
Thesis

Building a SumoBot Robot with AVR Butterfly

Microcontroller

Nuno Miguel Nunes

Information Technology

2010

TURKU UNIVERSITY OF ABSTRACT
APPLIED SCIENCES

Degree Program: Information Technology

Author: Nuno Miguel da Silva Nunes
Title: Building a SumoBot robot with a AVR Butterfly Microcontroller
Specialization line: Embedded Systems Instructor:

Jari-Pekka Paalassalo, Lic.Sc. (Tech.),
Principal Lecturer

Date: 14.05.2010 Total number of pages: 67
Summary:

This thesis is a good documentation where tells how to design and develop a
system for a Sumo robot using a Avr Butterfly Microcontroller. The goal is to give
an idea of what is necessary to do to understand and develop embedded drivers for
each component/sensor.

The first part is the background chapter, which transmit basic background infor-
mation to have a better comprehension and a global view of the later parts of this
project.

The main content of the report are the chapters describing implementation of the
system, being this divided in three major topics: Analysis and Design, Implemen-
tation and Testing.

In the analysis and design chapter a studied of the hardware limitations, suit-
able system architectures and testing plan to select the best hardware and software
designs for the system.

Most of the descriptions in the implementation-chapters are in the form of in-
structions to make it easier to follow and understand the different phases involved.
There you can find the steps to build and program the Sumobot.

Finally the test chapter gives exemplifications of some ad hoc tests that are es-
sential for the robot components’ analysis.
Keywords: Embedded, AVR Butterfly, ATmega169, SumoBot, Parallax
Deposit at: Turku University of Applied Sciences Library

i

For my Father that never gives up...

ii

ACKNOWLEDGEMENTS

This thesis would not have been possible without teacher Jari-Pekka Paalassalo, that
has been the ideal thesis supervisor. His effort to guide and lecture this work was

amazingly needed and really appreciated. I also would like thank Tino M. which I am
indebted for his perfect team work capabilities and great sense of humour.

Lastly, I offer my greatest regards and gratitude to Vasco Conde that supported me
structuring all thesis’ documentation.

iii

Contents

ABSTRACT i

1 Introduction 6

2 Background 7
2.1 The Parallax SumoBot Robot Kit . 7
2.2 The Competition . 8
2.3 Avr Butterfly Microcontroller . 12
2.4 Programming Environment Tools . 13

2.4.1 AVR Studio 4 and WinAVR . 14
2.4.2 Eclipse and AVR Eclipse Plugin 14

3 The Project Scope and Requirements 15
3.1 Scope definition . 15
3.2 Requirements of the SumoBot system . 16

4 Analysis and Design 17
4.1 Hardware Limitations . 17
4.2 System Architecture . 21
4.3 Testing plan . 21

5 Implementation 22
5.1 Mechanics . 22

5.1.1 Assemble the Sumobot . 22
5.2 Electronics . 25

5.2.1 QTI Sensors . 26
5.2.2 IR Emitters/Detectors Implementation 27
5.2.3 Servo Motors . 28
5.2.4 The Circuit Board and Cable distribution 30

5.3 Software . 31
5.3.1 ADC Driver . 31
5.3.2 LCD Driver . 32
5.3.3 IR Emitters/Detectors Driver . 32
5.3.4 QTI Driver . 33
5.3.5 Servo Driver . 34
5.3.6 Competition Code . 35
5.3.7 IR communication Driver . 39
5.3.8 IR Remote Control Mode Code 40

6 Testing 41
6.1 Servo Motors . 41
6.2 QTI Sensors . 41
6.3 IR Led and Sensors . 42

iv

7 Conclusion 43
7.1 Basic evaluation of the system . 43
7.2 Problems and possible solutions . 43
7.3 Summary . 44

8 Appendix 45

References 66

v

List of Figures

1 Parallax SumoBot Robot [11] . 7
2 The Dohyo - Sumobot Ring [13] . 10
3 AVR Board Description - Front side [4] 12
4 AVR Board Description - Back side [4] 13
5 AVR Butterfly simplified block diagram [4] 13
6 AVR Butterfly Pins - Port B and D [12] 18
7 AVR Butterfly Pins - Other Pins and components [12] 19
8 Step 1 - Battery installation [11] . 22
9 Step 2 - Servos’ installation [11] . 23
10 Step 3 - Circuit Board’s Stand-off bottom side 23
11 Step 5 - Wheels’ preparation [11] . 24
12 Step 7 - Scoop attachment . 24
13 Step 9 - QTI connections and supports 25
14 Step 10 - Wide and small cable connections 25
15 QTI Sensor Circuit [10] . 26
16 QTI Sensor Component [1] . 27
17 IR object detector Schematics [1] . 27
18 IR object detector . 28
19 Servo Pulse Train signal [9] . 28
20 Servo Stop Pulse train [9] . 29
21 Servo Left Pulse train [9] . 29
22 Servo Right Pulse train [9] . 29
23 Servos’ connections: [9] . 29
24 Servos’ set point adjustment screw [9] . 30
25 Circuit Board Schematic . 30
26 Circuit Board’s Top . 31
27 Circuit Board’s Bottom . 31
28 Context Diagram . 37
29 Data Flow Diagram . 38
30 IR message on the Oscillator . 40
31 Digital Oscilloscope [6] . 41

vi

Glossary

Atmega169: It’s the microcontroller model from AVR company.

IR: Acronym for Infra-red.

Olimex - Microcontroller built by OLIMEX Ltd. that is company responsible for
Electronic design and PCB sub-contract assembly.

Protocol - Set of rules used by different devices to be able to communicate.

Sumobot - Robot design to enter in sumo competitions.

Led - light-emitting diode.

Ohm - International system unit of electrical impedance.

Chassis - Supporting frame of a structure.

QTI - Close-proximity infra-red emitter and receiver pair.

Polarity - It’s the flow of the electrons from the negative pole to the positive pole.

Volts - International System derived unit of electromotive force.

PWM - Pulse Wide Modulation is a very efficient way of providing intermediate
amounts of electrical power between fully on and fully off.

ADC - Analogue to digital converter.

vii

1 Introduction

The main focus of this thesis is to provide a good documentation how to develop and
build a Sumobot using an Avr Butterfly controller. The first part of the thesis is the
background chapter which tries to supply the necessary basic background information
to have a better comprehension and a global view of the later parts of this project. The
main content is divided in three topics: Analysis and Design, Implementation and
Testing.

In the analysis and design chapter a studied is made by going through the hardware
limitations, suitable system architectures and testing plans so that the hardware and
software designs chosen can be justified and better understood. The most significant
part of the thesis is the implementation. It consists on mechanical, electronic and
software descriptions in form of instructions to make it easier to follow and comprehend
the different phases involved. And the last part is a small exemplifications of some ad
hoc tests that are essential for the robot components’ analysis.

This thesis will mainly focus on the system’s development for the Avr Butterfly,
consequently some parts won’t be so worked out as the Software topic. The chapters
expect that the reader has basic knowledge of electronics and embedded systems
programming. This includes some C programming and IDEs/plugins installation skills,
which are basic skills for any computer science student.

The robot’s code is all in the appendix section, it’s well commented and easy to
understand. For each code module there is a general description of it’s logic, just some
specific definitions like registers’ configurations and timers/counters calculations and
values are described. Nevertheless, following the Avr Butterfly’s official documentation
is crucial for the software development.

Once the thesis’ fundamental work was finished, it started to evolve to another level.
An Olimex Board was added and Infra-red communication between robots and control
stations became the new goal. Each successful step brought more ideas and the main
theme started to be wider, so it was decided by the author and the teacher Jari-Pekka
Paalassalo that some things would be discarded. The Olimex board working as a
Sumobot control station will be documented by Constantino Miguélez. Nevertheless, it
will be made some reference to the infra-red communication’s driver for the Avr
Butterfly controller.

At the end of the thesis, there are some tools’ evaluation, explanations of problems
and best practices found during the work. Most of these explanations are subjective
and based only on the authors experience on Embedded systems and electronics.

6

2 Background

This chapter provides necessary background information for understanding the later
parts of the document and also introduces some concepts used. Most of the information
is on a very general sources level and the same information can be found from many
sources.

2.1 The Parallax SumoBot Robot Kit

The SumoBot robot objective is to perform official sumo matches according to the
rules and regulations.

Figure 1: Parallax SumoBot Robot [11]

The main goal of this Sumobot is to locate and push the opponent out of the ring
and, at the same time, avoid going out from it by detecting the outside white line and
moving away from it.The electronics supplied in the Sumobot Kit are a
surface-mounted BASIC Stamp 2 module, infra-red sensors and QTIs to detect the
opponent and the edge of the Sumo Ring. The hardware package includes the black
anodized aluminium chassis and scoop, servo motors, wheels, 4AA power pack,
mounting stand-offs and screws.

Quantity and Description of Parallax SumoBot contents: [1]

• (1)SumoBot Board with surface-mounted BS2;
• (2)QTI Sensor;

7

• (1)Parallax Screwdriver;
• (1)Chassis, SumoBot;
• (1)Front Scoop, SumoBot;
• (2)Wheel, Plastic, 2.58 Diameter , 3 Width;
• (3)Rubber Band Tire;
• (1)Battery holder, 4 cell, AA, leads;
• (1)SumoBot Manual;
• (2)Res, CF, 5%, 1/4W, 470 Ohm;
• (1)CD ROM, Parallax software and documentation;
• (1)LED-GREEN-T 3/4;
• (2)LED-Infra-red - T1 3/4;
• (1)LED-Red - T1 3/4;
• (2)IR Receiver;
• (3)LED Stand-off;
• (3)LED Light Shield;
• (1)Serial Cable;
• (1)3 inch Jumper Wires (1 Bag of 10);
• (2)Servo Extension Cable (10 inches);
• (1)Piezoelectric Sound Generators;
• (2)Continuous Rotation Servo (Futaba);
• Assortment of screws, washers, and stand-offs.

The kit comes with a good guide that teaches how to assemble and program the
robot in BASIC Stamp language. The manual gives good examples and explanations
how to start the Basic Sumobot locomotion, edge avoidance and opponent detection
based on the sensors inputs and some tips for better performance and efficiency of the
programming code.

The Parallax website also supplies an advanced guide so that, when the robot is
finished and ready to run, it’s possible to give a more competitive behaviour to the
Sumobot by adding some artificial intelligence, tuning the sensors and the algorithm.

This Kit is very enjoyable and easy to follow allowing the programmer to expand its
knowledge and general idea about embedded systems. Due to the programming
language BASIC Stamp being not much used in embedded systems besides Parallax,
the original microcontroller won’t be used. It will be replaced by an Avr Butterfly
microcontroller.

2.2 The Competition

Robot-sumo is considered as a sport where two robots attempt to push each other
out of a circle shaped Ring. This Type of robots are called Sumobots.
The most challenging part is to make the robot able to find it’s opponent, normally
using Infra-red sensors or even sonar devices, and push the rival out from the ring. The
robot must be able to recognize the border of the ring and avoid to trespass it with the
help of more IR Sensors called QTI.

8

The most common tool used in a Sumobot competition is an angled blade at the front
of the robot. Regularly the blades are tilted at about a 45 degree angle towards the back
of the robot. This blade may contribute for different tactics has an adjustable height.

The Sumobot competition is divided into classes and fought on progressively smaller
arenas. The classes are further divided into two types of control systems,
remote-controlled and autonomous robots. Robot fights are only valid is both belong to
the same class and same type of control system.

The robots class specifications: [13]

Class Height Width Length Weight
Mega Sumo unlimited 20 cm 20 cm 3,000 g
Mini Sumo unlimited 10 cm 10 cm 500 g
Micro Sumo 5 cm 5 cm 5 cm 100 g
Nano Sumo 2.5 cm 2.5 cm 2.5 cm 25 g
Lego/Vex Sumo unlimited 15.2 cm 15.2 cm 1,000 g
Humanoid Sumo 50 cm 20 cm 20 cm 3,000 g

Definition of a Sumo Match:
”A match is fought between two teams, each team having one or more contestants.

