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Abstract

Rapid non-genomic effects of 17b-estradiol are elicited by the activation of different estrogen receptor-a isoforms. Presence
of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-a66 (ER66)
and the truncated isoforms, estrogen receptor-a46 (ER46) and estrogen receptor-a36 (ER36). However, the binding affinities
of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected
cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized
cell-free expression systems to determine the binding affinities of 17b-estradiol to mERs, and the relationship among
palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [3H]-17b-
estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific
binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles,
used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17b-estradiol. Moreover, ER66 and ER46
bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical
estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines
the binding affinities for human estrogen receptor-a isoforms, and demonstrates that ER66 and ER46 show characteristics of
mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper
receptor conformation allowing 17b-estradiol binding. The differential binding of ER66 and ER46 with certain compounds
substantiates the prospect of developing mER-selective drugs.
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Introduction

Rapid non-genomic actions of estrogen are physiologically

significant in our biological systems including the cardiovascular,

nervous and skeletal systems [1,2]. Short incubation of 17b-
estradiol (the major active form of estrogen) rapidly triggers the

formation of intracellular signaling molecules such as cAMP [3,4],

cGMP [5] and calcium [6], leading to rapid cellular responses by

activation of subsequent signaling pathways, such as protein kinase

A, protein kinase C and extracellular regulated kinase (ERK) [2,7].

For example, physiological concentrations of 17b-estradiol en-

hanced endothelium-dependent relaxations induced by acetylcho-

line in the rat aorta [8]. This response is mediated by activation of

the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and endo-

thelial nitric oxide synthase (eNOS) and is regulated by a non-

receptor tyrosine kinase c-Src [9–11]. This type of rapid (within

seconds to a few minutes) response to estrogen is non-genomic,

since it does not involve gene transcription and protein synthesis

[12].

The estrogen receptors (ER), ERa and ERb, are well

recognized as nuclear steroid receptors that interact with specific

DNA sequences, namely estrogen responsive elements (ERE), to

regulate gene expression in response to estrogen [13]. The

existence of membrane estrogen receptors (mERs), responsible

for the non-genomic actions of estrogen, was first indicated by the

presence of specific surface binding sites for estrogen conjugated

with cell-impermeable albumin [14]. Immunological studies using

anti-ERa and ERb antibodies have detected ERs in both nuclear

and cell membrane fractions of cells endogenously expressing or

transfected with ERa or ERb [15,16]. Endothelial cells from ERa
and ERb homozygous double knock-out mice lose the ability to

mediate rapid estrogen signaling, and ERa and ERb are not

expressed in either nuclear and membrane cell fractions of these

animals [17]. Membrane and nuclear cell fractions of ERa-
transfected CHO cells bind estrogen with similar affinities, but the

membrane receptor number of ER66 was estimated to be only

about 3% of the total nuclear receptor density [16]. These data

show that ERa and ERb or their isoforms are essential in rapid

estrogen signaling, and also suggest that the putative mER is

a homologue of the classical nuclear estrogen receptor-a, also

named estrogen receptor-a66 (ER66) in view of its molecular

weight. Two truncated splice variants of the ERa, 46 kDa

estrogen receptor (ER46) [18] and 36 kDa estrogen receptor

(ER36) [19] have been identified as mERs. To our knowledge,

molecular identities of membrane isoforms of another estrogen

receptor homologue, ERb, have not yet been reported.
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Functions of mERs are dependent on palmitoylation and

