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An Efficient Alignment Algorithm for
Searching Simple Pseudoknots over

Long Genomic Sequence
Christopher Ma, Thomas K.F. Wong, T.W. Lam, W.K. Hon, K. Sadakane, and S.M. Yiu

Abstract—Structural alignment has been shown to be an effective computational method to identify structural noncoding RNA

(ncRNA) candidates as ncRNAs are known to be conserved in secondary structures. However, the complexity of the structural

alignment algorithms becomes higher when the structure has pseudoknots. Even for the simplest type of pseudoknots (simple

pseudoknots), the fastest algorithm runs in Oðmn3Þ time, where m, n are the length of the query ncRNA (with known structure) and the

length of the target sequence (with unknown structure), respectively. In practice, we are usually given a long DNA sequence and we try

to locate regions in the sequence for possible candidates of a particular ncRNA. Thus, we need to run the structural alignment

algorithm on every possible region in the long sequence. For example, finding candidates for a known ncRNA of length 100 on a

sequence of length 50,000, it takes more than one day. In this paper, we provide an efficient algorithm to solve the problem for simple

pseudoknots and it is shown to be 10 times faster. The speedup stems from an effective pruning strategy consisting of the computation

of a lower bound score for the optimal alignment and an estimation of the maximum score that a candidate can achieve to decide

whether to prune the current candidate or not.

Index Terms—Noncoding RNAs, pseudoknot, structural alignment

Ç

1 INTRODUCTION

A NON-CODING RNA (ncRNA) is a functional RNA
molecule which is not translated into a protein. There

are many different types of ncRNAs such as tRNAs, rRNAs,
snoRNAs, microRNAs, and siRNAs. These RNA molecules
have been found to be involved in many biological
processes. The number of ncRNAs within the genome was
underestimated before, but recently some databases reveal
over 1,973 ncRNA families [1]. Data accumulated on
ncRNAs and these families show that ncRNAs may be as
diverse as protein molecules.

Identifying ncRNAs is an important problem. It is
known that the structure of an ncRNA molecule usually
plays an important role in its biological functions. Some
researchers attempted to identify ncRNAs by considering
the stability of secondary structures formed by substrings
of a given genome [2]. Although, on average, the functional
RNAs have lower folding energy than the random
sequences of the same length and dinucleotide frequency
[3], this method is not quite effective because a random
sequence with high GC composition also allows an
energetically favorable secondary structure [4].

Another promising method is the comparative approach.

The idea is to make use of a known ncRNA and try to identify

ncRNA candidates along the genome whose sequence and

structure are similar to that of the ncRNA. The resulting

regions are the potential ncRNAs candidates of the same

family. The key of this approach is to compute the structural

alignment between the folded ncRNA (query) and the

unfolded region (target). The unfolded sequence will be

aligned to the folded ncRNA. The alignment score represents

their sequence and structural similarity. RSEARCH [5],

FASTR [6], and INFERNAL [7] for Rfam were developed

based on this approach.
However, these tools [5], [6], [7] do not support

pseudoknots. Given two base-pairs at positions ði; jÞ and

ði0; j0Þ, where i < j and i0 < j0, pseudoknots are base-pairs

crossing each other, i.e., i < i0 < j < j0 or i0 < i < j0 < j. In

some studies, secondary structures including pseudoknots

are found involved in some functions such as telomerase [8],

catalytic functions [9], and selfsplicing introns [10]. For

example, the pseudoknot structure in the human telomerase

RNA is conserved in all vertebrates and is essential for

telomerase activity [11]. Structural alignment of ncRNAs

containing pseudoknots is believed to be NP-complete and

the problem is computationally harder.
Matsui et al. developed a method of computing the

structural alignment to support some complicated pseudo-

knot structures which they refer as 2-crossing [12] . Their

algorithm runs in Oðmn5Þ with space complexity of Oðmn4Þ
where m is the length of the query sequence and n is the

length of the target sequence. However, their method can

only consider the structural similarity but not sequence

similarity between the query and the target sequence.
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In this paper, we consider the structural alignment
problem as follows: given a query sequence with pseudo-
knot structure and a target sequence with unknown
structure, our aim is to output the alignment with maximum
score between the whole query sequence and the whole
target sequence. The score, which will be formally defined in
Section 2.1, is computed according to both of their sequence
and structural similarity. Higher score represents higher
similarity between the two sequences according to their
sequences and structures.