Only one team member may approach the ring while the rest of the team members
must watch from the audience. In accordance with the game rules each team competes
on a Dohyo (the sumo ring) with a robot that they have built by themselves respecting
the Sumobot’s competition specifications. The match starts at the judge’s command
and continuous until a contestant earns two Yuhkoh points. At the end of the match a
judge determines the winner of the match.”[13]

Requirements for the Dohyo (Sumo ring):
”A Dohyo is an cylinder and of the appropriate dimensions for the given size

Sumobot class. The starting lines, called ”Sikiri-Sen”, are indicated as two brown lines.
The border line is indicated as a white circle. It is defined as being within the interior
of the Dohyo, anywhere outside this area is called the Dohyo exterior.”[13]

The Dohyo specifications: [13]

Dohyo Construction & Painting Shikiri Lines
Class Height Diameter Width Length Border W.
Mega\Humanoid 5 cm 154 cm 2 cm 20 cm 5 cm
Mini\Lego\Vex 2.5 cm 77 cm 1 cm 10 cm 2.5 cm
Micro 1.25 cm 38.5 cm 0.5 cm 5 cm 1.25 cm
Nano 0.625 cm 19.25 cm 0.25 cm 2.5 cm 0.625 cm

9

Figure 2: The Dohyo - Sumobot Ring [13]

Requirements for Robots - Specifications and Restrictions
”A robot is allowed to expand in size and change is shape after the match begins,

although it must remain a single centralised robot. Robots violating these restrictions
shall lose the match. Screws, nuts, and other robot parts with a total mass of less than
5 g falling off from a robot’s body shall not cause the loss of match.

All the Sumobots must be autonomous except the 3 kg and humanoid robots. They
can be either autonomous or remote control. Any control mechanisms can be employed,
as long as all components are contained within the robot and the mechanism does not
interact with an external control system.

Autonomous class robots must not start operating for a minimum of five seconds
after initiation by the user.

The robot must have some identification tags like a name or number for registration
purposes. This ID should be displayed on the robot to allow spectators and officials to
identify your robot.

Jamming devices, such as IR LEDs intended to saturate the opponents IR sensors,
are not allowed, also parts that could break or damage the ring are prohibited. Do not
use parts that are intended to damage the opponents robot or it’s operator. Normal
pushes and bangs are not considered intent to damage.

The Sumobot can’t carry any devices that can store liquid, powder, gas or other
substances for throwing at the opponent, any flaming or throwing things devices are not
accepted. Devices to increase down force, such as a vacuum pump or magnets, are only
allowed in the 3 kg class. They are not allowed in all other classes.

10

Any modifications like adding sticky substances to improve traction are not allowed.
All edges, including but not limited to the front scoop, must not be sharp enough to
scratch or damage the ring, other robots, or players.”[13]

How to carry Sumo Matches
”The game consists of three matches of three minutes each, unless extended by the

judges. The first contestant to win two Yuhkoh points is the winner of the game. The
contestant who wins a Yuhkoh point at the end of the game is judged as the winner.
When neither contestant receives any Yuhkoh points, the winner is decided by
judgement. However, if no obvious superiority exists and a winner can still not be
determined, an extra three-minute match can be played.”[13]

Start, Stop, Resume, End a Match

Starting: ”The match starts upon the judge’s instructions, the two teams approach the
ring and place a robot within their half of the ring on or behind the Shikiri line. When
the judge announces the start of the round, the teams start their robots, and after a five
second pause the robots may start operating. During these five seconds, players must
clear out of the ring area. Note that is not required that a robot be placed directly
behind the Shikiri line. It may be offset to the side, as long as it is behind an imaginary
line collinear with the Shikiri line.”

Stop and Resume: ”The match stops and resumes only under judge orders.”

End: ”The match ends when the judge makes the final announces and the two teams
have to retrieve the robots from the ring area.”[13]

Yuhkoh

The Yuhkoh point is won when:

• When a robot successfully puts the opponent out of the ring.
• When the opponent’s robot falls out of the ring by himself.
• When the opponent’s robot is disqualified due to excess of warning or penalties.

More detailed information can be found in the Sumobot Guide from parallax. There
are still several important rules that can’t be ignored. Before entering in any
competition it’s also good to know the violations and penalties.

11

2.3 Avr Butterfly Microcontroller

he Avr Butterfly is a little controller from Atmel with Low power design, runs the
ATMEL AVR ATmega169PV Microcontroller and includes several peripherals.
Originally comes with a preloaded code where all it’s peripherals can be tested.

The AVR Butterfly Includes:[2]

• ATmega169 AVR microcontroller
• 100 segment LCD Display
• 4Mbit Dataflash
• 32kHz oscillator for RTC
• 4-way directional button
• Light sensor (LDR)
• Temperature Sensor (NTC)
• Speaker for Sound Generation
• Access to peripherals through header connectors
• RS-232 Level Converter
• Voltage Reading 0-5V

In the next picture are displayed the components and respective physical location of
the pin entrances:

Figure 3: AVR Board Description - Front side [4]

12

Figure 4: AVR Board Description - Back side [4]

The following image is a generalized diagram with the main components’ pin connection
to the processor ATmega169:

Figure 5: AVR Butterfly simplified block diagram [4]

2.4 Programming Environment Tools

In this topic it will be mentioned the tools that are required to program the Avr
Butterfly microcontroller. They may vary depending on the programmer’s style,
usability and necessary features. All the software used for the thesis’ project is free and
it can be easily downloaded from the internet.

13

There are many different IDE’s that you can use for embedded programming. During
the thesis work, it was tested two integrated development environments, one for
Windows (AVR Studio 4 + WinAVR) and other for Linux operating system (Eclipse +
AVR Eclipse plugin).

2.4.1 AVR Studio 4 and WinAVR

AVR Studio is a Integrated Development Environment for developing AVR
applications, but only supported in windows. It includes a good and complete set of
features:

• Debugger supporting run control including source and instruction-level stepping
and breakpoints;
• Registers, memory and I/O views;
• Target configuration and management;
• Integrated assembler;
• Integrated simulator;
• Integrates with GCC compiler plug-in.

”The AVR Studio 4 was the latest by this time and can be found on the Atmels
website: http : //www.atmel.com/dyn/products/toolscard.asp?toolid = 2725. This IDE
requires a software developing tools for Atmel AVR boards called WinAVR.

WinAVR is a suite of executable, open source software development tools for the
Atmel AVR series of RISC microprocessors hosted on the Windows platform. It includes
the GNU GCC compiler for C and C++. The suite itself and more develop information
may be found on Sourceforge at http : //sourceforge.net/projects/winavr/.”[16]

2.4.2 Eclipse and AVR Eclipse Plugin

”Eclipse is a multi-language software development environment composed by an
integrated development environment and an extensible plug-in system. It is written
primarily in Java and can be used to develop applications in Java and, by means of the
various plug-ins, in other languages as well, including C, C++, COBOL, Python, Perl,
PHP, and others.” [14]

To use Eclipse for programming AVR boards is required to install an AVR plugin.
This Eclipse Plugin provides the necessary tools and settings for developing C programs
for the ATMEL AVR boards.
Eclipse is a very modern IDE with many features. Unlike some other IDEs, due to
being Open Source and well supported/documented, many features are available to
extend it even further.
Since Studio IDE from Atmel doesn’t support subversion integration or code completion
in source editor it might be preferred to use Eclipse. With the AVR plugin is possible to
generate the makefiles for building the application automatically and use Eclipse IDE’
due to its main benefits. [14]

14

3 The Project Scope and Requirements

3.1 Scope definition

The main scope of this thesis is to document and implement a functional embedded
system using an AVR Butterfly board. The system, the board and the robot were fully
prepared to give life to a small sumo robot. The mechanical and electronic tools, as
most of the requirements of the project were defined before it started.The system was
specifically developed to run on a Avr butterfly Atmega169 board and with the Parallax
Sumobot kit.

Since all requirements were completed and mastered, it was decided to improve the
robot and take it to another level by adding a new board interfacing with the robot via
infra red. The new board, Olimex, with a Atmega128 microcontroller is equipped with
six IR leds and is programmed to work as a control station.

The communication is between the Olimex and the robot. A protocol with network
characteristics was developed so that a unicast, broadcast and multicast would be
possible to perform.
The control station is composed by a menu where it’s possible to select different modes
such as Radio controlled robot and Sumobot Fight.

This project work can be separated in two parts:

• Sumobot Robot with Avr Butterfly Microcontroller;
• Olimex Control Station with IR communication.

The robot directive is to respect all the official Sumobot rules and perform successful
combats during the competition. It’s final system is organized by drivers, which have to
control perfectly each different components, and be logic enough to not affect the
efficiency of the robot during the combat.

With later improvements, the robot, was prepared to interpret IR signals and read
them as a message. This signals are stored and tested, if correct they are interpreted as
a command.
The Olimex Control Station is a board connected with a couple of IR Leds and
programmed with an organized menu. The IR communication protocols share network
characteristics and are known by the station and the target robot.

15

3.2 Requirements of the SumoBot system

The requirements can be divided in Hardware, Software, Competition:

Hardware related requirements
H1 The robot must use the Avr Butterfly board and the parallax Sumobot

kit.
H2 The Avr microcontroller’s pin and timers limitations have to be handled

on a good manner.
H3 All the components must be fully operational with the system.
H4 The PCB created for the robot has to be organized, functional and con-

nect all the components to the Avr board.

Software related requirements
S1 The robot must have a code prepared to win a Sumo match - Sumo Mode.
S2 Infra-red control mode has to be stable and usable - IRC Mode on a good

manner.
S3 All the components’ drivers for the Avr must be stable and efficient.

Sumo Competition related requirements
C1 The Robot must respect all regulations.
C2 It’s code has to be operational and logical enough to perform a successful

match.

16

4 Analysis and Design

This section is a full requirement and hardware analysis so that it will be easier to
understand the software architecture and hardware design chosen for the robot. Most of
the design decisions were made very intuitive at the beginning due to lack of time or
because it was the first logical one to come up. It’s recommended to have a planned,
organized and structured project ideas, otherwise there will be many time consuming
changes that can be avoided from the beginning.

4.1 Hardware Limitations

It is a bit confusing to separate and have a good perspective of all Butterfly board
port pins because there are some with more than one functionality. Most of the pins
have alternate uses, for instance, the Port D pins can be used for either general I/O or
to operate the LCD. This information can be found in several places but sometimes is
to specific that it’s not possible to see it instantaneously. This is a important hardware
limitation to consider, so here will be discussed the most important alternate functions
of the available pins and it’s utilities for the robot.

Port D and the LCD
When using Port D for output and the LCD at the same time you can notice that

some problems may occur, like the LCD outputting lot of strange characters and
changing very inconstantly. Well, that is because the LCD also uses the Port D pins. If
it’s necessary to use the LCD must be avoid the use of the Port D, or vice versa.

Port B and the Piezo, Joystick, DataFlash, and ISP
There are also a few pins that are shared between Port B and other components. If

the port B pin 5 is used for I/O it will be heard some noise on the Piezo. Port B pins
1,2 and 3 are used to program DataFlash and to program the Atmega169 via the ISP
connector. The DataFlash will ignore the ISP bus as long as the Reset Flash pin is help
in the proper state.
The Joystick uses Port B pins 4, 6, and 7, these pins can be used with no problem.

JTAG
The JTAG connector is connected on the bottom of the Butterfly because, differently

from Ports B and D, the first JTAG’s pin is on the right. If JTAG port is disable in
software it’s possible to use Port F pins 4, 5, 6, and 7 for their normal functions, which
include the Analog-to-Digital Converters. To disable the JTAG can be either by
changing the JTAG enable fuse via ISP or by setting the JTD bit in the MCUSCR
register in software at application startup.

17

Figure 6: AVR Butterfly Pins - Port B and D [12]

18

Figure 7: AVR Butterfly Pins - Other Pins and components [12]

19

AVR Butterfly Pad and Pins’ Table
The next table shows Avr’s Pads (physical number of the hardware pin), registers

and their respective uses in Port B and Port D. Based on it, is easier to understand and
notice the common ports and specific pin uses. This way the analysis and decision of
each pins’ functionality is less complicated and more direct.

