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Abstract

The enzymatic activity of Helicobacter pylori’s urease neutralises stomach acidity, thereby promoting infection by this
pathogen. Urease protein has also been found to interact with host cells in vitro, although this property’s possible
functional importance has not been studied in vivo. To test for a role of the urease surface in the host/pathogen
interaction, surface exposed loops that display high thermal mobility were targeted for inframe insertion mutagenesis. H.
pylori expressing urease with insertions at four of eight sites tested retained urease activity, which in three cases was at
least as stable as was wild-type urease at pH 3. Bacteria expressing one of these four mutant ureases, however, failed to
colonise mice for even two weeks, and a second had reduced bacterial titres after longer term (3 to 6 months)
colonisation. These results indicate that a discrete surface of the urease complex is important for H. pylori persistence
during gastric colonisation. We propose that this surface interacts directly with host components important for the host-
pathogen interaction, immune modulation or other actions that underlie H. pylori persistence in its special gastric mucosal
niche.
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Introduction

H. pylori chronically infects the gastric mucosa of billions of

people worldwide, causes peptic ulcer disease in 10% or more of

them, and is also implicated as an early critical risk factor for

gastric cancer, one of the most frequently lethal malignancies in

human populations [1]. One of the first characterised factors

essential for colonisation by H. pylori was urease, an abundant

enzyme that decreases the acidity of H. pylori’s immediate

environment by generating ammonia and carbonate from the

urea we secrete as metabolic waste [2,3]. Although such local

control of gastric acidity is considered essential, urease-negative

H. pylori strains were unable to colonise piglets whose acid

secretion had been suppressed, suggesting an additional role for

urease [4]. Possible explanations include use of ammonia that

urease generates to synthesise essential metabolites, especially

amino acids [5]; protection from peroxynitrite [6], enhanced

survival in macrophages [7]; evasion of phagocytosis [8] and

complement mediated opsonisation [9]. Quite a different

explanation invokes urease-host tissue interactions, independent

of enzymatic activity, and is based on in vitro studies that detected

urease activation of macrophages [10], monocytes [11], blood

platelets [11], dysregulation of gastric epithelial tight junctions

[12] and induction of cytokine production from gastric epithelial

cells [13] through binding to CD74 (MHC class II invariant

chain) [14]. H. pylori urease consists of a dodecamer of UreA-

UreB subunits (26.5 and 61.7 kDa, respectively), assembled as

four alpha/beta trimers, producing a ball-like supramolecular

structure [15,16]. We propose that properties of the dodecamer

surface contribute to urease’s acid stability [15] and host

interactions. We tested the role of the urease surface in H.

pylori/host interactions, and found that surface regions of this

enzyme in which changes that did not affect enzymatic activity

impaired bacterial persistence in a murine experimental infection

model.
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Results

Urease Altered on the Surface can Retain De-acidification
Function

To test the possible involvement of the urease surface in host-

pathogen interaction, we generated H. pylori with inframe insertions

at eight sites in urease. First the UreA/UreB structure [15] was

analysed in silico to identify surface regions that might tolerate the

insertion of two epitope tags (Figure 1a). Mutant H. pylori with in

frame insertions of DNA encoding epitope tag sequences at eight

specific sites in chromosomal ureA and ureB genes were then

generated by a PCR and transformation method. The sites chosen

were those corresponding to the N and C-termini of UreA and

UreB, respectively and six additional regions in which structural

considerations suggested that modest sequence changes would not

necessarily inactivate urease’s enzymatic activity. To reduce

structural stresses resulting from epitope tag insertion the tags were

separated from retained urease sequences by a flexible amino acid

linker. The tagged region was also flanked by semi-random six

amino acid linkers whose underlying DNAs had been designed to

exclude two of the three translation termination codons.

Four of eight candidate sites yielded mutant urease enzymes

that allowed H. pylori to hydrolyse urea (Figure 1b; Figure 1c).

Insertions at the other four sites did not result in isolation of

bacteria expressing functional ureases under these conditions.

Western blot analysis confirmed that H. pylori producing mutant

urease at sites 1, 3, 4 or 8 contained insertions of epitope tags

(Figure 2a). The pH of the mouse stomach lumen, which H. pylori

must traverse to establish gastric mucosal infection, is between 3

and 4 [17]. To determine if these insertions in urease’s surface

exposed loops altered its activity or stability we assayed enzymatic

activity in bacteria expressing wild-type or mutant urease after

exposure to acid (pH 3). One of the mutant ureases (insertion at

site 1) was more sensitive than wild type, and the three other

mutant ureases were similar to wild type in their sensitivity to this

acid treatment (Figure 2b; Student’s T-test; p,0.05).