membrane localization. Translocation of ER66 to plasma

membrane as mER is achieved by interaction with the scaffolding

protein of caveolae, caveolin-1 [20]. This interaction of ER66 with

caveolin-1 is palmitoylation-dependent. Point mutation of Cys447

residue of ER66 to Ala impairs ER66 palmitoylation and

membrane localization, and hence the subsequent rapid estrogen

signaling pathways mediated by the membrane-localized ER66

[21,22]. The truncated splice variant, ER46, has lost the AF-1

transactivation domain, but retains domains for palmitoylation

and caveolin-1 association [18,22]. Loss of the AF-1 domain has

a minimal influence on the ability of ER46 to elicit non-genomic

estrogenic responses, but also enhances palmitoylation over wild-

type ER66 [22,23]. This suggests that a larger number of ER46 is

palmitoylated and translocated to the membrane compared to

ER66. In line with this suggestion, ER46 mediates estrogen-

induced eNOS activation in a more efficient manner than ER66

[24]. Another splice variant of ER66, ER36, is devoid of the AF-1

and AF-2 transactivation domains and part of the ligand binding

domain in the C-terminal is replaced by an unique 27 amino acid

sequence [19], ER36 mediates the stimulation by 17b-estradiol of
mitogen-activated protein kinase (MAPK) pathway [25]. ER36

also mobilizes intracellular calcium when acutely stimulated by

17b-estradiol [26].
Although the functional responses elicited by the mERs have

been studied extensively [24,25,27,28] and surface binding sites of

17b-estradiol on plasma membrane of ER66, ER46 or ER36

expressing cells was shown by confocal microscopy [27,29], their

binding affinities towards estrogen have not yet been determined.

Biochemical binding studies were greatly hampered by the

difficulty in developing stable mER-transfected cell line and the

relatively low expression level of mER on the plasma membrane

[16,30,31]. The present experiment determined the binding

affinities of estrogen to human membrane isoforms of ERa, taking
the advantages of cell-free expression systems. The importance of

palmitoylation, translocation of mERs and membrane insertion in

affecting these binding affinities was also investigated. Finally, the

relative binding affinities of different mERs to various estrogen

receptor agonists and antagonists, including phytoestrogens, were

evaluated.

Results

ER66, ER46 and ER36 Colocalize with Plasma Membrane
Vesicular stomatitis virus glycoprotein (VSVG)-tagged ER66,

ER46 and ER36 proteins were transfected to HEK293 cells with

similar transfection efficiencies (Fig. 1). Anti-pan cadherin was

used as plasma membrane marker. Confocal microscopy revealed

that ER66 were expressed dominantly in the nuclear region but

that a small percentage was expressed on the plasma membrane as

shown by the colocalization with the plasma membrane marker,

pan cadherin. ER46 and ER36 were expressed mainly in the

cytosol and only a small portion on the plasma membrane.

Expression of mER Proteins Using Cell-free Expression
Systems
Human ER66, ER46 and ER36 proteins were expressed in

both eukaryotic and prokaryotic expression systems. The eukar-

yotic and prokaryotic expression systems are in vitro protein

expression systems composed of cell lysates from rabbit re-

ticulocyte and E. coli, respectively [32]. The rabbit reticulocyte

lysate contains a large amount of heat-shock proteins, which

function as molecular chaperones to ensure proper receptor

folding [33]. Immunoreactive bands of molecular sizes of 66, 46

and 36 kDa were detected by anti-HisG antibody (Fig. 2), which

corresponds to the molecular sizes of the His-tagged receptor

proteins.

Figure 1. Colocalization of ER66, ER46 and ER36 with plasma
membrane. (A) Confocal microscopy of HEK293 cells transfected with
VSVG-tagged ER66, ER46 or ER36 treated with anti-VSVG followed by
Oregon Green 488 goat anti-rabbit secondary antibody (green). Plasma
membrane is marked with anti-pan cadherin primary antibody followed
by Texas Red goat anti-mouse antibody (red). Overlay images show
colocalization of ER66, ER46 and ER36 with the plasma membrane
(yellow). White arrows indicate some colocalization sites. (B) Western
blot showing relative transfection efficiencies of His-tagged ER66, ER46
and ER36 in HEK293 cells using b-actin as a reference. Bands of 66, 46
and 36 kDa for ERs were detected by anti-HisG antibody and bands of
42 kDa were detected by anti-b-actin antibody.
doi:10.1371/journal.pone.0063199.g001