Port B Port D
Pads Port Pin use Pads Port Pin use
Pad 1 PB0 (/SS) Pad 1 PD0 (ICP,SEG22) LCD15
Pad 2 PB1(SCK) DataFlash, ISP Pad 2 PD1(INT0,SEG21) LCD16
Pad 3 PB2(MOSI) DataFlash, ISP Pad 3 PD2(SEG20) LCD18
Pad 4 PB3(MISO) DataFlash, ISP Pad 4 PD3(SEG19) LCD13
Pad 5 PB4 (OC0) Joystick Center Pad 5 PD4 (SEG18) LCD11
Pad 6 PB5(OC1A) Piezo Element Pad 6 PD5(SEG17) LCD12
Pad 7 PB6(OC1B) Joystick A Pad 7 PD6(SEG16) LCD14
Pad 8 PB7(OC2) Joystick B Pad 8 PD7(SEG15) LCD9
Pad 9 GND Pad 9 GND
Pad 10 V+ External Pad 10 V+ External

Avr’s Pin and Port attribution
Since there are two servos, two IR emitters, five IR sensors and two QTI, it’s

necessary to have four timers/counters as output, two ADC ports and five other input
ports. The Sumobot’s Avr Board will use the following pins, timers and ports:

Port B
Pads Port Pin use Pads Port Pin use
Pad 1 PB0 Left QTI input Pad 2 PB1 Top Left IR

Sensor input
Pad 3 PB2 Right QTI input Pad 4 PB3 Top Right IR

Sensor input
Pad 5 PB4 (OC0) Left IR LED timer Pad 6 PB5(OC1A) Left Servo

Timer
Pad 7 PB6(OC1B) Right Servo Timer Pad 8 PB7(OC2) Right IR

LED timer
Pad 9 GND Pad 10 V+ External

Port F
Pads Port Pin use Pads Port Pin use
Pad 5 PF5 (ADC 5) Left IR Sensor Pad 1 PF4 (ADC 4) Top center

IR Sensor
Pad 3 PF6 (ADC 6) Right IR Sensor

20

4.2 System Architecture

There are several different types of software architecture that can be used in
embedded systems. It’s wise to study the project’s requirements and hardware
limitations before deciding which architecture to use.

Embedded software architectures:

• Simple control loop - Background;
• Interrupt controlled system - Background/Foreground;
• Cooperative multitasking;
• Preemptive multitasking or multi-threading;

After the hardware analysis it’s easy to discard a few types of architectures for this
project. Due to lack of memory it’s impossible to include an operating system with
pre-emptive multitasking nor multi-threading. Since the goal is to get a simplified,
reduced and organized code, the best options are a simple control loop and interrupt
controlled system.

The most suitable options for the developing system are foreground/background or
background type. The foreground/background systems is based on interrupt-only
systems where the polled loop is replaced by code that performs useful processing.This
system type is the most used for embedded applications. They involve a set of
interrupt-driven or real-time processes called foreground and a collection of non
interrupt-driven processes called background. During all time, the project was aiming
for a foreground/background system, but there were no special needs to use interrupts
in the code. The necessary system interrupts are used by the timers to obtain
continuous signals for the servos and IR emitters. So it can’t be considered as a
foreground/Background system because the interrupts’ do not affect the time sequence
of the system and the it does not depend exclusively on them.

The software architecture used is a background system. It consists on a simple
control loop with a main file where it calls subroutines, each of which manages a part of
the hardware or software.
For the hardware management the code was divided in drivers, each one for a different
component.

4.3 Testing plan

The testing strategy is based on ad hoc testing. This is a commonly used term for
software testing performed without planning and documentation. The tests are
intended to be run only once, unless defect is discovered. Ad hoc testing is a part of
exploratory testing, being the least formal of test methods. Supported on that, ad hoc
testing has been criticized because it isn’t structured, but this can also be a strength:
important things can be detected quickly. It is performed with improvisation, the tester
seeks to find bugs with any means that seem appropriate.

21

5 Implementation

The implementation is divided in three parts: Mechanics, Electronics and Software.
The mechanics topic is a simple assembly guide of the main structure and chassis of the
robot; the electronics consists on the connections and board cable mapping; finally,
software sustains some descriptions for the drivers’ code and main algorithm of the
robot.

5.1 Mechanics

The mechanic part of the robot is very simple and can be followed on the Parallax
guide book. Although there are slight differences from the original architecture and
design of the robot, because the original PCB is not used, it’s assembly is quite the
same. There are also several photos of the robot to support the description of some
steps.

5.1.1 Assemble the Sumobot

The chassis assembling is very easy to follow in the Parallax instruction book.
Everything is similar except the board and infra-red emitters/sensors construction. The
board, as above referred, is a 8 cm x 8 cm PCB with several melted pin connections for
all connections and all components. It contains 4 screw holes in the corners and a free
space here the AVR Butterfly board is fixed.

Step # 1 - Install the Battery box
Flip the Sumobot chassis upside down and install the plastic battery pack using two

flat-head screws and nuts. The screws will be countersunk into the battery pack when
tightened and will be out of the way of the batteries.

Figure 8: Step 1 - Battery installation [11]

22

Step # 2 - Install the Servo Motors
Using four pan-head machine screws and nuts, attach each servo motor to the chassis.

Figure 9: Step 2 - Servos’ installation [11]

Step # 3 - Install the Circuit Board, Stand-offs and IR sensors
Attach each standoff to the front and back holes of the Circuit board. Then put the

IR sensors and secure them with pan-head screws, on the rear side, might be necessary
to add some Circuit board material or nylon washer to level the structure.

Figure 10: Step 3 - Circuit Board’s Stand-off bottom side

Step # 4 - Mounting the support board
Fit the Circuit board and it’s screws on each hole of the robot’s chassis. The rear

screws are fixed by two pan-head machine screws, while in the front, two of the bigger
stand-offs will secure the board.

23

Step # 5 - Prepare the Wheels
Stretch a ”tire” of each wheel and adjust so that the ”tire” is centred across the wheel.

Figure 11: Step 5 - Wheels’ preparation [11]

Step # 6 - Mount the Wheels
Press each prepared wheel onto the servo splines. Secure each wheel with the small

black Phillips head screw.

Step # 7 - Mount the Scoop
Attach the scoop into the SumoBot chassis. Carefully center the scoop before

tightening the screws and nuts.

Figure 12: Step 7 - Scoop attachment

Step # 8 - Install Line Sensor Wires
Feed each 3-pin extension cable through the center chassis slot from the bottom to

the top.

Step # 9 - Install the QTI Line Sensors
Using two smaller pan-head machine screws, attach the QTI line sensors to the bigger

round stand-offs on the bottom. Connect the ends of the 3-pin extension cables to the

24

QTI line sensors, with care about the polarity identification
letters(B[lack]-R[ed]-W[hite]) on the QTI sensors.

Figure 13: Step 9 - QTI connections and supports

Step # 10 - Make the Connections
Plug the servo motors and QTI sensors into the SumoBot support board

connectors.Note that the ground pin on each connector in the front of the Sumobot
board. Connect the battery pack wires to the SumoBot support board. From the circuit
board two large cables will connect to the Jtag and Port B of the Avr Butterfly board.

Figure 14: Step 10 - Wide and small cable connections

Step # 11 - Powering the Sumobot
To simplify the turning on and off of the AVR and all components, a switch was built

between the power supply cable and the support board. Just need to connect the
connectors in the pins and it’s ready to be used.

5.2 Electronics

In this topic each electronic component used for the robot will have a description and
an analyse to better understand how the drivers were developed and how they work.
Starts with the most simple electronic devices (QTI, IR Sensors/Emitters and Servo
motors) and finishes with a specific Expansion Board and Cable Structure analysis.

25

5.2.1 QTI Sensors

The Parallax QTI sensor uses a QRD1114 infra-red reflective sensor to capture the
reflectivity of the surface. When the QTI sensor is over a dark surface, the reflectivity is
very low; when the QTI is over a light surface, the reflectivity is very high and will cause
a different reading from the sensor. Since the sensors only need to detect dark or white
surfaces, in the driver development is just necessary to check if the bit is set or clear. If
the bit is clear it’s on a dark surface, if it’s set to one the sensor is above a white surface.

”The QTI sensor is activated by placing 5 Volts (Vdd) on the W pin. This will cause
current to flow through the 470 ohm resistor to the LED side of the QRD1114. IR light
reflecting of the surface below will cause a change in the ability for the current to flow
through the phototransistor side of the QRD1114. The transistor behaves like an IR
controlled resistance.” [1]
Features:

• Photo-transistor Output;
• Unfocused for sensing diffused surfaces;
• Daylight filter on sensor;

Figure 15: QTI Sensor Circuit [10]

26

Figure 16: QTI Sensor Component [1]

5.2.2 IR Emitters/Detectors Implementation

These are the ”eyes” of the Sumobot, they detect the bouncing IR beam from the IR
LED after it hits an obstacle or opponent, allowing the Sumobot to know in which
direction the opponent is situated.

IR LEDs are fed with 5V and a 39.5 khz frequency signal from timer0 and timer2, the
LEDs are in series with a respective 220 Ohm resistor to prevent them from burning.
From several tests, this frequency was the one that suited the best for the actual LED
brightness and the desired range to detect the opponent within.

Figure 17: IR object detector Schematics [1]

27

Figure 18: IR object detector

5.2.3 Servo Motors

The Parallax continuous rotation servo is a Futaba S148 servo that has been modified
for continuous rotation. The servo receives and converts standard RC servo position
pulses into continuous rotation speed. It can be controlled directly by a microcontroller
without any additional electronics, which makes it a great actuator for robotics
projects. The servo includes an adjustable potentiometer that can be used to center the
servo and comes with a star-shaped servo horn and an 11” (270 mm) lead.

The Sumobot motion is controlled by two servo motors using a process called
differential drive. When both motors are turning in the same direction, the Sumobot
will move in that direction, when they turn in different directions, the chassis will rotate
and the rate of movement or rotation is determined by motor speeds. The control signal
that the AVR Butterfly sends to the servos’ control line is called a ”pulse train”.

Figure 19: Servo Pulse Train signal [9]

The AVR Butterfly can be programmed to produce this waveform using PB5 and
PB6 pins for left and right servo. In the previous image the pulse train has a 1500 µs
high time and a 20 ms low time. The high time is the main characteristic for controlling
a servos’ motion, and it is most commonly referred to as the pulse width. Since these
pulses go from low to high (0V to 5V) for a certain amount of time, they are called
positive pulses. Negative pulses would involve a resting state that’s high with pulses
that drop low.

28

The ideal pause between servo pulses is 20 ms, but can be anything between 10 and 40
ms without adversely affecting the servos’ performance. A pulse width of 1500 µs will
cause the modified servo to stop. To make the servo turn we must give change the pulse
width toward either end of the standard control range of 1000 to 2000 µs. Since the
right side servo motor is physically mirrored from the left, its control signals are as well.

Figure 20: Servo Stop Pulse train [9]

Figure 21: Servo Left Pulse train [9]

Figure 22: Servo Right Pulse train [9]

Figure 23: Servos’ connections: [9]

29

Adjusting the set point for the servo
The most easy way to adjust the set point for the servos is to program the timers and

the pulses so that the will stop. Once thy are generated, the servos are powered and
connected, it’s just necessary to insert a screwdriver on the adjustment port and find
the correct position of the potentiometer. The servos direction will turn depending the
side that the screw turns. When the servos stops, the right adjustments were completed.

Figure 24: Servos’ set point adjustment screw [9]

5.2.4 The Circuit Board and Cable distribution

The circuit board is a very important component in the robot, not only is responsible
for supporting the Avr Butterfly board and the components on the chassis, but also
helps to organize and structure the connectors and the cables.

Figure 25: Circuit Board Schematic

The pins in the schematic are like an extension from the ones in the board, therefore,
the pads organization are is the same as in Avr’s front side. From the left to the right,
the set of 10 pins on the left are from Port B and the one next to it from the JTAG’s,
followed by the left and right Servo, left and right IR object detectors and the left and

30

right QTIs. There are alse three pins on the right where two of them are for the power
supply.

The following pictures are the latest implementation of circuit board. All the pin
connections were made below and on the top there are the pins for the servos, QTIs and
IR object detectors.

Figure 26: Circuit Board’s Top Figure 27: Circuit Board’s Bottom

5.3 Software

Developing for embedded systems is quite demanding, it’s required a good
understandability about the target hardware, it’s limitations, functionalities and
structure. Therefore this section will be focusing on the development of the Sumobot’s
main code and drivers. Each section has a little explanation of the code and refers the
significant for it’s good understandability.
All the Code can be found on the appendix section, only some fragments of it may
appear to support the respective description.

5.3.1 ADC Driver

The Analogue-to-digital converter code can be found in many documentation about
the Avr Butterfly. This piece of code was based on the AVR Butterfly - Application
Rev07 supplied on the Atmel website. The driver was originally coded to work for a
light sensor, temperature sensor and voltage sensor. It was possible to reduce it
significantly and to adapt it to our needs.
The ADC code is composed by two functions, one to initialize the adc depending on the
sensor or the port pin that we want to read from, and other to read, do a analogue to
digital conversion and calculate an average of 16 reading. Before calling the read
function, it’s necessary to initialize the correct pin (5 for left Infra-red sensor and 6 for
the right one).

