA-IL, we assume that it only operates in either
“on” or “off” statuses within a user’s preferred time period
t € [T,,T,] C T.In the former (latter) case, it consumes a
fixed energy level of E™X (Emin) at time ¢t € [T,,7T,]. In
other words, the EMS only needs to schedule when it is “on” or
“off”. Following the formulation considered in [3], the energy
consumed by the SA-IL at time 7 can be expressed as

Cap = Ya  BY™ + (1= ya) B, t €L, Ta]. ()
where y, + is an auxiliary binary variable. From (2), we can see
thaty, , =1 and eq,r = L% ifthe SA-IL is “on,” and y, , = 0
and ¢, » = B if it is “off.” Also, to fully complete its task, it
has to be “on” for a certain period. Therefore, it is required that

(€))

where N, denotes the total number of time slots for the SA-IL
to complete its task and N, < T, — T, + 1. Substituting (2)
and (3) into the problem in (1) results in a convex MINLP with
additional binary variables ¥, ;.
To solve this difficult problem, we first relax the binary deci-
sion variable y, ;+ to a real-valued variable as
0 S Ya,t S 1

te [T, T, @)
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Then, we add a characteristic function of the SA-IL to the
problem as follows:

T,

Ca(ga,t) = Z wa,t|ya,t‘7

t=T
—a

(&)

where €, ; symbolizes y, . with the fact that it is related to the
energy consumption e, ; as mentioned in Section II, and w, ; is
a positive weight that specifies the importance of a time slot for
the SA-IL to work in. For example, it is reasonable to assume
that the earlier time slots are more favorable so that the task of
the SA-IL can be completed as earlier as possible. Therefore, a
possible setting of w, ; is to relate it with the time ¢ as follows:

We = 1+ eq4t, (6)

for a positive constant ¢,. On the other hand, a typical value of
€q 1s zero and hence w, + = 1 so that the electricity payment is
the main concern as usual. Minimizing (5) means that the value
of ¥, associated with the best schedule is enforced to be as
large as possible, while keeping others as close to zero as pos-
sible. Consequently, the relaxation of (4) and the additional reg-
ularization term in (5) allow us to transform the difficult mixed
integer problem back into a convex real-valued one.

It should be noted that the characteristic function defined in
(5) is called weighted L1 regularization term commonly consid-
ered in automatic model selection and sparse signal processing
[13], [14]. The underlying principle of the proposed algorithm
is to employ an interesting property of Ly regularization, which
is particularly useful to search over a large set of pre-defined
distinct models and find the least number of features that best
fits the data model. This is similar to the current household
optimization problem with binary decision variables especially
when we are able to identify all possible schedules of a par-
ticular appliance within the period of interest. Moreover, since
these possible schedules are known in the current setting of fi-
nite and discrete time horizon, the L, regularization is very ef-
fective in finding the best schedule with respect to the price in-
formation, and the proposed problem formulation (without bi-
nary decision variables) is a reasonable approximation of the
original mixed integer CP.

In the Appendix, we briefly analyze the behavior of the so-
lution of the relaxed problem according to some classical an-
alytic results of general L, regularized problem previously re-
ported in [18]-[20]. Although the solution of the new optimiza-
tion problem cannot be an exact binary solution, it does help
us to identify those cost-effective schedules to solve the overall
scheduling problem as we shall illustrate in Section V. The basic
idea is to simply round the first /V,, largest continuous variables
Y+ to one while setting the others to zero. Very often, the so-
lution so obtained is identical to or very close to the optimal
CPLEX solution if MILP and MISOCP are considered. How-
ever, we note that CPLEX could run into memory problems
for large-scale problems, and is unable to handle more general
convex MINLP problem and therefore the types of appliances
that can be included in the problem are somewhat limited. In
short, for general convex MINLP problem, the proposed ap-
proach can be treated as a good alternative to CPLEX for finding
the nearly optimal solution with a reduced computational time.
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B. Schedule-Based Appliance With Uninterruptible Load
(SA-UL)

Different from the SA-IL mentioned previously, the SA-UL
should run until completion once started. According to [3], the
configuration of SA-IL can be extended to SA-UL by imposing
additional constraints on the energy consumption. More pre-
cisely, let z, ; be an additional auxiliary variable indicating that
the SA-UL starts operation at time ¢ € [T, Ts] if 24+ = 1 and
otherwise if z, ; = 0. Also, let 7, be the number of time slots
that the SA-UL needs to operate at an energy level of E***
consecutively. Then, the additional constraints needed by the
SA-UL can be written as