Altering Surface Properties of Urease Alters Persistence in
the Host

The ability of each mutant urease-producing H. pylori strain to

colonise C57BL/6 mice was tested. The strain with site 3-mutant

urease did not colonise mice (data not shown) and was not studied

Figure 1. Recombinant regions of urease and selection for enzyme function. a) Molecular structure of urease showing insertion sites on the
surface of urease. Urease subunit A (green) and subunit B (blue) associate to form a dodecameric supramolecular molecule [15,16]. Sites 1 to 8
correspond to residues 102, 231 and 238 from UreA and residues 1, 66, 326, 541 and 549 from UreB, respectively. Insertion sites 1, 3, 4, and 8 are
indicated in red. Urease activity could not be retained when altered at sites 2, 5, 6, and 7 (pink). b) Selection of bacteria producing functional urease
on acidified media supplemented with the urease substrate, urea. Left side: X47 wild type; the colour change observed on the left side indicated that
bacterial colonies were producing functional urease and growing. Right side: X47 DureA: there was no colour (X47 wild-type). Colour change did not
occur on the right side, indicating that inoculated colonies were unable to grow or functional urease was not being produced (X47 DureA). c) A
schematic showing insertion sites at the urease locus of DNA coding epitopes and linkers. Insertions were made in DNA corresponding to insertion
after amino positions 102 (site 1) and 238 (site 3) of UreA (GenBank AAD07144.1), and amino acid positions 1 (site 4) and 549 (site 8) of UreB (GenBank
AAD07143.1). Insertions at sites 3 and 4 correspond to the C- and N-termini of UreA and UreB, respectively. DNA coded HA(T): hemagglutinin T cell
eptitope; HA(B) hemagglutinin B cell epitope; SR linker: semi-random linker; linker: GPSL linker; FLAG: FLAG epitope; STOP: STOP codon.
doi:10.1371/journal.pone.0015042.g001

Urease Surface and Helicobacter pylori Persistence
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further, whereas each of the other three mutant strains colonised

mice as efficiently as the wild-type in short-term (,3 months)

infections. However, persistence of H. pylori with site 8-mutant

urease was greatly reduced over longer periods of time (Figure 3a).

In confirmation, bacterial titres in mouse stomachs and anti-H.

pylori IgG in serum were each much reduced relative to wild type

and the other two mutants in the case of ten month infection by

this strain (Figure 3b, c). We note that H. pylori expressing urease

containing the recombinant at site 8 insertion, which was present

in infected animals at 3 months of infection at bacterial load

similar to that of bacteria expressing wild type urease (Figure 3a),

exhibited a weaker humoral response against the urease B subunit

(UreB) than did the wild type strain, but a normal response against

total H. pylori antigen (Figure 3d). Important in our infection

protocol, each inoculation used a pool of three independent

transformant clones. This rules out concerns of possible bacterial

attenuation by secondary chromosomal mutations distinct from

the insertions within urease. Further tests showed that nearly all H.

pylori recovered from mice 10 months after inoculation still

expressed the expected mutant urease, which showed that this

persistent colonisation was not due to loss of inserted DNAs. As the

sole exception, just one mouse initially infected with the site 1

mutant strain seemed to produce revertant urease at ten months

(Figure 4). It was also striking that reduced urease activity

measured in vitro did not correlate well with reduced colonisation

ability. For example, the site 1 mutant strain, whose urease was

less acid stable than the others, colonised mice as well as wild-type,

and the site 8 mutant, whose urease activity was similar in acid

resistance to that of wild type, was nevertheless less persistent in

mouse colonisation. Rather, we propose an alternative role for the

urease surface around site 8 (Figure 1a), important during chronic

infection.

Discussion

In summary, a structure-based insertion mutagenesis of the

urease complex identified two discrete regions on the enzyme

surface that are needed for colonisation or persistence of H. pylori,

site 3 and site 8 (Figure 1a). The inability of mutant H. pylori to

colonise mice due to an insertion at site 3 gives further support for

an alternative role of urease, different from acid neutralisation and

warrants further investigation. In addition, our results suggest that

the site 8 region is not essential for the de-acidification function of

urease, but rather is involved in an alternative function required for

persistence of infection in the host. Site 8 is located in the turn of a

beta-meander of the urease complex surface. No insertions or

deletions are found at this site in homologous urease sequences in

diverse organisms (Figure S1) and we therefore propose that the

precise structure of this beta-meander is important for urease’s

alternative role during long-term colonisation. Sites 3 and -8 have in

common the feature that both are located in proximity to the

rotation axis that connects three alpha/beta trimers. Since

enzymatic activity relies on the integrity of the alpha/beta trimer,

the insertion of tags at sites 3 and -8 could modify the trimer/trimer

interaction surface without compromising the enzymatic activity.