Functions:

• void ADC init(char sensor) - Initialize the ADC with the selected ADC-channel;
• int ADC read(void) - Do a Analogue-to-Digital Conversion.

31

5.3.2 LCD Driver

This is a basic driver for the Avr Butterfly LCD. It offers the ability to change the
contrast and display strings (scrolling or static) from flash or SRAM memory only.
This has been completely rewritten from the Atmel code by Dean Camera. In this
version, the code performs with as much processing as possible by the string display
routines rather than the interrupt so that the interrupt executes as fast as possible.

Functions:

• void LCD puts f(const char FlashData) - Rather than create a new buffer here
and waste RAM, the TextBuffer global is re-used as a temp buffer. Once the
ASCII data is loaded in to TextBuffer, LCD puts is called with it to post-process
it into the correct format for the LCD interrupt.
• void LCD puts(const char Data) - Displays a string from SRAM onto the

Butterfly’s LCD;
• void LCD Init(void) - Initializes the Butterfly’s LCD for correct operation, ready

to display data;
• void LCD ShowColons(const uint8 t ColonsOn) - Routine to turn on or off the

LCD’s colons.

5.3.3 IR Emitters/Detectors Driver

The IR emitters driver was more demanding to write due to the necessary
calculations for the timers values. It’s known that the IR Detectors optical filters that
only allows to read signals close to 38.5 kHz. After a few tests, the optimal frequency
was concluded to be 39.5 kHz with 50% duty cycle.

The following calculations will show how to get the number of ticks for the
timer:
#Ticks = Time(ms)÷ (Prescaler × (1000÷ ClockFreq(Hz)))
ClockFreq = 8000000Hz
Prescaler = 8
IRFreq = 39.5kHz
T ime = 1

IRFreq(Hz)

Time = 1
39500Hz

= 25.316× 10−6s

#Ticks = 0.025316÷ (8× 1000÷ 8000000) = 25.316Ticks

The TOP value conclusion: Using 50% duty cycles and toggle bit on compare match,
it’s only necessary half of the 25 ticks. With this calculations the top values of the
counters, OCR2A and OCR0A, will have the value of 12 because it’s only accepted
integer numbers.

The timer0 is required to run on CTC mode to update the counter immediately with
the TOP as OCR0A, toggle the bit on compare match and work with a prescaler of 8.

32

Following the Atmega169 data sheet is very easy to understand and select the needed
bit configurations.

The 8-bit Timer0/Counter Register Description:

• WGM01 = 1;
• WGM00 = 0;
• COM0A1 = 0;
• COM0A0 = 1;
• CS02 = 0;
• CS01 = 1;
• CS00 = 0;

For timer2 it’s demanded to behave exactly as timer0, so the bit configurations will
be the same. The register names are very similar and the TOP is OCR2O.

The 8-bit Timer2/Counter Register Description:

• WGM21 = 1;
• WGM20 = 0;
• COM2A1 = 0;
• COM2A0 = 1;
• CS22 = 0;
• CS21 = 1;
• CS20 = 0;

Functions:

• void IR Init(void) - Timer0 (Left LED), Timer2 (Right LED) initialization
frequency: 39.5 khz, duty cycle 50%.

5.3.4 QTI Driver

The QTI driver is the most simple to write and understand because is only composed
by the port definitions, small delay of 1 ms for QTI charge, and then just reading the
digital value of the bits. Depending on the dark or white surface, the bit can be checked
if is clear or set.

Functions:

• void QTI Init(void) - Initializes QTIs by setting butterfly pins where QTI signal
pin is connected, to output, charging their capacitors for 1 ms, and after setting
butterfly pins as input for reading them;
• int Left QTI() - Returns 1 when left QTI sees white and 0 when black;
• int Right QTI() - Returns 1 when right QTI sees white and 0 when black.

33

5.3.5 Servo Driver

The most complex part on servo motor’s drivers are the timers’ configuration. It’s
necessary a good comprehension on the registers and on the ticks calculation time.
As the timers on the IR emitters, the same formula can be applied but not the same
register configurations. The timers’ need to run on fast PWM mode, with a prescaler of
8, toggle on compare match mode and supply two outputs registers.The 16-bit
Timer1/Counter Register Descriptions are as following:

On TCCR1A register:

• WGM11 = 1;
• WGM10 = 0;
• COM1A0 = 1;
• COM1A1 = 1;
• COM1B0 = 1;
• COM1B1 = 1;

On TCCR1B register:

• CS12 = 0;
• CS11 = 1;
• CS10 = 0;

The following calculations will show how to get the number of necessary
ticks for the timer:
#Ticks = Time(ms)÷ (Prescaler × (1000÷ ClockFreq(Hz)))
ClockFreq = 8000000Hz
Prescaler = 8

It’s necessary to calculate the number of ticks for 20, 1, 1.5 and 2 ms:

Time = 20ms
#Ticks = 20÷ (8× 1000÷ 8000000) = 20000Ticks T ime = 1ms

#Ticks = 1000 Time = 1.5ms

#Ticks = 1500 Time = 2ms

#Ticks = 2000

The TOP values conclusion: To obtain 20 ms signal the Maximum top should be
20000, but the desired it to have a high signal for 1, 1.5 or 2 ms and the rest of the
time, until 20 ms, with a low signal. So the easiest way to do this is from the 20000
counts subtract the number of counts from the respective time of the signal, therefore it
will be 20 000 less the ticks’ number of desired time for low signal. When that value is
reached, the bit is toggled and there will be high signal until the maximum top is
reached, that is 20 ms. After this the counter is reset and starts over again.

34

Functions:

• void Motor Init(void) - Timer1 initialization;
• void Stop Bot(void) - Stop both Servo motors with 1.5 ms pulse output;
• void Go Forward(void) - Left Servo motor with 1 ms pulse output, right servo

motor 2 ms pulse output;
• void Go Back(void) - Right Servo motor with 1 ms pulse output, left Servo motor

2 ms pulse output;
• void Go Left(void) - Left Servo motor with 2 ms pulse output, right Servo motor 1

ms pulse output;
• void Go Right(void) - Right Servo motor with 1 ms pulse output, Left Servo

motor 2 ms pulse output.

5.3.6 Competition Code

The main competition’s code is separated in two important parts: Initialization of all
ports/timers and the main loop with the IR sensor and the QTI line sensor analysis.
Inside the initialization function are invoked the prototypes of each component driver
where it prepare the ports functionality and timers values.

The main system loop starts after the IR sensor values calibration. It can be
executed automatically by doing a couple of readings and store the value as a reference,
or give a premeditated value as reference. The chosen values where 250 due to after
many tests (changing the values) and analysing on the oscilloscope, it was noticeable
big electric noise interferences and a big jump of the values by approaching one object.
With this meddle value, the lower electric noise won’t affect the reading so much and
the sensors actuate more with sensibly to any Infra-red response.

First thing to perform is the initialization of all components. Since they are organized
in different source files, each has it’s own initialization function. The function
Initialization, called only once in the beginning just before the main loop, is responsible
to execute the servo’s, LCD, IR sensors and QTI initialization by defining the ports
input/outputs and timers’ registers.
The main code sequence is first to check the QTI values and then check the infra-red
sensors. All the decisions are influenced by those readings:

• If something is detected (the white surface) in the QTI, depending on which side,
is executed a set of movements to back off, turn for while and continue the search
or the opponent;
• For the IR sensors it has to have a better logic sequence. First read the ADC

values, shutting down, simultaneously, the opposite infra red led signal to avoid
interference. After both values were stored in memory, they are compared with the
references and verified in which sensor the value is greater. If both are in the same
interval of values, something in front.

This way, depending on the IR sensors’ and QTIs’ readings, the timers’ values of the
servos are changed to obtain the desired movements.

35

Funtions:

• void Initialization(void) - Call the initialization functions of each driver
• int Left Ir Scan(void) - Initializes the ADC pin for the left IR sensor and returns

the digital converted value;
• int Right Ir Scan(void) - Initializes the ADC pin for the right IR sensor and

returns the digital converted value;
• void FallBack Right Move(void) - Set of movements to make the robot move back

and right from the border;
• void FallBack Left Move(void) - Set of movements to make the robot move back

and left from the border;
• void Delay(double millisec) - Normal Delay function.

36

Figure 28: Context Diagram
37

Figure 29: Data Flow Diagram

38

5.3.7 IR communication Driver

This is one drivers that is not essential for the Robots main goal, the Sumo fight. It
was developed with the objective of improving the robot’s project itself and with it
more ideas came. This drivers uses one IR sensor at a time, it’s basically one loop that
is interrupted whenever some abnormal action happens, in other words, there are a few
verifications and counters during the reception to make sure that the message is well
received.

Funtions:

• void IR Com Init() - Initializes the pins where the sensors are connected as input;
• int Read Info(int sensor) - Main loop for reading and decode the messages;
• void send(int frame[]) - Blinks the IR led according to the frame, this way sending

a message;
• void sendburst(void) - Sends a predefined frame 3 times for testing purpose;
• void one(void) - Delay of 2 ms with the IR led turned on;
• void zero(void) - Delay of 1 ms with the IR led turned on;
• void lowlevel(void) - Delay of 1 ms with the IR led turned off between each ’0’ and

’1’ sent;
• int bin2dec(char *bin) - Converts 4 bits number in the array to decimal;
• int Sensor bit set(int sensor) - checks if bit is set from the desired sensor;
• int Sensor bit clear(int sensor) - checks if bit is clear from the desired sensor;

The message: |Header|GID|UID|Message|Parity|
It’s composed by 14 bits being the first four the Header, with the combination of
”0101”; followed by a 3 bit for group ID; next a 2 bit unique ID for the robot; finally
the message containing 4 bits; and for last but not least, the parity bit.

The code:
The message it’s very similar to Morse code, so longer IR signals (2 ms) correspond

to ’1’ and the short ones (1 ms) indicates the ’0’. Each bit has 1 ms of break with the
led off and between each frame there are 3 ms.

The driver consists on a infinite loop that breaks when some error occurred or the
message is fully interpreted. Once in the Read Info function, it starts with a cycle that
counts the time that there is no signal detected, if no IR frequency is detected for three
count attempts, an time-out error value is returned. This cycle is responsible for
synchronizing with the sender, since between each sent frame there is a 3 ms pause, if
that pause is found, the bit counter is reset and the message is stored.

Next comes the signal counter, when something is detected on the sensor the time is
counted and if it’s longer than 25 and less than 50 counts a ’1’ is stored in the message
array, otherwise ’0’. In the first four bit’s each time one is received, it is compared to
the header, if wrong the the bit counter is reset and the loop prepares to start over from
the beginning.

39

After a message passed the Frame Header verification and all 14 bits were stored in
an array, the parity bit is calculated and tested, if incorrect a another error value will be
returned from the function. Then comes the Group ID and the unique ID that
represent the team and the Robot number, this may be all ones if a multicast or
broadcast message is sent. Each robot has it’s own group ID (team) and the unique ID,
if the message does not have broadcast, multicast or unicast ID’s for that team or
robot, it will be returned an error integer value.

If all the frame received passes all tests, it’s assured that it is destined to that robot
and it’s completely correct, the message bit’s are converted to decimal and returned
from the function.

In the following image is visible the signals from the IR led (yellow line) and sensor
(blue line). When something is being sent the yellow signal goes from high to low, while
when something is received, the blue signal, goes from low to high.

Figure 30: IR message on the Oscillator

5.3.8 IR Remote Control Mode Code

This is a very simple code that, once specified the messages and it’s meanings, just a
switch/case the robot can be controlled. The three top sensors are scanned and if any
message is received, it’s decoded and returned the respective integer. The value from
the message will enter in the case and change the robots movements.

Funtions:

• int RCmode(void) - Controls the Robot according to the received
message/command.

40

6 Testing

There are many contributing factors that influence the robot’s functionalities and
finding them is very time consuming. This phase has to be taken carefully and
patiently, the problems may be from damaged hardware, bad cable connections, wrong
software logic, etc..

There are three main components that need to be tested: Servo Motors, QTI Sensors
and Infra-red Sensors. To analyse the signals of the timers outputs it was used a Digital
Storage Oscilloscope.

Figure 31: Digital Oscilloscope [6]

6.1 Servo Motors

The servo motors are dependent of the train pulse modulation that is generated by
the timers. To test the servos’ code, the oscillator must be connected the to each timer
output pin and to the ground pin. In it is visible the pulse with 1.5 ms, 2 ms or 1 ms
high and the rest low voltage.
If the timers are corrected the servos will start moving immediately, although it might
be on the wrong direction because the set point of the potentiometer needs to be
adjusted. After that is simple to understand in which direction the robot will turn by
observing the servos’ movements.