PAL, which was developed by Han et al. [13], can solve
this problem in Oðmn3Þ time with space complexity of
Oðmn3Þ for simple pseudoknot structure. For the definition
of these pseudoknot structures, please refer to Section 2.
However, their algorithm is still not feasible for long RNA
sequences (say the length is over 50k) due to the extensive
time required. For example, as shown in Table 1 for the
pseudoknotted ncRNA family of sequence length around
100 to 150, when searching a long genome of length 50,000 to
find regions of which the sequences and the structures are
similar to that of the selected query of the family, it takes 1.3
to 3.3 days to finish. The figure shows that the tool seems
impractical for searching ncRNAs along a long genome.

We proposed an efficient algorithm for solving the same
structural alignment problem for simple pseudoknot. While
maintaining the same sensitivity and specificity, the speed
up achieved by our method ranges from 8.5 to 11 as
compared to PAL when the query is longer than 65. For an
ncRNA family with simple pseudoknot structure of length
around 100 to 150, our method requires only a few hours for
searching along the same long genome. The experimental
result shows that our algorithm provides a more feasible
solution for searching pseudoknotted ncRNAs along a long
genome. Although the method presented in this paper is
designed for simple pseudoknot, a similar technique can also

be applied to other structural alignment algorithms that
handle other pseudoknot types.

Please note that there exists another approach like [14] to
compute the alignment between the query structure includ-
ing pseudoknots and the target sequence. Their method
requires OðktN2Þ time where N is the length of the target
sequence, t is the width of the tree according to the query
structure and a parameter k (for details, please refer to [14]).
Their approach is a heuristic approach. The choice of k
would affect the accuracy of the result and their method do
not consider the loop regions (i.e., the regions which do not
have any base pair) of the query sequence when performing
the alignment. If loop regions are large, the accuracy of the
result would be decreased.

2 PRELIMINARIES

Let A ¼ a1a2 . . . am be an RNA sequence and M be the
secondary structure of A. M is represented as a set of base
pairs ðai; ajÞ, 1 � i < j � m. Let Mx;y �M be the set of base
pairs in the subsequence axaxþ1 . . . ay; 1 � x < y � m.Mx;y ¼
fðai; ajÞ 2Mjx � i < j � yg.
Mx;y is a regular structure,1 if there does not exist two pairs

ði; jÞ; ðk; lÞ 2Mx;y such that i < k < j < l or k < i < l < j.
Note that an empty set is considered as a regular structure
(see Fig. 1a for an example).
Mx;y is a simple pseudoknot if 9x < x1; x2 < y (x1; x2 are

referred as pivot points) such that (see Fig. 1b for an example):

1. each ði; jÞ 2Mx;y satisfies either x � i < x1 � j < x2

or x1 � i < x2 � j � y; and
2. ML and MR are both regular where ML ¼ fði; jÞ 2

Mx;yjx � i < x1 � j < x2g and MR ¼ fði; jÞ 2Mx;yj
x1 � i < x2 � j � yg.
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TABLE 1
Comparison on the Running Time between Our Method and Han’s

1. In the literature, regular structure is also called nested structure.



2.1 Structural Alignment

Let S½1 . . .m� be a query sequence with known secondary
structure M, and T ½1 . . .n� be a target sequence with
unknown secondary structure. S and T are sequences from
the character set fA;C;G; Ug. A structural alignment
between S and T can be represented by a pair of sequences
S0½1 . . . r� and T 0½1 . . . r�where r � m;n. S0 is from S and T 0 is
from T with spaces inserted in between the characters to
make both sequences of the same length. A space cannot
appear in the same position of S0 and T 0. The score of the
alignment, which determines the sequence and structure
similarity between S0 and T 0, is defined as follows:

score ¼
Xr
i¼1

�ðS0½i�; T 0½i�Þ

þ
X

i;j s:t:�ðiÞ;�ðjÞ2M;