Adaptive immune responses change dramatically during the

establishment and maintenance of chronic H. pylori infection, in

particular at the site of infection. Urease site 8 overlaps with an

established H. pylori CD4+ T-cell epitope, in response to which

splenic lymphocytes produce cytokine IL-4 [18], a promoter of Th2

responses and driver of antibody production. In contrast the

sequences at sites 1, 3 and 4 do not coincide with any known B or

T cell epitopes. Since urease constitutes up to 10% of bacterial

protein [2,3] the removal of an abundant Th2 driver may prevent

adequate immune modulation by H. pylori important for persistence

and thereby facilitate bacterial clearance by further increasing the

Th1 bias during H. pylori infection. The observations that H. pylori

interferes with dendritic cells [19] and that CD74 plays a role in

regulation of the motility of dendritic cells [20] are in line with a role

of urease in the modulation of the immune response to achieve

persistence. This hypothesis is further supported by the observation

that endogenous CD74 receptor ligands or ligands from human

pathogens function as trimers [21,22] and an inference that

insertions of tags at sites 3 and -8 could affect the trimerisation of

urease alpha/beta trimers. Alternatively, given that binding of H.

pylori urease to CD74 on the gastric epithelium increases IL-8

secretion and up regulation of inflammatory cytokines [23] we can

imagine that modification of the urease site 8 region interferes with a

Figure 2. Recombinant urease activity and acid stability. a)
Western Blot analysis of H. pylori producing urease with insertions at
sites 1, 3, 4 or 8. Lanes 1: Maker (MW: KDa shown); Lane 2: X47 (site 1);
Lane 3: X47 (site 3); Lane 4: X47 (site 4); Lane 5: X47 (site 8). Mutant
urease was detected using anti-FLAG antibody, directed against UreA
(lanes 2 and 3) or UreB (lanes 4 and 5) mutants. b) Ability of
permeabilised bacteria expressing wild-type or mutant urease to
neutralise acid after incubation at pH 3 in the presence of urea. To
determine acid stability and activity of wild-type and mutant ureases,
bacteria were incubated at pH 3 for 0, 2 or 10 min prior to assay of
urease activity. After pre-incubation the solution pH was adjusted to
pH 7, neutralised, urea was added as substrate and urease activity was
measured by a change in pH, as indicated by a change in the colour of
phenol red. Significantly reduced urease activities independent of pre-
incubation at pH 3 are annotated ‘‘ * ’’ (Student’s T-test, 2 tailed, equal
variance). SEM displayed (n = 3).
doi:10.1371/journal.pone.0015042.g002
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direct interaction with CD74-type host cell receptors, and reduces

the pro-inflammatory response (which contributes to tissue damage,

and thereby release of metabolites on which H. pylori is thought to

feed) and thereby prevents chronic infection. The modification of the

site 8 epitope in the recombinant urease also might interfere with

urease’s chemotactic activity abrogating the inflammatory cell

response. This scenario is compatible with the penetration of urease

into the lamina propria where it is in close proximity to phagocytic

cells [24] and with the marked mucosal infiltration by polymorpho-

nuclear leukocytes, macrophages and lymphocytes during H. pylori

infection and resultant characteristic persistent gastritis. Further

studies examining the role of the urease surface in these interactions

are required to identify precisely what is the target receptor of the

urease surface at site 8 region and to elucidate the mechanism

underlying the urease surface-mediated H. pylori persistence.

Conclusions
In conclusion, the urease complex is multifunctional. The

surface properties of this protein, distinct from the ureolytic

activity per se, were found to be important for H. pylori colonisation

and persistence. We hypothesise that the modification of the

urease surface at site 8 compromises CD74-mediated immune

modulation, reduces the pro-inflammatory response elicited by the

epithelial cells or increases the Th1 bias via the dendritic cells.