6.2 QTI Sensors

Since the QTIs don’t need any timer’s signal, they are easily tested. It’s just
necessary to connect the output pin and the ground pin to the oscillator and expose the
sensor to a black and to a white object or surface. In the oscillator the response can be
seen on the voltage level passing from high to low values. When over a black surface the
phototransistor current flow decreases and when on a white surface the current raises.

41

6.3 IR Led and Sensors

There are two tests required to analyse the functionality of the sensor:

• First is necessary to check the frequency that the timers output to the led with the
oscilloscope. It as to be close to 39 kHz, depending on how sensitive to close or far
object detection the IR sensors need to be, it may be between 37 kHz and 39.5 kHz.
If passed the test, it’s for sure that the good condition sensor will detect something.

• Finally the voltage of the sensors may be measured verified. By approaching an
object or with the hand in front of the sensor, it will react and change the voltage
in the output pin from high to low.

To check if the both IR object detectors sensors were working harmoniously together,
a code was developed to print the direction where an object was. Positioning an object
in front of the robot, it would be printed ”Front”. If moved to the right, the ”Right”
word would appear in the LCD and similar if something detected on the left.

42

7 Conclusion

This chapter describes the conclusions made while analysing and building the
Sumobot system. The first part of the chapter is a light written evaluation how the
project fill the requirements set to it. The second part describes some of the problems,
workarounds and best practices that were identified during the work.

7.1 Basic evaluation of the system

Building an Avr Butterfly embedded system for a Sumobot can be very tricky when
you don’t have good knowledge for that. In my particular case I had the basic
familiarity with the similar Atmega boards, although with this one the things done with
it reached greater level of difficulty. It was required to read and understand entirely the
microcontrollers functionalities, however the project ran very smoothly and well. The
main goal was reached and there was still time for improvements. The result of this
thesis is a documentation where anyone with some training and understanding can
follow and reproduce simple SumoBot system for the Avr Butterfly microcontroller.

The Sumobot surpassed the expectations, it is able to compete on a sumo tournament
and the system is working harmoniously with components. During the competition the
robot detected the opponent and pushed it out from the ring several times and it was
capable of maintaining itself on the ring without going out by mistake. The servos
movements and speed was quite good and fast, although not very fluent. Also there
wasn’t any visible delays on the response to object detections neither to line detection.

Analysing the requirements it’s noticeable that all requirements were conquered. The
imposed hardware and tools were all used, the Avr’s pins were carefully selected
depending on each functionality, all drivers work it the respective components and the
latest circuit board is much more organized than the first design.

The software allowed the Sumobot to win several matches, proving that is stable and
efficient. The Remote control Mode has an acceptable performance, even though the
distance sensitivity of the sensors to capture the signals could be stronger.
The Sumobot design and structure stability respected the regulations and rules of the
official Sumobots’ Competition.

7.2 Problems and possible solutions

During the project development there were several problems that needed to be
confronted and they weren’t easy neither fast to solve.

Hardware: In the beginning there was a few components lost because of distracted
handling. An IR led was burned because the resistors were forgotten, a few IR sensors
were destroyed due to their heat sensitivity when soldering them in the circuits.
The biggest issue was the electric noise. It was found that it was significant only when
the Sumobot was running out of batteries, this caused the sensor’s signals to have less

43

amplitude and therefore the noise could disrupt them. A low pass filter on the IR
sensors output was implemented but without success. The solution consisted on
powering up the Sumobot either with the power supply when testing or with new
batteries for the matches.

Software: The servo motors’ timers/counters were complicated to get right because the
wrong register were selected or the formula wasn’t the correct one. With the IR led
signal was the same, but once understood how the counters worked, no more problems
were found.
In the until the very end, the robot suffered of inaccurate delay times because the CPU
clock in the Eclipse IDE or AVR studio were wrongly defined, the best solution was to
redefine it in the code.
The latest software issue was for the IR communication. Since to count the signal’s
time, a while condition incrementing a variable was used, it was quite complicated to
find how many increments the microcontroller could do in 1 ms. The best solution was
putting the Avr Butterfly to count and display on the LCD the counter value at end of
the cycle. Knowing that the code lines between the counter wasted time, most of the
time had to be by trial and error until a good level of accuracy was reached.

7.3 Summary

Designing and implementing an embedded system for a Sumobot using an Avr
Butterfly is quite a enjoyable and challenging job, which involves many tasks from
building the robot, developing the system and testing it step by step. The Avr butterfly
is a very good microcontroller for this type of works, because it has a good variety of
peripheral, is compact and has low power design, also the Sumobot kit from Parallax
was a great set of tools to build the little robot.

Before starting anything is advisable to have a good look to the projects
requirements, available hardware and necessary goals to archive. After that is possible
to decide the type of system do be developed, what components will be needed to be
built and what tools will be used.

Once the necessary components like the circuit board and the IR emitters/sensors are
completed, the cables can be done and the robot assembled. The next phase is start
programming for the easiest components first so that the work can be moralizing in the
beginning and to start showing faster results. During the project each component was
worked each at the time, it started with the QTI’s, then Servos and finally the IR
emitters and sensors.

With all drivers completed and tested individually the main code can be easily done.
Remaining just the final task that is to test the system working together with the
components and putting the robot to push some opponents from the ring.

44

8 Appendix

ADC Driver

Listing 1: ADC Driver Header file
1 #define L_IR 5

2 #define R_IR 6

3

4 #ifndef ADC_H_

5 #define ADC_H_

6

7 void ADC_init(char);

8 int ADC_read(void);

9

10 #endif /* ADC_H_ */

Listing 2: ADC Driver source file
1

2 // ***

3 //

4 // File: ADC.c

5 //

6 // Author(s)...: ATMEL Norway

7 //

8 // Target(s)...: ATmega169

9 //

10 // Compiler: AVR -GCC 3.3.1; avr -libc 1.0

11 //

12 // Description .: AVR Butterfly ADC routines

13 //

14 // Revisions ...: 1.0

15 //

16 // YYYYMMDD - VER. - COMMENT - SIGN.

17 //

18 // 20030116 - 1.0 - Created - LHM

19 // 20031009 port to avr -gcc/avr -libc - M.Thomas

20 //

21 // ***

22

23 #include <avr/io.h>

24 #include <avr/pgmspace.h>

25 #include "ADC.h"

26 #include "main.h"

27

28 /* **

29 *

30 * Function name : ADC_init

31 *

32 * Returns : None

33 *

34 * Parameters : char input

35 *

36 * Purpose : Initialize the ADC with the selected ADC -channel

37 *

38 ** */

39 void ADC_init(char input) {

40

41 ADMUX = input; // external AREF and ADCx

42

43 // set ADC prescaler to , 1MHz / 8 = 125 kHz

44 ADCSRA = (1 << ADEN) | (1 << ADPS1) | (1 << ADPS0);

45

46 input = ADC_read (); // dummy

47 }

48

49 /* **

50 *

45

51 * Function name : ADC_read

52 *

53 * Returns : int ADC

54 *

55 * Parameters : None

56 *

57 * Purpose : Do a Analog to Digital Conversion

58 *

59 ** */

60 int ADC_read(void) {

61 char i;

62 int ADC_temp;

63 int ADCr = 0;

64

65 // To save power , the voltage over the LDR and the NTC is turned off when not used

66 // This is done by controlling the voltage from a I/O-pin (PORTF3)

67 sbiBF(PORTF , PF3); // Enable the VCP (VC -peripheral)

68 sbiBF(DDRF , DDF3);

69

70 sbiBF(ADCSRA , ADEN); // Enable the ADC

71

72 //do a dummy readout first

73 ADCSRA |= (1 << ADSC); // do single conversion

74 while (!(ADCSRA & 0x10))

75 ; // wait for conversion done , ADIF flag active

76

77 // do the ADC conversion 16 times for better accuracy

78 for (i = 0; i < 16; i++)

79 {

80 ADCSRA |= (1 << ADSC); // do single conversion

81 while (!(ADCSRA & 0x10))

82 ; // wait for conversion done , ADIF flag active

83

84 ADC_temp = ADCL; // read out ADCL register

85 ADC_temp += (ADCH << 8); // read out ADCH register

86

87 ADCr += ADC_temp; // accumulate result (16 samples) for later averaging

88 }

89

90 ADCr = ADCr >> 3; // average the 16 samples

91

92 cbiBF(PORTF ,PF3); // disable the VCP

93 cbiBF(DDRF ,DDF3);

94

95 cbiBF(ADCSRA , ADEN); // disable the ADC

96

97 return ADCr;

98 }

LCD Driver

Listing 3: LCD Driver Header file
1 /* ***

2 BUTTLCD -- Butterfly LCD Driver

3

4 Copyright (C) Dean Camera , 2008

5

6 dean [at] fourwalledcubicle [dot] com

7 www.fourwalledcubicle.com

8 *** */

9

10 #ifndef LCDDRIVER_H

11 #define LCDDRIVER_H

12

13 // INCLUDES:

14 #include <avr/io.h>

15 #include <avr/pgmspace.h>

46

16 #include <avr/interrupt.h>

17 #include <stdbool.h>

18

19 // EXTERNAL VARIABLES:

20 extern volatile uint8_t ScrollFlags;

21

22 // DEFINES:

23 #define LCD_LCDREGS_START ((uint8_t *)& LCDDR0)

24 #define LCD_SPACE_OR_INVALID_CHAR 0xFF

25

26 #define LCD_CONTRAST_LEVEL(level) do{ LCDCCR = (0x0F & level); }while (0)

27 #define LCD_WAIT_FOR_SCROLL_DONE () do{ while (!(ScrollFlags & LCD_FLAG_SCROLL_DONE)) {} }while (0)

28

29 #define LCD_SCROLLCOUNT_DEFAULT 6

30 #define LCD_DELAYCOUNT_DEFAULT 20

31 #define LCD_TEXTBUFFER_SIZE 20

32 #define LCD_SEGBUFFER_SIZE 19

33 #define LCD_DISPLAY_SIZE 6

34

35 #define LCD_FLAG_SCROLL (1 << 0)

36 #define LCD_FLAG_SCROLL_DONE (1 << 1)

37

38 // PROTOTYPES:

39 void LCD_puts_f(const char *FlashData);

40 void LCD_puts(const char *Data);

41 void LCD_Init(void);

42 void LCD_ShowColons(const uint8_t ColonsOn);

43

44 #if defined(INC_FROM_DRIVER)

45 static inline void LCD_WriteChar(const uint8_t Byte , const uint8_t Digit);

46 #endif

47 #endif

Listing 4: LCD Driver Source file
1 /* ***

2 BUTTLCD -- Butterfly LCD Driver

3

4 Copyright (C) Dean Camera , 2008

5

6 dean [at] fourwalledcubicle [dot] com

7 www.fourwalledcubicle.com

8 *** */

9

10 // Include files.