T,—7a+1
Zajt = 1., and (7)
t=T_
ya,t Z Zav.,tv . ~7ya,t+‘ru71 2 za,t: t S [LyTa] (8)

The constraint in (7) ensures that only one start time is allowed,
while the constraints in (8) ensure that the SA-UL operates con-
secutively once it starts. Therefore, it is clear that the DR opti-
mization problem involving the SA-UL is still a mixed integer
problem with two types of binary decision variables, ¥, , and
Z(L,f,.

To avoid solving the mixed integer problem, one may again
employ the same technique mentioned in (4) and (5) to z, ;.
However, we shall consider a more general scenario that better
describes the property of the SA-UL, which has to follow a
set of predefined operation steps. For example, the laundry ma-
chine cannot perform drying before washing. Let £2(¢) be such
known load profile for ¢ € [0,7, — 1]. Similar to previous
definition, the user needs to specify a preferred time period
te[L,,T,] withr, < T, — T, + 1. Hence, there are M =
T,— T, — 74+ 2 possible load schedules, which can be written
as

Za,m te [T r
Eam(t) = { Emin ’

—a,m’=a,m + 7o — 1]a (9)
otherwise,

form=20,...,M —1,wherel, ,, =1, +m is the start time
of the 1m-th schedule. For example, when m = 0, the SA-UL
starts working at £ = T, and then follows the known load
profile £2(¢) until ¢ = T, + 7, — 1. For other time instants
int € [T,,T,], the SA-UL consumes the minimum energy of
Emin_ Using the above definition, the scheduling problem is to
select the best schedule in the set {E, ,,.(t),m = 0,..., M —
1}, which depends on the price information within the user’s
preferred time period. We can see that the definition of SA-UL
described in the first paragraph is a special case of (9) if we set
E2(ty = EP*= fort € [0, 7, — 1]. By combining all possible
load schedules, the energy consumed by the SA-UL at time ¢
can be written as

M—-1

6(1,71: = Z )\n,,m,Ea,7m,(t)u

m=0

(10)
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where A, , = 0, 1 is the binary decision variable indicating
that the schedule is selected when it is equal to one. To ensure
that only one schedule is selected at a time, we further impose

M-1

> Aam =1.

m=0

(11)

Therefore, the energy consumption model in (10) is more
general and has fewer numbers of binary variables than the
one previously reported in [3]. Similar to the discussion in
Section III-A, the binary variable A, ., can be relaxed by
introducing the constraint

0< A m <1, m=01,...,.M -1, (12)
and the characteristic function
M-1
Cav(ga,t) — Z wa,m|/\a,7n ) with Wa,m = 1+ €a,L,m~,
m=0
(13)

in the problem. Again, with (12) and (13), the DR optimiza-
tion remains to be convex. As mentioned earlier, under this
convex framework, other appliances whose characteristics are
described by a general convex function can be easily incorpo-
rated into the formulation. One of the examples is the BAs that
will be discussed in next section.

IV. MODELS OF OTHER COMMON APPLIANCES

The main purpose of this section is to illustrate the flexi-
bility and versatility of the proposed approach in handling other
common appliances found in the literature. As an illustration,
we shall consider BAs and MAs as mentioned in Section II,
whose characteristics are respectively described by a general
convex function and a linear dynamical model. For simplicity,
we shall only summarize their major properties and constraints
based on the considerations reported in [5].

A. Battery-Assisted Appliances (BAs)

In addition to the above two types of household appliances,
we now consider a type of appliances called BAs which are
equipped with internal batteries. An important advantage of
BAs is its ability to store or dispatch energy to better utilize
the intermittent renewable energy sources, and improve the
demand response to RTP information. Without loss of gener-
ality, we assume that each BA contains one internal battery.
At any time £, the energy that flows into and out of a BA can
be separated into two parts: the first part is the required energy
consumption F,(t) to support the desired service, while the
second part is the battery charging/discharging energy b, (¢).
Note in the latter that the battery can be considered as charging
(discharging) when b, (t) > 0 (b,(t) < 0). Hence, the total
energy consumed by the BA is

ot = Eo(t) + ba(t). (14)
For the energy consumption part, we further assume that the BA
is equipped with direct control demand response up to E, (t) =
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(1- d(,J)E(‘fax at time £, where d, ; is a continuous variable
that specifies the energy reduction in response to the price in-
formation with the following the bound constraints

0<do, <D™ teT.