S0 ½i�;S0 ½j�;T 0 ½i�;T 0 ½j�6¼0 0

�ðS0½i�; S0½j�; T 0½i�; T 0½j�Þ

where �ðiÞ is the corresponding position in S according to
the position i in S; �ðt1; t2Þ and �ðx1; y1; x2; y2Þ, where t1; t2 2
fA;C;G;U; 0 0g and x1; x2; y1; y2 2 fA;C;G;Ug, are the score
for sequence similarity and the score for structural similar-
ity, respectively. The calculation of structural alignment
score is not restricted to any kind of secondary structure. It
works in the same way for pseudoknot structure. The
objective is to find an alignment such that the corresponding
score is maximized.

Definition 1. Optimal structural alignment between S½1 . . .m�
and T ½1 . . .n� is to find S0½1 . . . r� and T 0½r . . . r�, where
r � m;n, S0 is from S and T 0 is from T with spaces inserted in
between the characters to make both sequences of the same length,
such that the score of the structural alignment is maximum.

Higher score represents higher similarity between the
two sequences according to their sequences and structures.
Also, if the score is high, then the alignment can reasonably
reveal the secondary structure of the target sequence.

2.2 Sliding Window Technique and Semiglobal
Alignment

In practice, when one would like to search regions whose
sequences and structures are similar to those of the query
sequence in a long genome (T ½1 . . .n�), one would try to align
every region on the genome, which is of similar length as the
query’s, and obtain those regions which result in high
structural alignment scores between the query. Precisely,

researchers usually use the sliding-window technique to
perform the searching. If it is assumed that the maximum
length of a candidate is m and there does not exist two
candidates inside a region of length mþ s, by setting the
window size as mþ s and a sliding distance as s (see Fig. 2),
for each subregion T ½1 . . .mþ s�, T ½sþ 1 . . .mþ 2s�; . . . ;
T ½ksþ 1 . . .mþ ðkþ 1Þs� . . . , where 1 � k � bðn�mÞ=sc �
1, one could compute the optimal semiglobal structural
alignment (which will be formally defined later) between the
query and each of the subregions. This method is commonly
used because one would only need to compute the structural
alignment for every s position, and so there would lead to a
speedup. However, according to our experiment, we found
that even using this approach, it still takes a long time for a
long genome sequence of length, say 50k.

The optimal semiglobal structural alignment problem is
defined as follows.

Definition 2. The optimal semiglobal structural alignment
problem between S½1 . . .m� and T ½1 . . .n� is to find a substring
T ½p . . . q� where 1 � p; q � n (i.e., T ½p . . . q� is an empty string
when p > q) such that the score of the optimal structural
alignment between S½1 . . .m� and the substring T ½p . . . q� is
maximum.

In the following sections, for the sake of simplicity, we
regard each subregion T ½ksþ 1 . . .mþ ðkþ 1Þs� as T during
the illustration of the algorithms.

3 ALGORITHMS

The optimal semiglobal structural alignment can be com-
puted by using dynamic programming. The algorithm was
developed by Han et al. [13] (although their method is
designed to compute the optimal structural alignment, a
minor modification on their method will be able to compute
the optimal semiglobal structural alignment). The key idea
behind their algorithm is the concept of a substructure
which allows the optimal alignment to be computed
recursively. The algorithm takes Oðmn3Þ time where m is
the length of the query sequence with known simple
pseudoknot structure and n is the length of the target
sequence with unknown structure.