11 #include <avr/io.h>

12 #include <avr/pgmspace.h>

13 #include <avr/interrupt.h>

14 #include <stdint.h>

15 #include "main.h"

16

17 #include "LCD_driver.h"

18

19 //LCD Text+ Nulls for scrolling + Null Termination

20 static volatile char

21 TextBuffer[LCD_TEXTBUFFER_SIZE + LCD_DISPLAY_SIZE + 1] = { };

22 static volatile uint8_t StrStart = 0;

23 static volatile uint8_t StrEnd = 0;

24 static volatile uint8_t ScrollCount = 0;

25 static volatile uint8_t UpdateDisplay = false;

26 static volatile uint8_t ShowColons = false;

27 volatile uint8_t ScrollFlags = 0;

28

29 const uint16_t LCD_SegTable [] PROGMEM =

30 { 0xEAA8 , // ’*’

31 0x2A80 , // ’+’

32 0x4000 , // ’,’

33 0x0A00 , // ’-’

34 0x0A51 , // ’.’ Degree sign

35 0x4008 , // ’/’

47

36 0x5559 , // ’0’

37 0x0118 , // ’1’

38 0x1e11 , // ’2

39 0x1b11 , // ’3

40 0x0b50 , // ’4

41 0x1b41 , // ’5

42 0x1f41 , // ’6

43 0x0111 , // ’7

44 0x1f51 , // ’8

45 0x1b51 , // ’9’

46 0x0000 , // ’:’ (Not defined)

47 0x0000 , // ’;’ (Not defined)

48 0x8008 , // ’<’

49 0x1A00 , // ’=’

50 0x4020 , // ’>’

51 0x0000 , // ’?’ (Not defined)

52 0x0000 , // ’@’ (Not defined)

53 0x0f51 , // ’A’ (+ ’a ’)

54 0x3991 , // ’B’ (+ ’b ’)

55 0x1441 , // ’C’ (+ ’c ’)

56 0x3191 , // ’D’ (+ ’d ’)

57 0x1e41 , // ’E’ (+ ’e ’)

58 0x0e41 , // ’F’ (+ ’f ’)

59 0x1d41 , // ’G’ (+ ’g ’)

60 0x0f50 , // ’H’ (+ ’h ’)

61 0x2080 , // ’I’ (+ ’i ’)

62 0x1510 , // ’J’ (+ ’j ’)

63 0x8648 , // ’K’ (+ ’k ’)

64 0x1440 , // ’L’ (+ ’l ’)

65 0x0578 , // ’M’ (+ ’m ’)

66 0x8570 , // ’N’ (+ ’n ’)

67 0x1551 , // ’O’ (+ ’o ’)

68 0x0e51 , // ’P’ (+ ’p ’)

69 0x9551 , // ’Q’ (+ ’q ’)

70 0x8e51 , // ’R’ (+ ’r ’)

71 0x9021 , // ’S’ (+ ’s ’)

72 0x2081 , // ’T’ (+ ’t ’)

73 0x1550 , // ’U’ (+ ’u ’)

74 0x4448 , // ’V’ (+ ’v ’)

75 0xc550 , // ’W’ (+ ’w ’)

76 0xc028 , // ’X’ (+ ’x ’)

77 0x2028 , // ’Y’ (+ ’y ’)

78 0x5009 , // ’Z’ (+ ’z ’)

79 0x1441 , // ’[’

80 0x8020 , // ’\’

81 0x1111 , // ’]’

82 0x0000 , // ’^’ (Not defined)

83 0x1000 // ’_’

84 };

85

86 // ==

87

88 /* ***

89 NAME: | LCD_Init

90 PURPOSE: | Initializes the Butterfly ’s LCD for correct operation , ready to display data

91 ARGUMENTS: | None

92 RETURNS: | None

93 *** */

94 void LCD_Init(void) {

95 // Set the initial contrast level to maximum:

96 LCD_CONTRAST_LEVEL (0x0F);

97

98 // Select asynchronous clock source , enable all COM pins and enable all segment pins:

99 LCDCRB = (1 << LCDCS) | (3 << LCDMUX0) | (7 << LCDPM0);

100

101 // Set LCD prescaler to give a framerate of 64Hz:

102 LCDFRR = (0 << LCDPS0) | (3 << LCDCD0);

103

104 // Enable LCD and set low power waveform , enable start of frame interrupt:

105 LCDCRA = (1 << LCDEN) | (1 << LCDAB) | (1 << LCDIE);

48

106 }

107

108 /* ***

109 NAME: | LCD_puts

110 PURPOSE: | Displays a string from flash onto the Butterfly ’s LCD

111 ARGUMENTS: | Pointer to the start of the flash string

112 RETURNS: | None

113 *** */

114 void LCD_puts_f(const char *FlashData) {

115 /* Rather than create a new buffer here (wasting RAM), the TextBuffer global

116 is re -used as a temp buffer. Once the ASCII data is loaded in to TextBuffer ,

117 LCD_puts is called with it to post -process it into the correct format for the

118 LCD interrupt. */

119

120 strcpy_P ((char*) &TextBuffer [0], FlashData);

121 LCD_puts ((char*) &TextBuffer [0]);

122 }

123

124 /* ***

125 NAME: | LCD_puts

126 PURPOSE: | Displays a string from SRAM onto the Butterfly ’s LCD

127 ARGUMENTS: | Pointer to the start of the SRAM string

128 RETURNS: | None

129 *** */

130 void LCD_puts(const char *Data) {

131 uint8_t LoadB = 0;

132 uint8_t CurrByte;

133 uint8_t Nulls;

134

135 do {

136 CurrByte = *(Data ++);

137

138 switch (CurrByte) {

139 case ’a’ ... ’z’:

140 CurrByte &= ~(1 << 5); // Translate to upper -case character

141 case ’*’ ... ’_’: // Valid character , load it into the array

142 TextBuffer[LoadB ++] = (CurrByte - ’*’);

143 break;

144 case 0x00:

145 //Null termination of the string - ignore for now so the nulls can be appended below

146 break;

147 default: // Space or invalid character , use 0xFF to display a blank

148 TextBuffer[LoadB ++] = LCD_SPACE_OR_INVALID_CHAR;

149 }

150 } while (CurrByte && (LoadB < LCD_TEXTBUFFER_SIZE));

151

152 ScrollFlags = ((LoadB > LCD_DISPLAY_SIZE) ? LCD_FLAG_SCROLL : 0x00);

153

154 for (Nulls = 0; Nulls < 7; Nulls ++) {

155 // Load in nulls to ensure that when scrolling , the display clears before wrapping

156 TextBuffer[LoadB ++] = LCD_SPACE_OR_INVALID_CHAR;

157 }

158 TextBuffer[LoadB] = 0x00; // Null -terminate string

159

160 StrStart = 0;

161 StrEnd = LoadB;

162 ScrollCount = LCD_SCROLLCOUNT_DEFAULT + LCD_DELAYCOUNT_DEFAULT;

163 UpdateDisplay = true;

164 }

165

166 /* ***

167 NAME: | LCD_WriteChar (static , inline)

168 PURPOSE: | Routine to write a character to the correct LCD registers for display

169 ARGUMENTS: | Character to display , LCD character number to display character on

170 RETURNS: | None

171 *** */

172 static inline void LCD_WriteChar(const uint8_t Byte , const uint8_t Digit) {

173 uint8_t* BuffPtr = (uint8_t *) (LCD_LCDREGS_START + (Digit >> 1));

174 uint16_t SegData = 0x0000;

175 uint8_t BNib;

49

176

177 if (Byte != LCD_SPACE_OR_INVALID_CHAR) // Null indicates invalid character or space

178 SegData = pgm_read_word (& LCD_SegTable[Byte]);

179

180 for (BNib = 0; BNib < 4; BNib ++) {

181 uint8_t MaskedSegData = (SegData & 0x0000F);

182

183 if (Digit & 0x01)

184 *BuffPtr = ((* BuffPtr & 0x0F) | (MaskedSegData << 4));

185 else

186 *BuffPtr = ((* BuffPtr & 0xF0) | MaskedSegData);

187

188 BuffPtr += 5;

189 SegData >>= 4;

190 }

191 }

192

193 /* ***

194 NAME: | LCD_ShowColons

195 PURPOSE: | Routine to turn on or off the LCD’s colons

196 ARGUMENTS: | Boolean - true to turn on colons

197 RETURNS: | None

198 *** */

199 void LCD_ShowColons(const uint8_t ColonsOn) {

200 ShowColons = ColonsOn;

201 UpdateDisplay = true;

202 }

203 /* ***

204 NAME: | LCD_vect (ISR , blocking)

205 PURPOSE: | ISR to handle the display and scrolling of the current

206 | display string onto the LCD

207 ARGUMENTS: | None

208 RETURNS: | None

209 *** */

210 ISR(LCD_vect , ISR_NOBLOCK)

211 {

212 uint8_t Character;

213 if (ScrollFlags & LCD_FLAG_SCROLL) {

214 if (!(ScrollCount --)) {

215 UpdateDisplay = true;

216 ScrollCount = LCD_SCROLLCOUNT_DEFAULT;

217 }

218 }

219

220 if (UpdateDisplay) {

221 for (Character = 0; Character < LCD_DISPLAY_SIZE; Character ++) {

222 uint8_t Byte = (StrStart + Character);

223

224 if (Byte >= StrEnd)

225 Byte -= StrEnd;

226

227 LCD_WriteChar(TextBuffer[Byte], Character);

228 }

229

230 if ((StrStart + LCD_DISPLAY_SIZE) == StrEnd) // Done scrolling message on LCD once

231 ScrollFlags |= LCD_FLAG_SCROLL_DONE;

232

233 if (StrStart ++ == StrEnd)

234 StrStart = 1;

235

236 if (ShowColons)

237 *((uint8_t *) (LCD_LCDREGS_START + 8)) = 0x01;

238 else

239 *((uint8_t *) (LCD_LCDREGS_START + 8)) = 0x00;

240

241 UpdateDisplay = false; // Clear LCD management flags , LCD update is complete

242 }

243 }

50

IR Driver

Listing 5: IR Driver Header file
1 #ifndef IR_SENSORS_H_

2 #define IR_SENSORS_H_

3

4 void IR_Init(void);

5 #endif /* IR_SENSORS_H_ */

Listing 6: IR Driver Source file
1

2 #include <stdint.h>

3 #include <avr/io.h>

4 #include <avr/interrupt.h>

5 #include <avr/wdt.h>

6

7 #include "IR_sensors.h"

8 #include "main.h"

9

10 /* Fast PMW timer mode function: #ticks= Ms/(prescaler *1000/ Clock Freq(Hz))

11 *

12 *Freq = 39.5

13 *time = 1/freq

14 *

15 * MS #ticks

16 * 0,25 - 25

17 *

18 *

19 * with half dutty cycle we have half ticks for toggling the bit

20 * it’s needed half time:

21 *

22 * #ticks = 12;

23 */

24

25 void IR_Init () {

26

27 SREG |= 1 << SREG_I; // Global interrupt enable

28

29 /*8-bit Timer/Counter0 */

30 /* TIMER 0 WGM: CTC , CS0x:Preescaler 8*/

31 TCCR0A |= 1 << WGM01 | 1 << COM0A0 | 1 << CS01;

32 TCCR0A &= ~(1 << COM0A1);

33 TCCR0A &= ~(1 << WGM00);

34 TCCR0A &= ~(1 << CS02);

35 TCCR0A &= ~(1 << CS00);

36

37 TIMSK0 |= 1 << TOIE0; // Timer0 interrupt overflow enable

38

39 /* TIMER0 OUTPUTS */

40 DDRB |= 1 << DD4; //OCOA Data direction register

41 PORTB &= ~(1 << DD4); //OC0A

42

43 /*8-bit Timer/Counter2 */

44 /* TIMER 2 WGM: CTC , CS0x:Preescaler 8*/

45 TCCR2A |= 1 << WGM21 | 1 << COM2A0 | 1 << CS21;

46 TCCR2A &= ~(1 << COM2A1);

47 TCCR2A &= ~(1 << WGM20);

48 TCCR2A &= ~(1 << CS22);

49 TCCR2A &= ~(1 << CS20);

50

51 TIMSK2 |= 1 << TOIE2; // Timer2 interrupt overflow enable

52

53 /* TIMER2 OUTPUTS */

54 DDRB |= 1 << DD7; //OC2A Data direction register

55 PORTB &= ~(1 << DD7); //OC2A

56

57 OCR0A = 12; //TOP L

51

58 OCR2A = 12; //TOP R

59 }

QTI Driver

Listing 7: QTI Driver Header file
1 #ifndef QTI_DRIVER_H_

2 #define QTI_DRIVER_H_

3

4 void QTI_Init(void);

5 int Left_QTI ();

6 int Right_QTI ();

7

8 #endif /* QTI_DRIVER_H_ */

Listing 8: QTI Driver Source file
1

2 #include <avr/io.h>

3 #include "main.h"

4 #include "QTI_driver.h"

5

6 /* ***

7 *

8 * Function name : QTI_Init

9 *

10 * Purpose : Initializes PORTD 0 and 2 for the QTI sensor

11 *

12 *** */

13 void QTI_Init(void) {

14

15 //Data direction register -> out

16 DDRB |= 1 << DD0;

17 DDRB |= 1 << DD2;

18

19 //Set bit to high to initialize

20 PORTB |= 1 << DD0;

21 PORTB |= 1 << DD2;

22

23 //Time the capacitors need to charge

24 Delay (1);

25

26 //Set bit to LOW to start the normal reading

27 DDRB &= ~(1 << DD0);

28 DDRB &= ~(1 << DD2);

29

30 }

31

32 /* **

33 *

34 * Function name : Left_QTI

35 *

36 * Purpose : Check if the QTI bit is set or clear.