15)
However, it is clear that the user will feel uncomfortable if the
energy used by the BA (and hence performance) is reduced too
much. Therefore, we also include in the objective function the
following convex welfare or characteristic function to measure
the users’ dissatisfaction at a level of d,, ;:

C{D(da ) = M (D™ —dyy + Aa) 7, (16)
where A1, A9, and A3 are positive constants. It can be seen that
A1 specifies its relative importance with respect to the price
level, and A2 and A3 specify the degree of tolerance on the en-
ergy saving.

For the battery model, we adopt the model recently proposed
in [5]. First, the battery charging/discharging energy is bounded
by

teT,

R, <bo: < Ea,ta (17)

where R . < 0 (I?p_; > 0) denotes the maximum charging
(discharging) rate. Second, the total charge stored in the battery
is bounded by

t
0< BI 4 bop < B, teT,
k=1

(18)

where B™ is the initial charge remained and B™** is the max-
imum capacity of the battery. Third, the following operating
cost function is used to model the possible damage against the
battery’s lifetime:

O (bar) = 1a,1b2 4 = 1o 2batbo 1
a3 min (by ¢ — 74,4 B2, 0)7, (19)

where 9., £ = 1, 2, 3, 4, are positive constants. These three
terms penalize the fast charging/discharging, the charging/dis-
charging cycles and the deep discharging, respectively [5]. Note
Oéb) (b4 ) isa positive convex function if 7, 1 > 7,,2. Using the
above results, the resultant characteristic function of the BA is
given by

Ca(ga,t) = C(d)(da,t) + C(Sb)(ba,t)7

a (20)
while the set of the convex constraints consists of (15), (17)
and (18). We can see from (20) that the characteristic function
C.(€a1) is a general convex function so that existing commer-
cial MILP or MISOCP solvers may not be directly applicable.
Alternatively, one may use heuristic algorithms (e.g., PSO al-
gorithm used in [6]) to solve the problem, but it is known that
they may easily suffer from premature convergence, which may

1817

affect the reliability and quality of the solution. Finally, we note
that the BAs have not been discussed in the literature to our
best knowledge despite the fact that it can be easily found in the
household nowadays.

B. Model-Based Appliances (MAs)

The MA considered in this section summarizes the appliances
previously reported in the literature, such as [5], [6], [8], [10].
Typical examples of this type of appliances include air-condi-
tioners, heaters and refrigerators, in which the temperature can
be adjusted by the amount of electrical energy consumed. In
general, the service offered by the MA can usually be described
by a physical model or more precisely a linear dynamic model
that expresses the relation between energy consumption, desired
qualities to be controlled and other physical quantities which
can be measured or estimated. Without loss of generality, we
shall take the air-conditioner previously reported in [5] as an ex-
ample to demonstrate the flexibility of the proposed CP frame-
work. To start with, let W (¢) be the indoor temperature ad-
justed by the air-conditioner. The relation between the indoor
temperature and the energy consumption ¢, , can be expressed
as the following linear dynamical model:

W7ty = Wt — 1)+ a [W () — Wt — 1)] + Bear

21
where « and J denote the thermal condition surrounding the air-
conditioner, W°"*(¢) is the outdoor temperature, and W'™(0)
is a known initial room temperature. Moreover, additional con-
straints can be imposed on ¢, ; to specify its possible operating

range and associated temperature range as

; ; —==des
EM < gy < EM and W <WM() < W,

(22)
where W%* and W denote the minimum and maximum de-
sired temperature, respectively. In addition to the energy con-
sumption, it is natural to measure the user’s dissatisfaction in
term of the indoor temperature W () that is directly perceived
by the user. More precisely, the following convex characteristic
function may be used:

ColFuy) = 1 (Win(t) —Weornd)? _ ¢y (23)
where ¢; and ¢, are some positive constants and W™/ denote
the most comfortable temperature decided by the user. We can
see that deviation from W™/ will incur penalty to the objec-
tive function.