3.1 Han’s Algorithm

Let S½i0 . . . k0� be the query sequence with simple pseudo-
knot structure Mi0;k0

. As defined in Section 2, the pivot
points x1; x2 for S½i0 . . . k0� are known. Let v ¼ ði; j; kÞ be a
triple with i0 � i < x1 � j < x2 � k � k0. Define the sub-
region RðS; vÞ ¼ ½i0 . . . i� [ ½j . . . k� (as shown in Fig. 3). Let
StructðRÞ ¼ fði; jÞ 2Mji; j 2 Rg where R is a subregion.
The subregion R defines a valid substructure (StructðRÞ) of
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Fig. 1. (a) Regular structure. (b) Simple pseudoknot structure.

Fig. 2. The sliding windows on the sequence T : sliding distance is s and
window size ismþ s, assuming the maximum length of a candidate ism.



M if these does not exist ði; jÞ 2M such that one endpoint
of ði; jÞ is in R and the other is outside the region. Note that
StructðRÞ is also a simple pseudoknot. Let T ½e0 . . . g0� be the
target sequence with unknown structure. The definitions of
R can also be applied to T . For any v0 ¼ ðe; f; gÞ where
e0 � e < f < g � g0, the subregion RðT; v0Þ ¼ ½e0. . .e� [
½f . . . g�. Let BðRx;RyÞ be the score of the optimal semiglobal
alignment between a subregion Rx in S with substructure
StructðRxÞ and a subregion Ry in T . The score of the
optimal semiglobal alignment between S½i0 . . . k0� and
T ½e0 . . . g0� can be obtained by setting v� ¼ ðx1 � 1; x1; k0Þ.
The entry maxe0�e�g0

BðRðS; ðx1 � 1; x1; k0ÞÞ; RðT ðe; eþ 1;
g0ÞÞÞ provides the answer.

The value of BðRx;RyÞ can be computed recursively [13].
Let Rx ¼ RðS; ði; j; kÞÞ and Ry ¼ RðT; ðe; f; gÞÞ. If ði; jÞ is a
base pair in StructðRÞ, there are four cases to consider.
Case 1: MATCHboth—aligning the base pair ði; jÞ of S with
ðe; fÞ of T ; Case 2: MATCHsingle—aligning only one of the
bases in ði; jÞ with the corresponding base in ðe; fÞ; Case 3:
DELETE—deleting the base-pair ði; jÞ from S; Case 4:
INSERT—inserting a space on S; Lemma 1 summarizes
these cases [13]. Another situation, where ðj; kÞ is a base
pair, is similar.

Lemma 1. Let v ¼ ði; j; kÞ and v0 ¼ ðe; f; gÞ. Rx ¼ RðS; vÞ and
Ry ¼ RðT; v0Þ. If ði; jÞ is a base pair, then according to [13],
BðRx;RyÞ ¼ max

==MATCHboth

BðRðS; ði� 1; jþ 1; kÞÞ; RðT; ðe� 1; f þ 1; gÞÞÞ
þ �ðS½i�; T ½e�Þ þ �ðS½j�; T ½f�Þ þ �ðS½i�; S½j�; T ½e�; T ½f �Þ;

==MATCHsingle

BðRðS; ði� 1; jþ 1; kÞÞ; RðT; ðe� 1; f; gÞÞÞ þ �ðS½i�; T ½e�Þ
þ �ðS½j�;0 0Þ;

BðRðS; ði� 1; jþ 1; kÞÞ; RðT; ðe; f þ 1; gÞÞÞ þ �ðS½i�;0 0Þ
þ �ðS½j�; T ½f �Þ;

==DELETE
BðRðS; ði� 1; jþ 1; kÞÞ; RðT; ðe; f; gÞÞÞ þ �ðS½i�;0 0Þ
þ �ðS½j�;0 0Þ;