Figure 2. Expression of ER66, ER46 and ER36 in cell free
expression systems. Expression of ER66, ER46 and ER36 in eukaryotic
and prokaryotic expression systems composed of cell lysates from
rabbit reticulocytes or E.coli, respectively. Bands of 66, 46 and 36 kDa,
corresponding for ER66, ER46 and ER36, respectively, were detected by
anti-HisG antibody using Western blotting.
doi:10.1371/journal.pone.0063199.g002

Differential Ligand Binding of ERa Isoforms
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Serum Levels of 17b-estradiol Bind to ER66 and ER46, but
not to ER36
ER66, ER46 and ER36 were expressed in the eukaryotic cell-

free expression system. Saturation binding assays demonstrated

that [3H]-17b-estradiol bound to ER66 and ER46 specifically

with an equilibrium dissociation constant (Kd) of 68.8 pM and

60.7 pM, respectively, whereas ER36 showed no saturable

specific binding (Fig. 3A). Scatchard plots revealed a single

population of binding sites for [3H]-17b-estradiol in ER66 and

ER46 (Fig. 3B).

Saturation binding assays showed that the Kd values of 17b-
estradiol binding for ER66 and ER46 expressed in prokaryotic

system were 119.4 pM and 433.7 pM, respectively, whereas ER36

showed no saturable specific binding (Fig. 3C). Scatchard plots

showed that 17b-estradiol bound to ER66 and ER46 at a single

binding site (Fig. 3D). The binding affinities of 17b-estradiol to ER

isoforms are summarized in Table 1.

Inhibition of Posttranslational Palmitoylation and
Membrane Insertion of mERs Impaired Ligand Binding
In order to elucidate whether or not palmitoylation is involved

in ligand binding of mERs, a palmitoylation inhibitor (2-

bromopalmitate) was added to the transcription/translation re-

action in the eukaryotic cell-free expression system. Non-

palmitoylated and palmitoylated ER66 or ER46 were separated

by native protein electrophoresis at neutral pH, which distin-

guishes proteins according to their size, shape and intrinsic charge.

Upper and lower bands were detected in cell lysates expressing

ER66 or ER46 (Fig. 4A). Addition of the palmitic acid group

decreases the positive electric charge of ER66 and ER46.

Therefore, palmitoylated ER proteins are represented by the

lower bands, as proteins more negatively charged migrate faster

towards the positive electrode. Treatment with 2-bromopalmitate

(100 mM) abolished the expression of palmitoylated ER66 and

ER46 (Fig. 4B). Inhibition of palmitoylation by 2-bromopalmitate

reduced the binding affinities of ER66 and ER46 to Kd values of

185 pM and 337.5 pM, respectively (Fig. 4C). Scatchard plots

showed single-site binding of 17b-estradiol to ER66 and ER46 in

the presence of 2-bromopalmitate (Fig. 4D).

Figure 3. ER66 and ER46, but not ER36, binds with 17b-estradiol at physiological concentrations. (A) Specific binding of [3H]-17b-
estradiol to ER66 (#) and ER46 (N) expressed in eukaryotic system with Kd values of 68.8 pM and 60.72 pM, respectively. No saturable specific
binding was found for ER36 (%). (C) Specific binding of [3H]-17b-estradiol to ER66 (#) and ER46 (N) expressed in prokaryotic system with Kd values
of 119.4 pM and 433.7 pM, respectively. No saturable specific binding was found for ER36 (%). (B, D) Scatchard plot analysis for ER66 and ER46
showed single-site binding. Results are representative of three experiments each done in duplicate.
doi:10.1371/journal.pone.0063199.g003

Differential Ligand Binding of ERa Isoforms

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e63199



Absence of the membrane substitute, nanolipoprotein particles

(NLPs), reduced the Kd values of ER66 and ER46 to 130.4 pM

and 399.7 pM, respectively (Fig. 4E). Scatchard plots showed

single-site binding of 17b-estradiol to ER66 and ER46 in the

absence of NLPs (Fig. 4F).