In summary, the proposed convex programming framework
is very general, and it is easy to extend to other typical house-
hold appliances. Due to page limitation, the details are omitted
here. The overall convex optimization problem is summarized
in Table I, where we highlight key equations related to the char-
acteristic function and the set of convex constraints for all types
of appliances considered in this paper, namely SA-UL, SA-IL,
BAs, and MAs.
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TABLE I

KEY EQUATIONS FOR THE DR OPTIMIZATION PROBLEM IN (1) INVOLVING
DIFFERENT TYPES OF APPLIANCES. N/A: NOT APPLICABLE

A ppliance Energy Characteristic Convex Linear
consumption function inequality equality
SA-IL @ ©)] C) (€]
SA-UL (10) (13) (12) an
BA (14) (20) (15), (17), (18) N/A
MA 21 (23) (22) N/A

V. DESIGN EXAMPLE

A. Linear Price Model

As an illustration, we consider a smart home shown in Fig. 1,
where the EMS system is used to schedule the operation of
four types of appliances in one-day time horizon with T' =
[1,2,...,24] after receiving the RTP information from utility
company. If the RTP changes in day time, the scheduling can
be updated at regular interval, say 1 hour or more. Fig. 2 shows
the RTP information which will be used in this example. The pa-
rameters of different appliances used in the simulation are sum-
marized as follows:

a) SA-IL: It is allowed to run at anytime between T, = 9
and T = 23. Its task is considered to be completed if it
operates at maximum power for IV, = 3 hours. The min-
imum and maximum working rate are E™* = 0.2 kwh
and E** = 1.5 kwh respectively.

b) SA — UL;: It has a constant load profile of ES(t) =
[1 kwh, 1 kwh, 1 kwh, 1 kwh] with a duration of 7, = 4,
and the minimum working rate is F™* = (.2 kwh when
it is “off.” It has to run in a user-defined time interval of
T,,T,] = [12,22].

¢) SA —ULs: Different from SA —ILq, it
has to satisfy a variable load profile of
Ee(ty = [0.8 kwh,1.6 kwh,1.1 kwh] with a du-

ration of 7, = 3 in a user-defined time interval of
[T,,T,] = [1,18], while the minimum working rate is
Emin = 0 kwh.

d) BA: It has to run for whole day. For the energy consump-
tion part, the maximum working rate is E** = 2.3 kwh
and the maximum direct control demand response is
Dma* = ().2. For the battery part, the maximum charging
and discharging rates are 0.25 kwh, the storage capacity
is B = 0.8 kwh, and the parameters in (19) are given
by 7,1 = 5e~7, Na,2 = e~ 7, Ma3 = land 7,4 = 0.2

e) MA: An air-conditioner is considered. According to the
reference settings given in [5], we set W™/ = 75 F,
Wi — 0P, W™ = 79F, o = 0.9, 8 = —0.0095,
Emin = () kwh, E®** = 4 kwh, ¢; = 0.1 and e2 =
0.1. An example outdoor temperature W% () used in the
simulation is shown in Fig. 2. The operation interval is
[sza] = [87 23]'

We also assume that the smart home is equipped with a solar
energy panel, which can deliver a maximum power of V (¢) =
0.2 kwh at the time interval of [7,18].

All the convex problems considered below are solved using
CVX, a package for specifying and solving convex programs
[16]. It takes less than few seconds to obtain the solutions in a
Pentium 4 3.2 GHz personal computer.
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Cents / kwh
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Time (Hour)

Fig. 2. Real-time pricing information received from the utility.

Outdoor temperature
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Fig. 3. Outdoor temperature over a day.

First of all, we consider a scenario that the smart home only
consists of SA-IL and SA-UL. The resulting DR optimization
problem is a MILP, which can be solved by CPLEX if one
takes the binary decision variables in (2), (3), (7), (8), (10),
and (11) into account. On the other hand, we also consider the
proposed CP formulation by relaxing the MILP as described
in Sections III-A and III-B. The key equations of the proposed
CP formulation for the SA-IL and SA-UL can also be found in
Table 1. With the parameters of SA-IL and SA-UL mentioned
earlier, the continuous solution of the proposed CP is very close
to the binary solution of the MILP. Even without rounding it
to the closest binary number, one can easily identify the same
schedule as the binary MILP solution indicates. As discussed in
Section I1I-A, this is possibly due to the fact that all the possible
schedules of the SAs can be pre-determined exactly and hence
the problem becomes a model selection problem which can be
handled well by the L, regularization. This suggests the useful-
ness of the proposed approach.