37 * 1 - Black surface

38 * 0 - White line

39 *

40 * Return: integer 1 or 0

41 *

42 ** */

43 int Left_QTI () {

44

45 if (bit_is_set(PINB ,PINB0)) {

46 // Black surface

47 return 1;

48

49 } else {

52

50 // White line

51 return 0;

52 }

53 }

54

55 /* ***

56 *

57 * Function name : Right_QTI

58 *

59 * Purpose : Check if the QTI bit is set or clear.

60 * 1 - Black surface

61 * 0 - White line

62 *

63 * Return: integer 1 or 0

64 *

65 *** */

66 int Right_QTI () {

67

68 if (bit_is_set(PINB ,PINB2)) {

69 // Black surface

70 return 1;

71

72 } else {

73 // White line

74 return 0;

75 }

76 }

Servo Driver

Listing 9: Servo Driver Header file
1 #ifndef MOTOR_DRIVER_H_

2 #define MOTOR_DRIVER_H

3

4 void Motor_Init ();

5 void Stop_Bot ();

6 void Go_Forward ();

7 void Go_Back ();

8 void Go_Left ();

9 void Go_Right ();

10

11 #endif /* MOTOR_DRIVER_H_ */

Listing 10: Servo Driver Source file
1 #include "motor_driver.h"

2 #include "main.h"

3

4 #include <stdint.h>

5 #include <avr/io.h>

6 #include <avr/interrupt.h>

7 #include <avr/wdt.h>

8 #include "math.h"

9 #include <string.h>

10

11 /* Fast PMW timer mode function: #ticks= Ms/(prescaler *1000/ Clock Freq(Hz))

12 *

13 *

14 * MS #ticks

15 * 20 ms - 20000

16 * 1 ms - 2000 -> L reverse/ R Forward

17 * 1.5 ms - 1500 -> L Stop/ R stop

18 * 2 ms - 1000 -> L Forward/ R reverse

19 *

20 *Forward:

21 * OCR1A = 20000 - 316456 2000;

53

22 * OCR1B = 20000 - 1000;

23 *

24 *Left:

25 * OCR1A = 20000 - 1000;

26 * OCR1B = 20000 - 1000;

27 *

28 *Right:

29 * OCR1A = 20000 - 2000;

30 * OCR1B = 20000 - 2000;

31 *

32 *Back:

33 * OCR1A = 20000 - 1000;

34 * OCR1B = 20000 - 2000;

35 *

36 *Stop:

37 * OCR1A = 20000 - 1500;

38 * OCR1B = 20000 - 1500;

39

40 * */

41

42 void Motor_Init () {

43

44 DDRB |= 1 << DD5; // Data direction register -> out

45 PORTB |= ~(1 << DD5);

46

47 DDRB |= 1 << DD6; // Data direction register -> out

48 PORTB |= ~(1 << DD6);

49

50 // Timer 8 prescaler

51 //Fast PWM mode - 15

52 // Toggle on compare match

53

54 TCCR1A |= 1 << COM1A0 | 1 << COM1A1 | 1 << COM1B0 | 1 << COM1B1 | 1 << WGM11;

55 TCCR1A &= ~(1 << WGM10);

56

57 TCCR1B |= 1 << CS11 | 1 << WGM13 | 1 << WGM12;

58 TCCR1B &= ~(1 << CS10);

59 TCCR1B &= ~(1 << CS12);

60

61 //TOP Value

62 ICR1 = 20000;

63

64 }

65

66 /* **

67 * Function name : Go_Forward

68 *

69 * Purpose : Change timer values so that the servos ’ move forward

70 ** */

71 void Go_Forward () {

72

73 OCR1A = 18000;

74 OCR1B = 19000;

75 }

76

77 /* **

78 * Function name : Go_Left

79 *

80 * Purpose : Change timer values so that the robot turn Left

81 ** */

82 void Go_Left () {

83

84 OCR1A = 19000;

85 OCR1B = 19000;

86

87 }

88

89 /* **

90 * Function name : Go_Right

91 *

54

92 * Purpose : Change timer values so that the robot turn right

93 ** */

94 void Go_Right () {

95

96 OCR1A = 18000;

97 OCR1B = 18000;

98

99 }

100

101 /* **

102 * Function name : Go_Back

103 *

104 * Purpose : Change timer values so that the robot reverse

105 ** */

106 void Go_Back () {

107

108 OCR1A = 19000;

109 OCR1B = 18000;

110 }

Main code

Listing 11: Main Header file
1 #ifndef MAIN_H_

2 #define MAIN_H_

3

4

5 #define F_CPU 8000000

6

7 #define BOOL char

8 #define FALSE 0

9 #define TRUE (!FALSE)

10 #define NULL ((void *)0)

11

12 // Macro definitions

13 // sbi and cbi are not longer supported by the avr -libc

14 // to avoid version -conflicts the macro -names have been

15 // changed to sbiBF/cbiBF "everywhere"

16

17 //set bit in port

18 #define sbiBF(port ,bit) (port |= (1<<bit))

19 //clear bit in port

20 #define cbiBF(port ,bit) (port &= ~(1<<bit))

21

22 // functions ’ definition

23 void Initialization(void);

24 int Left_Ir_Scan(void);

25 int Right_Ir_Scan(void);

26 void FallBack_Right_Move(void);

27 void FallBack_Left_Move(void);

28 void Wait(void);

29 void Delay(double millisec);

30

31 #endif /* MAIN_H_ */

Listing 12: Main Source file
1 #include <stdint.h>

2 #include <avr/io.h>

3 #include <avr/interrupt.h>

4 #include <avr/pgmspace.h>

5 #include <avr/wdt.h>

6 #include <avr/version.h>

7 #include <string.h>

8 #include <stdlib.h>

9

55

10 #include "main.h"

11 #include "ADC.h"

12

13 #include "LCD_driver.h"

14 #include "IR_sensors.h"

15 #include "QTI_driver.h"

16 #include "motor_driver.h"

17

18 int main(void) {

19

20 int L_IR_temp , L_IR_REF;

21 int R_IR_temp , R_IR_REF;

22

23

24 // Program initialization

25 Initialization ();

26

27 // Enable interrupts

28 sei();

29

30

31 //IR Manual Calibration

32 L_IR_REF = 250;

33 R_IR_REF = 250;

34

35 //5 second wait phase before match

36 Wait ();

37

38 LCD_puts("Start");

39

40 while (1) // Main loop

41 {

42

43 /* Verify if the white line is detected by the QTI sensors

44 * if so perform the fallback movement to the right or left

45 * depending on the sensor side */

46

47 //if white line is detected on the left

48 if (! Left_QTI ()) {

49 FallBack_Right_Move ();

50 }

51

52 //if white line is detected on the right

53 if (! Right_QTI ()) {

54 FallBack_Left_Move ();

55 }

56

57

58 /*Read the values of the IR sensor thru the ADC and keep

59 * them in a variable */

60

61 L_IR_temp = Left_Ir_Scan ();

62 R_IR_temp = Right_Ir_Scan ();

63

64

65

66 /* Analyze the values received from each sensor and

67 * compare them to a chosen value that is the reference value.

68 * This value is defined in the calevince %. pdfibration reference where it can be

69 * done automatically or manually */

70

71 /*If the values are both lower than the references means that

72 * Something is detected in front so Move the robot forward */

73

74 if (L_IR_temp < L_IR_REF && R_IR_temp < R_IR_REF) {

75 Go_Forward ();

76 LCD_puts("Forward");

77 Delay (500);

78

79

56

80 }

81

82 /*If the values are greator than the references the sensors

83 * are not data flowseeing anything besides so the robor will move forward */

84

85 if (L_IR_temp >= L_IR_REF && R_IR_temp >= R_IR_REF) {

86 LCD_puts("BLIND");

87 Go_Forward ();

88 Delay (500);

89

90 }

91

92

93 /*If the value on the Left is lower and on the right is

94 * bigger than the references , there is something on the Left */

95

96 if (L_IR_temp < L_IR_REF && R_IR_temp >= R_IR_REF) {

97

98 Go_Left ();

99 LCD_puts("LEFT");

100 Delay (500);

101

102

103 }

104

105

106 /*If the value on the Right is lower and on the Left is

107 * bigger than the references , there is something on the Right */

108

109 if (L_IR_temp >= L_IR_REF && R_IR_temp < R_IR_REF) {

110

111 Go_Right ();

112 LCD_puts("RIGHT");

113 Delay (500);

114

115

116 }

117

118 }

119 return 0;

120

121 }

122

123 /* **

124 * Function name : Initialization

125 *

126 * Purpose : Initializate the different modules

127 ** */

128 void Initialization(void) {

129

130 Motor_Init (); // Initialize Motor

131

132 QTI_Init (); // Initialize QTI sensors

133

134 IR_Init (); // initialize IR sensors

135

136 LCD_Init (); // initialize the LCD

137

138 }

139

140 /* **

141 * Function name : FallBack_Left_Move

142 *

143 * Purpose : Fallback Moviment and left turn due to line detection

144 ** */

145 void FallBack_Left_Move(void) {

146

147 Go_Back ();

148 Delay (700);

149 Go_Left ();

57

150 Delay (700);

151 Go_Forward ();

152

153 }

154

155 /* **

156 * Function name : FallBack_Right_Move

157 *

158 * Purpose : Fallback Moviment and right turn due to line detection

159 ** */

160 void FallBack_Right_Move(void) {

161

162 Go_Back ();

163 Delay (700);

164 Go_Right ();

165 Delay (700);

166 Go_Forward ();

167 }

168

169 /* **

170 * Function name : Left_Ir_Scan

171 *

172 * Purpose : Turn off Right led , turn on the left Led ,

173 * initiate the ADC for the Left IR and

174 * the value from the sensor is read

175 *

176 * Return : The Value from ADC_read ();

177 ** */

178 int Left_Ir_Scan(void) {

179

180 // Check IR LED

181 /*turn off Right */

182 PORTB &= ~(1 << DD7); //OC2A

183

184 /* TIMER0 OUTPUTS turn on LEFT*/

185 PORTB |= (1 << DD4); //OC0A

186

187 ADC_init(L_IR);

188

189 return ADC_read ();

190 }

191

192 /* **

193 * Function name : Right_Ir_Scan

194 *

195 * Purpose : Turn off Left led , turn on the right Led ,

196 * initiate the ADC for the Right IR and

197 * the value from the sensor is read.

198 *

199 * Return : The Value from ADC_read ().

200 ** */

201 int Right_Ir_Scan(void) {

202

203 /*turn on Right led*/

204 PORTB |= (1 << DD7); //OC2A

205

206 /*turn off Left led*/

207 PORTB &= ~(1 << DD4); //OC0A

208

209 ADC_init(R_IR);

210 return ADC_read ();

211

212 }

213

214 /* **

215 * Function name : Wait

216 *

217 * Purpose : 5 Seconds delay; time required before the match.

218 ** */

219 void Wait() {

58

220

221 LCD_puts("5 SEC");

222 Delay (5000);

223

224 }

225

226 /* **

227 *

228 * Function name : Delay

229 *

230 * Parameters : double millisec

231 *

232 * Purpose : Delay -loop

233 *

234 ** */

235 void Delay(double millisec) {

236 uint8_t i;

237

238 millisec = 4 * millisec;

239

240 while (millisec --)

241

242 for (i = 0; i < 125; i++)

243 asm volatile ("nop"::);

244 }

IR Communication Driver

Listing 13: IR communication Header file
1 #ifndef IR_COM_H_

2 #define IR_COM_H_

3

4 void IR_Com_Init ();

5 int Read_Info(int *sensor);

6 void send(int frame []);

7 void sendburst(void)

8 void one(void);

9 void zero(void);

10 void lowlevel(void);

11 int bin2dec(char *bin);

12 int Sensor_bit_set(int *sensor);

13 int Sensor_bit_clear(int *sensor);

14

15 #endif /* IR_COM_H_ */

Listing 14: IR communication Source file
1 #include <avr/io.h>

2 #include "stdio.h"

3 #include <string.h>

4 #include <math.h>

5

6 #include "main.h"

7 #include "IR_sensors.h"

8 #include "ADC.h"

9 #include "LCD_driver.h"

10 #include "IR_Com.h"

11

12 // combination on the start of each message

13 const char Frame_Header [4] = "0101";

14 // Broadcast and Multicast ID

15 const char Broad_Multi_Unique_ID [3] = "111";

16 const char Broadcast_Global_ID [2] = "11";

17

18 //Bot Unique ID and Team ID

19 const char Bot_ID [3] = "001"; // --> Bot ID 001

59

20 const char Team_GID [2] = "00"; // --> Bot’s Team 02

21

22 /* **

23 * UID GID

24 * 111 11 --> Broadcast (ALL BOTS)

25 * 111 01 --> Multicast (All bots of team 1)

26 * 001 01 --> Singlecast (Bot 001 in team 01)

27 * ** */

28

29 /* **

30 * Function name : void IR_Com_Init ()

31 *

32 * Purpose : Initialize the IR communication components.