Differential Binding of ER66 and ER46 to Various Estrogen
Receptor Agonists and Antagonists, and Phytoestrogens
Equilibrium binding of [3H]-17b-estradiol in the presence of

various estrogen receptor agonists and antagonists, and phytoes-

trogens, was studied to determine the relative binding affinities

(RBA) for ER66 and ER46. Monophasic curves were obtained for

all the compounds tested (Fig. 5). RBA values were calculated

based on the IC50 (Table 2). The overall order of affinity of the test

compounds to ER66 was: PPT.raloxifene .17b-estradiol.ICI

182,780. MPP. genistein.tamoxifen.DPN.kaempferol.G-

1.PHTPP=daidzein. The order of affinity of the test compounds

to ER46 was: PPT.raloxifene.17b-estradiol.genistein.MPP.

ICI 182,780. tamoxifen.DPN.kaempferol.G-1. daidzein

.PHTPP. ICI 182,780 had a significantly lower affinity to

ER46 than ER66. The binding affinities of estrogen receptor

agonists (PPT, DPN and G-1) to ER66 were similar to those to

ER46. The binding affinities of selective estrogen receptor

antagonists (tamoxifen and raloxifene) to ER46 were less (by half)

than those to ER66. The phytoestrogens genistein and kaempferol

bound to ER46 with higher affinities when compared to ER66,

but the affinities of daidzein to ER66 and ER46 were approxi-

mately the same.

Discussion

The major findings of the present study are: (a) ER66, ER46

and ER36 colocalize with the plasma membrane; (b) 17b-estradiol
binds to ER66 and ER46 with a Kd value of 68.8 pM and

60.7 pM, but did not specifically bind to ER36; (c) Posttransla-

tional palmitoylation and membrane insertion affect the binding

affinities of estrogen to ER66 and ER46; and (d) ER66 and ER46

displayed differential binding affinities with various estrogen

receptor agonists and antagonists, and with phytoestrogens.

The present results showed that ER66, ER46 and ER36

colocalize with the plasma membrane when transfected to

HEK293 cells. However, only a small proportion of ER66,

ER46 and ER36 are expressed on the plasma membrane of the

cells, while the receptors mainly reside in the nucleus for ER66

and the cytosol for ER46 and ER36. In preliminary studies (data

not shown), stable transfection of ERs in mammalian cells results

in cell toxicity [30,31]. ER-transfected cells stop growing and lyse

after exposure to low estrogen concentrations. Therefore, ER-

expressing cells have relatively low levels of the receptors [34],

particularly the notoriously hard-to-express membrane receptors.

These difficulties in the generation of mER-expressing stable cell

lines have hindered structural and biochemical studies of mERs.

In the present study, a eukaryotic cell-free expression system

composed of rabbit reticulocyte lysate was used. mERs were

successfully expressed in a substantial amount for receptor ligand

binding assays. Rabbit reticulocyte lysate has been widely used in

studies of steroid binding and contains large amount of heat-shock

proteins that functions as molecular chaperones to ensure proper

folding of receptors [33,35]. Moreover, NLPs, nanometer-sized,

discoidal particles comprising amphipathic helical scaffold proteins

that wrap themselves around the planar circumference of a lipid

bilayer, were used to mimic the structure of the plasma membrane

[32,36,37]. This provided an appropriate lipid bilayer plane for

the attachment of ER66, ER46 and ER36.

Reference serum levels of adult female range from approxi-

mately 100 to 700 pmol/L depending on the menstrual cycle [38].

The present results demonstrate that concentrations of 17b-
estradiol found in serum specifically bind to ER66 and ER46, but