However, we note that if BA and MA are also incorporated
into the DR optimization problem, the resulting MINLP cannot
be solved by CPLEX. Fig. 4 shows electricity allocation of all
appliances in the smart home in response to real-time price ob-
tained by the proposed CP framework. In particular, we can see
that: a) the operation times of the SA-UL is always chosen at
the lowest price levels, and the corresponding continuous deci-
sion variables in (4) are all close to one thanks to the L; reg-
ularization term, b) similar arguments of the SA-UL hold for
both SA-ILs, in which the decision variables corresponding to
the best schedules can be easily singled out, ¢) the BA tends to
consume more power and its internal battery is charged up in
the case of lower price or vice versa, and d) the operations of all
appliances are well coordinated to reduce the total energy con-
sumption and avoid the peak prices at ¢ = 18 and £ = 19.

B. Quadratic Price Model

In this subsection, we consider a quadratic price model which
is of the form P;(u;) = gtuf + pyuy. For the sake of compar-
ison with CPLEX, we only consider SA-ILs so that the overall
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Fig. 4. Electricity allocation of various appliances in the smart home under real-time pricing.

problem belongs to MISOCP, which can be solved optimally by
CPLEX. The solution obtained from CPLEX will therefore be
used as benchmark to quantitatively assess the performance of
the proposed and other approaches. To apply the proposed ap-
proach to solve the above problem, the binary decision variables
are first relaxed as suggested in Section III. Three different ap-
proaches will be considered: 1) weighted L; norm as proposed,
2) weighted s norm, and 3) no norm constraint. Then, the ac-
tual binary solution is obtained by rounding the first N, most
significant variables to one, while setting the others to zero. The
general settings are summarized as follows:

a) The number of SA-ILs is 5, 10, or 15. For each configu-
ration, the simulation is repeated 200 times.

b) The possible operation time interval [T, T,] is randomly
generated such that 1 < 7T, < T, < 24, and the number
of time slots N, is randomly generated such that N, €
[17 Ta - Iu]

¢) The minimum and maximum working rates are ran-
domly chosen from [0.1 kwh, 3 kwh] such that
0.1 kwh < Emin < pmax < 3 kwh,

d) The quadratic price function Py(u;) = giu? + pyuy is
considered, where p, is identical to Fig. 2, while g; is

randomly generated according to the magnitude of p; so
that g; follows a similar curvature of p;.
e) The weight parameters for both weighted 7.1 and L+ al-
gorithms are given by w, ; = 1 + 10~*¢ as in (6).
The performances of various approaches are assessed using
the relative difference with respect to the optimal CPLEX solu-
tion:

c— ¢
g % 100%,

where C denotes the total cost obtained by CPLEX and C(*,
1 = 1, 2, 3, denote the total cost obtained by approaches 1, 2,
and 3. This measures the deviation of the solution away from
the optimal one. Fig. 5 shows the simulation results for 5, 10
and 15 SA-ILs. We can see that the solutions of approaches 2
and 3 are more or less the same and they result in larger devi-
ation as compared with the proposed approach. Unlike L reg-
ularization, these solutions indicate a more even spread across
all variables, and hence it is more difficult to identify the most
effective solution. On the other hand, the proposed approach al-
ways offers a good solution that is close to the optimal one. The
deviation is usually within 1% and at times the optimal schedule

RO —
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Fig. 5. Demand response optimization in a smart home through a home energy
management system (EMS).

(i-e., 0% deviation) can be found. Also, we note that CPLEX oc-
casionally ran into memory problems as the number of SA-ILs
exceeds 20. This suggests that CPLEX may not be very effi-
cient to handle large number of binary variables as in the pro-
posed approach. Moreover, CPLEX is unable to handle general
convex MINLP problem, which restricts the types of appliances
incorporated in the problem. To verify the capability of the pro-
posed approach, we repeat the above simulation, but consider a
more general convex MINLP problem in which other types of
appliances mentioned in Section V-A are additionally included.
Simulation results again suggest the superiority of the proposed
approach in finding better schedules than other norm regulariza-
tions. However, the results are omitted due to page limitation. In
summary, the proposed approach can be considered as a good al-
ternative to CPLEX and is very efficient in handling large-scale
appliance scheduling problem in home EMS.