33 *

34 * Return : void

35 ** */

36 void IR_Com_Init () {

37

38 //set the Sensor pins to input mode

39 //

40 //Set bit to LOW to start the normal reading

41 //DDRE &= ~(1 << DD6);

42

43 //pb1

44 DDRB &= ~(1 << DD1);

45

46 //pb3

47 DDRB &= ~(1 << DD3);

48

49 //pf4

50 DDRF &= ~(1 << DD4);

51

52 }

53

54 /* **

55 * Function name : int Read_Info(void)

56 *

57 * Purpose : Receive and decode the message via Infra -red.

58 *

59 * Return : returns integer depending on the error or successful command

60 *

61 * n success -> n number of the conversion

62 * 0 end of function (impossible)

63 * -1 time -out error

64 * -2 Wrong Frame Header error

65 * -3 Wrong Unique ID -> message is not for this robot

66 * -4 Wrong Group ID -> message is not for this group

67 * -5 Parity Error check

68 *

69 ** */

70

71 int Read_Info(int *sensor) {

72

73 int count = 0;

74 char FrameM [14];

75 int bit = 0;

76 int times = 0;

77

78 while (1) {

79

80 count = 0;

81

82 while (Sensor_bit_set (& sensor) && count <= 150) {

83 LCD_puts("Timer");

84 count ++;

85 }

86

87 if (count >= 100) {

88 bit = 0;

89 times ++;

60

90

91 }

92

93 if (times >= 3) {

94 return -1;

95 }

96

97 // Reset counter

98 count = 0;

99

100 while (Sensor_bit_clear (& sensor) && count <= 50) {

101 LCD_puts("COUNTING");

102 count ++;

103 }

104

105 if (count >= 25) {

106 FrameM[bit] = ’1’;

107 } else {

108 FrameM[bit] = ’0’;

109 }

110

111 // Reset counter

112 count = 0;

113

114 // check frame header

115 if (bit <= 3 && FrameM[bit] != Frame_Header[bit]) {

116 bit = 0;

117 // LCD_puts ("Bad FRAME ");

118

119 } else {

120 bit++;

121

122 }

123

124 // check the information

125 if (bit == 14) {

126 int aux_bit , parity_numb = 0;

127

128 // check parity

129 for (aux_bit = 0; aux_bit <= 12; aux_bit ++) {

130 if (FrameM[aux_bit] == ’1’) {

131 parity_numb ++;

132 }

133 }

134

135 /* parity number == 1 --> odd

136 *parity number == 0 --> even

137 */

138

139 if ((parity_numb % 2 == 0 && FrameM [13] == ’0’) || (parity_numb % 2

140 != 0 && FrameM [13] == ’1’)) {

141

142 } else {

143 return -5;

144 }

145

146 // Robot’s Unique ID verification

147 for (aux_bit = 4; aux_bit <= 6; aux_bit ++) {

148

149 if (FrameM[aux_bit] == Bot_ID[aux_bit - 4] || FrameM[aux_bit]

150 == Broad_Multi_Unique_ID[aux_bit - 4]) {

151

152 } else {

153 return -3;

154 }

155

156 }

157

158 // Robot’s Group ID verification

159

61

160 for (aux_bit = 7; aux_bit <= 8; aux_bit ++) {

161

162 if (FrameM[aux_bit] == Broadcast_Global_ID[aux_bit - 7]

163 || FrameM[aux_bit] == Team_GID[aux_bit - 7]) {

164

165 } else {

166 return -4;

167 }

168

169 }

170

171 /* convert the binary message to decimal */

172

173 char bin [5];

174 int CMD_number = 0;

175 strncpy(bin , &FrameM [9], 4);

176 bin[4] = ’\0’;

177

178 // LCD_pNumuts(FrameM);

179 // Delay (5000);

180

181 CMD_number = bin2dec(bin);

182 return CMD_number;

183 // return number of the conversion and command

184 }

185

186 }

187 return 0;

188 }

189

190 /* **

191 * Function name : int bin2dec(char *bin)

192 *

193 * Purpose : Receives an array with a binary number and converts to decimal

194 *

195 * Return : returns integer converted

196 *

197 ** */

198 int bin2dec(char *bin) {

199 int b, k, n;

200 int len , sum = 0;

201

202 len = strlen(bin) - 1;

203 for (k = 0; k <= len; k++) {

204 b = 1;

205 n = (bin[k] - ’0’);

206 if ((n > 1) || (n < 0)) {

207

208 return (0);

209 }

210 b = b << (len - k);

211

212 sum = sum + n * b;

213

214 }

215 return (sum);

216 }

217

218 /* **

219 * Function name : int Sensor_bit_clear(int *SensorNumber)

220 *

221 * Purpose : Allows to make different bit verifications according with the desired

222 * sensor number

223 *

224 * Return : returns ’0’ or ’1’

225 *

226 ** */

227 int Sensor_bit_clear(int *SensorNumber) {

228

229 switch (* SensorNumber) {

62

230

231 case 1:

232 if (bit_is_clear(PINF ,PINF4))

233 return 1;

234 break;

235

236 case 2:

237 if (bit_is_clear(PINB ,PINB1))

238 return 1;

239 break;

240

241 case 3:

242 if (bit_is_clear(PINB ,PINB3))

243 return 1;

244 break;

245

246 default:

247 // LCD_puts ("Erro ");

248 return 0;

249

250

251 }

252

253 return 0;

254 }

255

256 /* **

257 * Function name : int Sensor_bit_set(int *SensorNumber)

258 *

259 * Purpose : Allows to make different bit verifications according with the desired

260 * sensor number

261 *

262 * Return : returns ’0’ or ’1’

263 *

264 ** */

265 int Sensor_bit_set(int *SensorNumber) {

266

267 switch (* SensorNumber) {

268

269 case 1:

270 if (bit_is_set(PINF ,PINF4))

271 return 1;

272 break;

273

274 case 2:

275 if (bit_is_set(PINB ,PINB1))

276 return 1;

277 break;

278

279 case 3:

280 if (bit_is_set(PINB ,PINB3))

281 return 1;

282 break;

283

284 default:

285 // LCD_puts ("Erro ");

286 return 0;

287

288 }

289

290 return 0;

291 }

292

293 void sendburst(void) {

294

295 int i;

296 int frame [14] = { 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 };

297

298 LCD_puts("Sending Frame");

299 for (i = 0; i <= 3; i++) { //send the frame 3 times

63

300

301 i++;

302 send(frame);

303

304 }

305

306 LCD_puts("FRAME SENT");

307 Delay (1000);

308 }

309

310 void send(int frame []) { // Sends an array of bits

311 int i = 0;

312

313 for (i = 0; i <= 13; i++) {

314

315 if (frame[i] == 1)

316 one();

317

318 else

319 zero ();

320

321 lowlevel ();

322 }

323

324

325 }

326

327 void one(void) { // If there is a 1 is the array , enables the LED to

328 DDRB |= 1 << DD4; // output a 39.5 khz signal during 2 miliseconds which will

329 // be interpreted as a 1 by the receiver

330 Delay (2);

331 }

332

333 void zero(void) { // If there is a 0 is the array , enables the LED to

334

335 DDRB |= 1 << DD4; // output a 39.5 kHz signal during 1 milisecond which will

336 // be interpreted as a 0 by the receiver

337 Delay (1);

338 }

339

340 void lowlevel(void) {

341

342 DDRB &= ~(1 << DD4); //LOW LEVEL no output on the LED by changing the data direction

343 // register

344 Delay (1);

345 }

Listing 15: IR Remote control mode Header file
1 #ifndef IRC_MODE_H_

2 #define IRC_MODE_H_

3

4 int RCmode(void);

5

6 #endif /* IRC_MODE_H_ */

Listing 16: IR Remote control mode Source file
1

2 #include "LCD_driver.h"

3 #include "motor_driver.h"

4 #include "IR_Com.h"

5 #include "IRC_Mode.h"

6 #include "main.h"

7

8 int RCmode () {

9

10 int n = 0;

11 LCD_puts("wait 3 sec");

64

12 Delay (3000);

13

14 while (1) {

15

16 //scan the 3 IR sensors

17 for(i=0; i>=3; i++){

18 n = Read_Info(i);

19 }

20 switch (n) {

21

22 case 1:

23 Go_Forward ();

24 LCD_puts("Forward");

25 Delay (2000);

26 Stop_Bot ();

27 break;

28 case 2:

29 Go_Left ();

30 LCD_puts("left");

31 Delay (2000);

32 Stop_Bot ();

33 break;

34 case 3:

35 Go_Right ();

36 LCD_puts("right");

37 Delay (2000);

38 Stop_Bot ();

39 break;

40 case 4:

41 Go_Back ();

42 LCD_puts("back");

43 Delay (2000);

44 Stop_Bot ();

45 break;

46

47 case 6:

48 LCD_puts("Good Bye");

49 Delay (2000);

50 return 0;

51

52 default:

53 LCD_puts("Unknown CMD");

54 Stop_Bot ();

55

56 }

57 }

58

59 return 0;

60 }

65

References

[1] SumoBot - Mini-Sumo Robotis. Parallax Inc., 2010.

[2] Atmel. Avr butterfly. http://www.atmel.com/dyn/products/tools_card.asp,
May 2010.

[3] Atmel Corporation. Avr butterfly evaluation kit - user guide. Technical report,
Atmel Corporation, 2005.

[4] Atmel Corporation. Avr butterfly quick start user guide. Technical report, Atmel
Corporation, 2005.

[5] Atmel Corporation. 8-bit avr microcontroller with 16k bytes in-system
programmable flash. Technical report, Atmel Corporation, 2006.

[6] SJ Electronics. Digital oscilloscope.
www.sjelectronics.co.uk/acatalog/GDS-800C.jpg.

[7] Carryll Hsu. Technical data sheet infrared remote-control receiver module.
Technical report, EVERLIGHT ELECTRONICS CO.,LTD., 2004.

[8] Parallax Inc. Applied robotics with the sumobot - student guide. Technical report,
Parallax Inc., 2004.

[9] Parallax Inc. Continuous rotation servo. Technical report, Parallax Inc., 2004.

[10] Parallax Inc. Qti line sensor. Technical report, Parallax Inc., 2004.

[11] Parallax inc. Sumobot - mini-sumo robotics. Technical report, Parallax inc., 2005.

[12] Joe Pardue. Butterfly Alternate Pin Uses. www.smileymicros.com, 12 06.

[13] RoboGames. Unified sumo robot rules.
http://robogames.net/rules/all-sumo.php, May 2010.

[14] Wikipedia. Eclipse (software).
http://en.wikipedia.org/wiki/Eclipse_(software), May 2010.

[15] Wikipedia. Embedded system.
http://en.wikipedia.org/wiki/Embedded_system, May 2010.

[16] Winavr. Winavr. http://winavr.sourceforge.net/, May 2010.

66

http://www.atmel.com/dyn/products/tools_card.asp
www.sjelectronics.co.uk/acatalog/GDS-800C.jpg
www.smileymicros.com
http://robogames.net/rules/all-sumo.php
http://en.wikipedia.org/wiki/Eclipse_(software)
http://en.wikipedia.org/wiki/Embedded_system
http://winavr.sourceforge.net/

	ABSTRACT
	Introduction
	Background
	The Parallax SumoBot Robot Kit
	The Competition
	Avr Butterfly Microcontroller
	Programming Environment Tools
	AVR Studio 4 and WinAVR
	Eclipse and AVR Eclipse Plugin

	The Project Scope and Requirements
	Scope definition
	Requirements of the SumoBot system

	Analysis and Design
	Hardware Limitations
	System Architecture
	Testing plan

	Implementation
	Mechanics
	Assemble the Sumobot

	Electronics
	QTI Sensors
	IR Emitters/Detectors Implementation
	Servo Motors
	The Circuit Board and Cable distribution

	Software
	ADC Driver
	LCD Driver
	IR Emitters/Detectors Driver
	QTI Driver
	Servo Driver
	Competition Code
	IR communication Driver
	IR Remote Control Mode Code

	Testing
	Servo Motors
	QTI Sensors
	IR Led and Sensors

	Conclusion
	Basic evaluation of the system
	Problems and possible solutions
	Summary

	Appendix
	References