Alternatively, other receptors, or yet unidentified mechanisms,

might be involved in the urease surface-mediated H. pylori

persistence. Figure 5 presents one appealing view of the multiple

roles attributed to the urease complex, including urea hydrolysis,

opsonisation, platelet aggregation, survival in macrophages,

chemotaxis and immune modulation through CD74. Given the

many failed efforts to develop anti-H. pylori vaccines to date, a

better molecular understanding of factors important in persistence

should contribute to development of new, much needed

therapeutic approaches.

Materials and Methods

Bacterial Strains and Growth Conditions
Streptomycin resistant H. pylori strain X47 was used for all

experiments [25]. Bacteria were grown on Brain Heart Infusion

(BHI) based agar plates supplemented with 5% horse blood and

when appropriate, with erythromycin (10 mg/mL) or streptomycin

(10 mg/mL) in an atmosphere containing 5% CO2. H. pylori

producing functional urease were selected on BHI based agar

plates supplemented with 7% (v/v) horse serum. Phenol, red

(100 mg/L), and urea (600 mg/L) were added, and the molten

agar was acidified to pH 5 using 1M HCl when needed to select

for H. pylori producing functional urease, as illustrated in Fig. 2.

DNA containing the rpsL,ermB (selectable and contraselectable

cassettes [26]) flanked by segments of urease gene DNA (for

homologous recombination), at the urease locus, were produced

using splicing by overlap extension PCR [27] and inserted at the

Figure 3. Insertion mutant but active urease can affect bacterial colonisation. a) Persistence over 15 months expressed as percentage of
colonised mice at each time point (n = 5–15). b) Colonisation level of mice infected with H. pylori expressing mutant urease after 15 months (n = 5;
median displayed). c) Persistence of H. pylori expressing mutant urease as indicated by anti-H. pylori IgG levels (n = 12–20; median displayed). Strains
were recombinant at either sites 1, 4 or 8 in urease. d) Comparison of anti-H. pylori IgG and anti-UreB IgG levels resulting from colonisation of mice for
3 months with X47 expressing wild-type urease, X47 (wt), or urease mutant at site 8, X47 (site8), (n = 10–20; median displayed).
doi:10.1371/journal.pone.0015042.g003
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desired sites in chromosomal ureA or ureB genes of a DureAB-rpsL.erm

derivative of H. pylori strain X47 [25] using natural transformation

and homologous recombination. DNA encoding HA epitopes (aa

150–159 and 110–120 of Influenza virus A/PR/8/34 hemagglu-

tinin protein [28]), flexible linkers (described below) and a FLAG

tag were similarly fused to regions of DNA for homologous

recombination and transferred to modified H. pylori, replacing the

rpsL.ermB counter selection cassette.

Structural Biology
In order to predict sites in urease which were tolerant to epitope

insertion, the three-dimensional structure of the H. pylori urease

complex was reconstructed from deposited coordinates (PDB-id:

1e9y) by applying the crystallographic symmetry operators. The

urease complex, consisting of 12 UreA and 12 UreB polypeptide

chains, was visually inspected for surface exposed loops showing

high thermal mobility likely to tolerate insertions of epitope tags.

The average temperature factors for main chain atoms of sites 1 to

8 where 64.3 Å2, 70.0 Å2, 36.6 Å2, 52.9 Å2, 23.3 Å2, 105.0 Å2,

59.6 Å2, and 61.8 Å2 whereas the average temperature factors for

main chain atoms of UreA and UreB where 43.8 Å2 and 34.9 Å2,

respectively.

Splicing by Overlap Extension (SOE) PCR
All PCR constructions used 26695 genomic DNA as template

for initial amplifications. Primers used in this study are shown in

Table S1 and the combinations used are shown in Table S2. The

principles of splicing by overlap PCR have been previously

reported [27]. To construct rpsL,ermB cassette [29] flanked by

regions for homologous recombination 3 stages of PCR were

performed. Stage 1 involved the amplification of the rpsL,ermB

cassette, and flanking regions for homologous recombination at

the urease locus. Stage 2 involved the addition of either flanking

region to the rpsL,ermB cassette using 2 way SOE PCR, Stage 3

involved using these products as template to add both flanking

regions to the rpsL,ermB cassette using 2 way SOE PCR (Table S2).
To produce DNA encoding HA (aa 150–159 and aa 110–120 of

Influenza virus A/PR/8/34 hemagglutinin protein; [28]) and

FLAG (DYKDDDDK) epitopes separated by a four amino acid

linker, flanked by semi-random six amino acid linkers and regions

for homologous recombination, 3 stages of PCR were performed

using AccuPrimeTM Pfx Supermix (Invitrogen). Stage 1 involved

the addition of flanking linkers, stage 2 involved the addition of

HA and FLAG epitopes, stage 3 involved the addition of flanking

regions for homologous recombination using 2-way SOE PCR

(Table S2). Thermocycling conditions were as follows: 94uC for

15 s, 56uC for 20 s, 68uC for 3.5 min (10 cycles). After the

addition of primers an additional 35 cycles of 94uC for 15 s, 62uC
for 20 s, 68uC for 3.5 min were performed, followed by a final

extension of 3 min. Extension times were varied according to PCR

product lengths.