not to ER36. The measured Kd value of ER66 (68.8 pM) is in

agreement with previous reports of cytosolic ER66 which ranged

from 10 pM to 1 nM [39], showing the high sensitivity and

validity of the current assay. ER46 is an alternative splice variant

of the ER66 transcript. It is devoid of the first 173 amino acids (A

and B domain) of ER66 [18]. ER46 shares the same ligand

binding domain as ER66, which may explain its similar binding

affinity to 17b-estradiol. On the other hand, ER36 shares

a common overall structure with ER46, except that the last 138

amino acids (part of E domain and F domain) are replaced by

a unique 27 amino acid domain [19]. This unique amino acid

sequence in ER36 must alter the ligand binding domain, which

explains why ER36 has a much different binding affinity. Previous

studies showed that ER36 binds with 17b-estradiol with a Kd of

2.2 nM [26]. This concentration is much higher than physiological

serum estrogen levels, which suggests that ER36 possesses

functions other than solely to act as a mER. In line with this

interpretation, ER36 activates the 17b-estradiol-induced MAPK

pathway in ER36-transfected cells [25]. However, the MAPK

pathway in these cells can also be activated to a similar level by the

same concentrations of the inactive isomer of estrogen, 17a-
estradiol, and by testosterone [25,28]. This illustrates that the

MAPK activation in ER36-transfected cells is not specific to 17b-
estradiol.

The prokaryotic expression system lacks the posttranslational

modifications present in eukaryotes, and thus can be used

prospectively to examine the role of such modifications of mERs

in 17b-estradiol binding. ER66 and ER46 expressed in pro-

karyotic system had lower binding affinities to 17b-estradiol than
those expressed in eukaryotic system (Table 1), suggesting that

posttranslational modifications are essential to proper receptor

conformation of ERs for estrogen binding. Mutational analysis on

palmitoylation sites of ER66 and ER46 show that membrane

Table 1. Summary Table of binding affinities of 17b-estradiol to mERs.

Kd of ER66 Kd of ER46 Kd of ER36

Eukaryotic expression system (with NLP) 68.8 pM 60.7 pM no specific binding

Prokaryotic expression system (with NLP) 119.4 pM 433.7 pM no specific binding

Eukaryotic expression system (with NLP and 2-
bromopalmitate)

185.0 pM 337.5 pM –

Eukaryotic expression system (without NLP) 130.4 pM 399.7 pM –

doi:10.1371/journal.pone.0063199.t001
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localization of mERs depends on palmitoylation [22,24]. 2-

Bromopalmitate was used to inhibit palmitoylation of ER66 and

ER46 expressed in eukaryotic expression system. The binding

affinities of non-palmitoylated ER66 and ER46 were reduced to

values that are similar to ER66 and ER46 expressed in prokaryotic

system. Therefore, the present data suggest that palmitoylation is

the major posttranslational modification to achieve a proper

conformation of mERs for estrogen binding.

Non-palmitoylable mERs mutant cannot associate with the

plasma membrane [22,24]. Hence, mERs expressed in eukaryotic

system in the absence of the membrane substitute, NLPs, were

used to study the significance of membrane localization. Removal

of membrane substitutes reduced the binding affinities of ER66

and ER46. This provides further evidence that membrane

localization is critical for proper estrogen binding. Only a small

portion of ER66 can be inserted in the plasma membrane in native

cells [40]. Nevertheless, the present data demonstrate that

posttranslational palmitoylation and removal of NLPs have a larger

influence on the binding affinities of ER46 (seven fold) than that of

ER66 (two fold), implying that ER46 may depend more on

membrane association to obtain correct conformation for binding

and that it thus may be the predominant mER. Collectively, the

present results indicate that ERs undergo posttranslational

palmitoylation for translocation and insertion into the plasma

membrane, and that this is crucial for proper receptor conforma-

tion for estrogen binding.

Previous in vitro studies concerning non-genomic vascular

actions of estrogen and genistein in arteries suggested differential

binding affinities of ER66 and ER46 [41,42]. Therefore, the

relative binding affinities of ER66 and ER46 towards various

estrogen receptor agonists and antagonists, and phytoestrogens

were studied. ICI 182,780 is a steroidal estrogen receptor

antagonist that competitively binds to the ER66 [43]. MPP is an

antagonist which displays 200-fold selectivity for ERa over ERb
[44], while PHTPP is a selective ERb antagonist [45]. PPT, DPN