VI. CONCLUSION

We have proposed a versatile CP DR optimization frame-
work for the automatic load management of various household
appliances in a smart home. Also, we have shown that the
start-up decisions of SAs, which unavoidably lead to mixed
integer problem formulation conventionally, can be handled
efficiently under the CP framework using the concept of L,
regularization. Considering the characteristics of most typical
appliances can be described by convex functions, our finding
is very useful in the sense that traditional CP DR optimization
framework can be readily extended to support a wider variety
of appliances. Simulation result shows that the energy sched-
uling of SAs, as well as other appliances, such as BAs and
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MAs, can be determined simultaneously using the proposed
CP formulation.

Finally, we note that the current framework can be extended
to handle multiple household scenarios say using a similar idea
proposed in [5], which is concerned with a distributed algorithm
based on CP. In particular, it showed that the utility and cus-
tomers can cooperate to jointly compute the price level and de-
mand schedule by iteratively updating the solution of their in-
dividual problems. Since each household needs to carry out a
similar convex optimization problem in each iteration, we ex-
pect that the proposed framework can still be applied to addi-
tionally handle the energy scheduling of SAs. Due to page limi-
tation, the comprehensive analysis of the resulting optimization
problem is left in future work.

APPENDIX
CHARACTERISTICS OF THE SOLUTION OF THE RELAXED
PROBLEM

As mentioned in Section III, the problem under consideration
is more like a feature selection problem, where the usefulness of
the L regularization has been thoroughly justified in the liter-
ature [18]-[20]. Conventionally, the basic regularized problem
is given by

II?gII L(xz) + AJ(z), (24)
where L{z) is the loss function, J(z) is the regularization term
and 2 is the regularization parameter. In [18], Osborne et al.
made a detailed analysis on the L-regularized least squares
problem, also known as Lasso, where L(x) represents a squared
error loss and .JJ(z) = ||#||1. Later in [19], Rosset extended to
the case where L(z) can be any convex function. In what fol-
lows, we only summarize the major results that are related to our
problem involving I.; regularization, i.e., our main focus is on
schedule-based appliance. First of all, the Karush-Kuhn-Tucker
(KKT) condition of the L1 regularized problem suggests that
[19]:

IVL(2)n| < A= 2, =0,
£ 0= |[VL(z)n| = A.

This also implies that the properties of the problem in-
clude: a) |VL(z),| = Ill(lX|VL( x| and b) sign{x,) =

—sign(VL(x),) when z, # 0 [20]. In other words, the
solution of the problem tends to contain a set of nonzero coeffi-
cients, which corresponds to the variables whose “generalized
correlation” (or sub-gradient magnitude) |V L(x),,| is maximal.
The remaining variables with smaller generalized correlation
can be set to zero without violating the optimality condition.
Thus, the solution enhances sparsity and in our case, the L1
regularization helps to focus on possible schedules that lead to
largest cost reduction. To see this, if only SA is considered, the
general form of our problem

min P(y) + We|Yq
Y (v) ; t|y ,t‘

st 0< yqr < 1and Zy,,,,t =N,
t

is similar to (24) except for the additional constraints. Here,
we collectively express the total cost function as P(y) with
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y = {yasle € A,t € T} for simplicity. From the analytic
results above, we can deduce that the variable ¥, ;+ associated
with the largest cost reduction at time ¢ = ¢* will always be
selected. With the constraints 0 < y,; < land ), y,+ =
N,, the variable y, . will approach one and the other vari-
able associated with the second largest cost reduction will be
selected next. Similar argument can be repeated until the con-
straint Zf, Yot = IV, is satisfied. However, it may happen that
the constraint 0 < y,, < 1 is not active especially when
P(y) is a general convex function. Nevertheless, according to
the analysis above, the larger magnitude of the resultant ¥, ;
will indicate the importance of the direction towards the larger
cost reduction. Therefore, the solution of the proposed relaxed
problem can still be used to find the significant variables.
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