Natural Transformation of H. pylori
Overnight cultures of H. pylori X47 DureAB rpsL.erm grown on

BHI based agar plates were subcultured onto plates supplement-

ed with DENT (Oxoid) in lawns of approximately 2 cm in

diameter. PCR products were DpnI treated to remove residual

genomic DNA and purified QIAQuick PCR Purification Kit

(Quiagen) prior to use in transformation. Transformation was

performed by the addition of approximately 1 mg of purified

PCR product after growth of bacterial lawns for 6–8 hrs. After

overnight incubation putative transformants were streaked on

selective media. Bacteria harbouring functional urease contain-

ing permissive linkers were selected from pools of transformant

bacteria by streaking on acidified media supplemented with the

urease substrate, urea.

Experimental Infection of Mice
C57BL/6, Helicobacter free, mice were purchased from the

Animal Resource Centre (Perth, Western Australia). Studies were

performed with approval from the UWA Animal Ethic

Committee (approval no. 07/100/598). Eight week old mice

were orogastrically inoculated with approximately 1.06109 H.

pylori harvested from an overnight agar plate based culture into

BHI broth (Oxoid). Mice were inoculated with pools of 3

independent, genetically characterised clones expressing wild

type or mutant urease. To determine the level of colonisation,

stomachs were harvested from sacrificed animals and opened,

and residual food was removed. Opened stomachs were

suspended in 500 mL PBS and homogenised using 5 mm stainless

steel beads for 25 seconds at setting of 30 (Qiagen Tissue Lyser).

Samples were then homogenised for a further 2 min at a setting

of 10 to facilitate bacterial release from the tissue. Serial dilutions

of homogenates were plated on BHI based agar plates

supplemented amphotericin B (8 mg/mL), trimethoprim (5 mg/

mL) and vancomycin (6 mg/mL), nalidixic acid (10 mg/mL),

polymyxin B (10 mg/mL) and bacitracin (200 mg/mL) (24) and

Figure 4. Insertion mutant ureases are stable during persistent
infection. Western Blot analysis of H. pylori cultured from mice after 10
months colonisation, probed with anti-FLAG antibody. Where de-
scribed, each lane represents protein extracted from a pool of bacteria
harvested from an individual mouse. a) lanes 1–3: pools of X47 (wt)
from individual mouse; lane 4: molecular size marker (MW: KDa shown);
lane 5: X47 (site 1); lane 6: X47 (site 4); lane 7: X47 (site 8). b) lanes 1–5:
pools of X47 (site 1) from individual mouse; lane 7: molecular size
marker; lane 8: X47 (site 1). c) lanes 1–5: pools of X47 (site 4) from
individual mouse; lane 7: molecular size marker. d) lanes 1–3: pools of
X47 (site 8) from individual mouse; lane 5: molecular size marker; lane 6:
X47 (site 8). To confirm protein sample integrity urease activities were
assayed in wild-type X47 and in a pool of X47 insertion (site 1 mutant)
from mice in which FLAG expression was not detected (annotated *;
data not shown). Molecular of standard proteins (KDa) are shown
directly adjacent to the marker.
doi:10.1371/journal.pone.0015042.g004

Urease Surface and Helicobacter pylori Persistence
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incubated under microaerobic conditions. Bacterial growth was

scored 5–7 days later.

SDS-PAGE and Western Blot Analysis
H. pylori were harvested from mouse stomachs, grown for 4 d,

harvested and resuspended in SDS-PAGE loading buffer.