and G-1 are selective ERa, ERb and G protein-coupled receptor

30 (GPR30) agonists, respectively [11,46,47]. The selective

estrogen receptor modulators, such as tamoxifen and raloxifene,

act on ERs and possess tissue-specific agonistic or antagonistic

effects [48]. Phytoestrogens, such as daidzein, genistein and

kaempferol, exert non-genomic vascular effects in a similar

manner as estrogen [42,49,50]. In the present study, the ligand

binding affinities of the tested compounds to ER66 were in general

similar to those to ER46, given that ER66 and ER46 have similar

binding properties. An exception is ICI 182,780, which has a 70

times lower affinity for ER46 than for ER66. The lower affinity of

ICI 182,780 for ER46 than to ER66 may account for the inability

of ICI 182,780 to inhibit the non-genomic vascular actions elicited

by estrogen and genistein in previous studies [41,42]. However,

these non-genomic vascular effects can be inhibited by MPP [42],

which has a four-fold higher affinity for ER46 when compared to

ICI 182,780. Therefore, MPP or chemical compounds with

similar structural features may used as a ER46-selective antago-

nist.

In conclusion, the present study demonstrates the binding

affinities of 17b-estradiol to human ER-a isoforms. Moreover, the

present results indicate that palmitoylation and membrane in-

sertion of ER66 and ER46 are important for proper receptor

conformation for 17b-estradiol binding. Furthermore, differential

binding of ER66 and ER46 with various estrogen receptor

agonists and antagonists, and phytoestrogens were observed.

Agonists that are ER46-selective are potential substitutes for

estrogen to reduce the incidence of cardiovascular diseases [51], as

they can avoid feminization in men and have lower risks in

estrogen-responsive cancers.

Materials and Methods

Chemicals
Phosphate buffered saline (PBS) was composed of 137 mM

NaCl, 2.68 mM KCl, 1.47 mM KH2PO4 and 8.1 mM Na2HPO4.

[3H]-17b-estradiol (specific activity = 110–170 Ci/mmol) was

purchased from PerkinElmer (Boston, MA, USA). 17b-estradiol,
2-bromopalmitate (2-bromohexadecanoic acid), raloxifene hydro-

chloride, tamoxifen, daidzein, genistein and kaempferol were

obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). 7a,17b-

[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-tri-

ene-3,17-diol (ICI 182,780), methyl-piperidino-pyrazole dihy-

drochloride (MPP), 4-[2-phenyl-5,7-bis(trifluoro methyl)pyra-

zolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP), propylpyrazole triol

(PPT), and diarylpropionitrile (DPN) were purchased from Tocris

Bioscience (Ellisville, MO, USA). 1-[4-(6-bromo-benzo[1,3]dioxol-

5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-etha-

none (G-1) was bought from Cayman Chemical Co. (Ann Arbor,

MI, USA).

Cloning of Expression Vectors
Total RNA was extracted from MCF-7 cells (American Tissue

Culture Collection, Manassas, VA, USA) by TRIzol reagent

(Invitrogen, Carlsbad, CA, USA) and then reverse transcribed to

cDNA by SuperScript first-strand synthesis system (Invitrogen)

according to manufacturer’s instructions. Full-length cDNA

transcripts of human ER66 (GenBank accession no.

NM_000125), ER46 (NM_000125) and ER36 (BX640939)
were synthesized by Pfu DNA polymerase (Stratagene, La Jolla,