Standard SDS-PAGE and Western Blot methodologies were

performed [30]. Electrophoresis was performed using SDS-PAGE

on a discontinuous 10% gel. For Western Blotting, proteins were

transferred to PVDF Immuno-Blot PVDF (0.2 mM) membrane

(Biorad). Membranes were blocked overnight at 2% Blocking

Reagent (Roche) in Maleic acid buffer (100 mM Maleic acid,

150 mM NaCl, pH 7.5, 20uC) supplemented with 0.2% (v/v)

Tween 20. To detect FLAG membranes were probed with a

1:1000 dilution of monoclonal anti-FLAG (Sigma Aldrich) in 1%

Blocking Reagent supplemented with 0.1% (v/v) Tween 20 for

2 hours at room temperature. For detection, membranes were

incubated with rabbit anti-mouse IgG conjugated to horse radish

Figure 5. Proposed multiple roles of Helicobacter pylori urease during infection. To explain the loss of ability to persist in strains
containing an insertion at urease surface site 8, we suggest a model of immune modulation mediated by the urease interaction with host tissue CD74
receptor. This could lead to a reduction of the pro-inflammatory response elicited by the epithelial cells or to an increase in the Th1 bias via the
dendritic cells (red boxes). Other non-enzymatic functions of urease that might contribute to persistence include facilitation of resistance to
complement mediated opsonisation [9], decreased uptake of H. pylori cells by granulocytes [8], increased H. pylori survival in macrophages [6,7], and
increased release of nutrients via compromised tight junctions [12] and/or apoptosis of epithelial cells [32].
doi:10.1371/journal.pone.0015042.g005

Urease Surface and Helicobacter pylori Persistence
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peroxidase (Jackson ImmunoResearch Laboratories, Inc.) under

identical conditions for 1 h at room temperature. Detection was

performed using Chemiluminescent Peroxidase Substrate-3 (Sig-

ma-Aldrich) and the FujiFilm LAS-3000 Imager. Urease was

similarly probed using a 1:200 dilution anti-urease alpha subunit

(bc-14; Santa Cruz Biotechnology) and detected using a 1:2500

dilution of rabbit anti-goat HRP conjugate antibody (Jackson

ImmunoResearch Laboratories, Inc.).

Enzyme-Linked ImmunoSorbent Assay (ELISA)
Mice sera were collected at different time points and assessed for

the presence of urease specific IgG. Nunc 96 well maxisorb plates

were coated with 10 ug/mL of Urease B protein (expressed from

plasmid pILL927 and purified as described in reference [31]) in

100 mL carbonate buffer and incubated overnight at 4uC. Plates

were washed 5 x with PBS supplemented with 0.05% (v/v) Tween

20 (PBST) and then blocked with 200 uL of PBS supplemented

with 2% BSA (w/v) for 2 hours at 37uC. Following 2 x washes

with PBST a 1:20 dilution mouse sera in 100 uL of PBST

supplemented with 2% (w/v) BSA was added to duplicate wells

and the plates incubated for 1 hour at room temperature.

Subsequently, plates were washed 5x with PBST and then a

1:1000 dilution of anti-mouse IgG alkaline phosphatase (Sigma

Aldrich) in 100 uL PBST supplemented with 2% (w/v) was added

to each well and the plates incubated at room temperature for

1 hour. After 5x washes with PBST, 200 uL of nitrophenyl

phosphate substrate in diethanolamine buffer was added to each

well and the plates incubated for 40 min at room temperature in

the dark before absorbance was measured at 405 nm.

Urease Stability and Activity
H. pylori were harvested after growth for 24 h on BHI base agar

plates and were rinsed in cold saline (0.9% v/v). The bacterial

suspension was diluted to an OD600 of 4 and 15 mL was added to

15 mL of saline supplemented with Tween 20 (0.2% v/v). To each

sample 90 mL of KCl (200 mM; pH 3) was added and samples

were incubated for 10 min while shaking at 300 rpm at room

temperature. Subsequently the solution was neutralised by the

addition of 120 mL of PBS (pH 6.8). 150 mL of each sample was

added to 25 mL of phenol red sodium salt (80 mg/mL) and

warmed to 37uC. The reaction was initiated by the addition of

75 mL of 0.5 M urea and the change in pH was measured by

reading absorbance at 560 nm every 70 s.

Supporting Information

Figure S1 Alignment showing conservation of ureases at
region of site 8. Alignment of H. pylori UreB (sp|P69996) at the

region of site 8, for which the crystal structure has been

determined (PDBe Entry: 1e9y), and ureases from different

species. UniProtKB/Swiss-Prot numbers are displayed.

(TIF)

Table S1 Sequences of oligonucleotides used in this
study.
(DOC)

Table S2 Primer combinations used to produce modi-
fied DNA. Primers amplified either segments of regions coding

exogenous DNA (to be inserted into urease genes) or regions used

for homologous recombination after transformation (left flank and

right flank).

(DOC)
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