CA, USA) using forward and reverse oligonucleotide primers

containing EcoRI and XhoI restriction sites, respectively (under-

lined). The forward primers are: 59 GAATTCATGACCAT-

GACCCTCCACACCAAA 39 for ER66, 59 GAATTCGCCAC-

CATGGCTA TGGAATCTGCCAAGAG 39 for ER46 and 59

GAATTCAAGGG AAGTATGGCTATGGAATCT 39 for

ER36; The reverse primers are: 59 CTCGAGACTGTGGCAGG-

GAAACCC 39 for ER66 and ER46 and 59 ATGCAAGTTCAG-

GATTCTCTTCTTTGCTTCTACATGTGAGATACCAGAA

TTAAGCAAAAGAAT 39 and 59 CTCGAGACACGAG-

Figure 4. Palmitoylation and membrane insertion is important for mER binding. (A) ER66 and ER46 proteins were analyzed by native gel
electrophoresis. Non-palmitoylated and palmitoylated ER proteins were separated as upper and lower immunoreactive bands to anti-HisG antibody
due to their difference in net electric charge imposed by the palmitic acid group in palmitoylated proteins. (B) Representative blot (upper panel) and
quantitative band intensity data (lower panel) showing the effect of 2-bromopalmitate (2-BP) treatment on the expression of palmitoylated ERs. Data
shown are the mean6 S.E. (n = 8–9) and *p,0.05. Specific binding of [3H]-17b-estradiol to ER66 (#) and ER46 (N) expressed in eukaryotic system (C)
in the presence of 100 mM 2-BP or (E) in the absence of the membrane substitute, nanolipoprotein particles (NLPs). When expressed in the presence
of the palmitoylation inhibitor, the binding affinities of [3H]-17b-estradiol to ER66 and ER46 were reduced to 185 pM and 337.5 pM, respectively. In
the absence of NLPs, the binding affinities of [3H]-17b-estradiol to ER66 and ER46 were reduced to 130.4 pM and 399.7 pM, respectively. (D, F)
Scatchard plot analysis revealed a single population of binding sites for 17b-estradiol to both ER66 and ER46. Results are representative of three
experiments each done in duplicate.
doi:10.1371/journal.pone.0063199.g004

Differential Ligand Binding of ERa Isoforms
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Figure 5. Competitive [3H]-17b-estradiol binding study of estrogenic compounds and phytoestrogens to ER66 or ER46. ER66 (#) or
ER46 (N) protein was incubated with serial dilutions of non-radioactive estrogenic compounds or phytoestrogens at 4uC overnight in the presence of
100 pM [3H]-17b-estradiol. Bound and free radioligands were separated by filtration and IC50 values were estimated by fitting the data to a nonlinear
four-parameter logistic model. Results are representative of three experiments each done in duplicate.
doi:10.1371/journal.pone.0063199.g005
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GAAAC 39 for ER36. The amplified products were cleaved with

EcoRI (Invitrogen) and XhoI (Invitrogen), gel purified using the

Wizard Plus minipreps DNA purification system (Promega,

Madison, WI, USA), and subcloned into pEXP5-NT/TOPO

vector and pcDNA3.1 (Invitrogen) for expression. The receptors

were cloned in frame with an N-terminal polyhistidine region. All

constructs were confirmed by sequencing (Invitrogen).

Co-localization Study of mERs
Expression vectors of ER66, ER46 or ER36 were transfected to

HEK293 cells with Optifect reagent (Invitrogen) according to

manufacturer’s instructions. Transfected cells were incubated for

at least 24 hours, and then plated on coverslips one to two days

prior to the experiment. Cells were fixed with methanol for ten

minutes and blocked in PBS with 3% BSA for two hours. Fixed

cells were incubated with anti-VSVG antibody (1:5000; Sigma)

and anti-pan cadherin (1:100; abcam) in PBS with 3% BSA at 4uC
overnight. Cells were then incubated with secondary antibodies,

Texas Red goat anti-mouse and Oregon Green 488 goat anti-

rabbit (1:160; Sigma), in PBS with 3% BSA for 1 hour at room

temperature. Transfected cells were viewed under a LSM 510

META laser scanning confocal microscope (Carl Zeiss, Thorn-

wood, NY, USA).

Cell-free Expression of mERs
Human ER66, ER46 and ER36 proteins were synthesized using

a eukaryotic TnT quick coupled transcription/translation system

(Promega) composed of rabbit reticulocyte lysate with T7 RNA

polymerase. The translation was initiated with incubation for 90

minutes at 30uC. Prokaryotic expressed receptor proteins were

produced by the MembraneMax protein expression kit (Invitro-

gen) as described by the manufacturer. All reaction mixtures were

supplemented with 2% (vol/vol) MembraneMax Reagent contain-

ing nanolipoprotein molecules (composed of mature human

apoA1 and 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC))

unless otherwise stated [37]. For inhibition of palmitoylation,

100 mM of 2-bromopalmitate was added to the reaction mixture.

Western Blotting
Five microliter of expressed receptor proteins were incubated

for 15 minutes in Laemmli buffer at 60uC and electrophoresed in

a 10% SDS-PAGE gel. For native gel electrophoresis, native

receptor proteins were mixed with native sample buffer and

electrophoresed in a 7.5% Tris nondenaturing polyacrylamide gel

(pH range 7.1 to 8.9). Proteins were transferred electrophoretically

to polyvinylidene fluoride (PVDF) membranes (Bio-Rad Labora-

tories, Inc., Richmond, CA, USA) in a Tris-glycine transfer buffer

with 20% methanol. The membranes were blocked by Tris

buffered saline (TBS) containing 0.05% Tween and 5% fat-free

powdered milk for 90 minutes and then incubated overnight in

blocking buffer containing 1:2500 anti-HisG-HRP antibody

(Invitrogen). After washing, the signal was visualized by enhanced

chemiluminescence (Amersham Biosciences, Arlington Heights,

IL, USA) and exposed to x-ray film.

Saturation Ligand Binding Assays
Receptor proteins (50 mg) were diluted in PBS and incubated

with serial dilutions of [3H]-17b-estradiol in the presence or

absence of a 300-fold excess of non-radioactive 17b-estradiol. All
incubations were performed in glass test tubes at 4uC overnight.

Bound and free radioligands were separated by filtration through

a 25 mm glass microfiber GF/C filter (Whatman, Piscataway, NJ,

USA) placed on a vacuum manifold (Hoefer, San Francisco, CA,

USA). Filters were rapidly washed with ice-cold PBS and air-dried.

Radioactivity of the filters was measured by the LS 6500 liquid

scintillation counter (Beckman Coulter, Fullerton, CA, USA) after

overnight incubation with ACS scintillation cocktail (Amersham,

Piscataway, NJ, USA). Each assay point was run in duplicate, and

the assays were repeated using two to three different batches of

expressed receptor proteins. Specific binding was determined by

subtracting non-specific binding (radioactivity of samples with an

excess of unlabelled 17b-estradiol) from total binding. Kd were

calculated as the free concentration of radioligands at half-

maximal specific binding by fitting data to the Hill equation and

by linear Scatchard transformation using Prism version 5.01

(GraphPad Software, La Jolla, CA, USA) [52,53].

Competitive Ligand Binding Assays
Receptor proteins were incubated with different concentrations

(0.1 pM –10 mM) of the test compounds. [3H]-17b-estradiol was
then added (to a final concentration of 100 pM). The reaction

mixture was incubated at 4uC overnight in glass test tubes.

Separation of bound and free radioligands and measurement of

radioactivity were performed as described above. The data were

fitted in a nonlinear four-parameter logistic model to estimate the

half maximal inhibitory concentration value (IC50) [54]. Relative

binding affinity (RBA) of each compound tested was calculated as

the ratio of IC50 value for estrogen to that compound. The RBA

value for estrogen was arbitrarily set at 100.
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Table 2. Relative binding affinity of various estrogenic
compounds and phytoestrogens to ER66 and ER46.

Compound RBA*

ER66 ER46

17b-estradiol 100 100

Tamoxifen 0.144 0.073

Raloxifene 1382 507

ICI 182,780 17.73 0.124

MPP 0.305 0.498

PHTPP 0.003 0.001

G-1 0.007 0.003

PPT 42052 23016

DPN 0.109 0.025

Daidzein 0.003 0.002

Genistein 0.279 0.695

Kaempferol 0.011 0.020

*Relative binding affinity (RBA) was calculated as ratio of IC50 values of 17b-
estradiol and compounds tested. The RBA value for estrogen was arbitrarily set
at 100.
doi:10.1371/journal.pone.0063199.t002
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