==INSERT
BðRðS; ði; j; kÞÞ; RðT; ðe; f þ 1; gÞÞÞ þ �ðT ½f �;0 0Þ;
==if k ¼ k0

BðRðS; ði; j; kÞÞ; RðT; ðe; f; g� 1ÞÞÞ;
==else
BðRðS; ði; j; kÞÞ; RðT; ðe; f; g� 1ÞÞÞ þ �ðT ½g�;0 0Þ;

8>><
>>:
==if i ¼ i0
BðRðS; ði; j; kÞÞ; RðT; ðe� 1; f; gÞÞÞ;
==else
BðRðS; ði; j; kÞÞ; RðT; ðe� 1; f; gÞÞÞ þ �ðT ½e�;0 0Þ:

8>><
>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The situation, where neither ði; jÞ nor ðj; kÞ is a base pair,
is also similar. The only modifications on Han’s algorithm
for semiglobal alignment are the additional cases for i ¼ i0
and k ¼ k0 when inserting a space on S. To fill the dynamic
programming table, not all entries for all possible sub-
ranges of S need to be filled. For any given subregion
v ¼ ði; j; kÞ, a function �ðvÞ can be defined as follows to
determine for which subregions in S we need to fill the
corresponding B entries.

�ðvÞ ¼

ði� 1; jþ 1; kÞ; if ði; jÞ is base pair;
ði; jþ 1; k� 1Þ; else if ðj; kÞ is base pair;
ði� 1; j; kÞ; else if i is single base and i0 � i < x1;
ði; jþ 1; kÞ; else if j is single base and x1 � j < x2;
ði; j; k� 1Þ; else if k is single base and x2 � k � k0;
empty region; otherwise:

8>>>>>><
>>>>>>:

If v defines a subregion with valid substructure, �ðvÞ also
defines a valid substructure. Let v� ¼ ðx1 � 1; x1; k0Þ. We
only need to fill in the entries for B provided that v can be
obtained from v� by applying � function repeatedly.
Intuitively, � guides which recursion formula to use. And
there are only OðmÞ such v values. In [13], they collect all
these v and form a chain of triples labeled V . ðx1 � 1; x1; k0Þ
is the first element of the chain V and the last element of V is
an empty region. Building V requires only OðmÞ time. Then
compute B for all possible subregions ðe; f; gÞ on T from the
last element of V to the first element of V . Therefore, the
time complexity of the algorithm is Oðmn3Þ and it requires
Oðmn3Þ space.

3.2 Our Method

In Han’s algorithm, during the calculation of B, for each
value of v on S, they need to consider all possible
subregions ðe; f; gÞ on T (where e < f � g). However, for
a subregion v on S, if we can estimate which ðe; f; gÞ on T
would not align with v in the optimal semiglobal alignment,
then we will be able to skip those subregions and would
lead to a speedup in the computation of B practically. To
estimate which ðe; f; gÞ on T would not align with a given v
on S in the optimal semiglobal alignment, our method
involves two steps. First we try to compute a lower bound
of the optimal semiglobal alignment score (c) between S

and T . That means we can compute a value c such that the
optimal semiglobal alignment score between S and T will
definitely greater than or equal to c. Then according the
value of c, we can estimate for a given v the set of ðe; f; gÞ
which would not align with v in any of the optimal
semiglobal alignments between S and T (i.e., there may be
more than one alignment between S and T with same
maximum score). The computation of the value of c has to
be as fast as possible and the value of c should be closed to
the optimal semiglobal alignment score in order to achieve
a considerable speed up. Note that we guarantee that the
regions skipped by our algorithm are not the answers (see
Lemmas 4 and 7), thus our algorithm will not miss any
answers. On the other hand, for those regions that are not
skipped by our algorithm, we evaluate them in the same
way as in Han’s algorithm, so we also will not produce
more false positives.
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Fig. 3. Subregion RðS; ði; j; kÞÞ.



3.2.1 Computation of Lower Bound

Let S½i0 . . . k0� be the query sequence with a simple
pseudoknot structure Mi0;k0

. As shown in the Fig. 4, a
pseudoknot can be divided into two parts: 1) S½i0 . . .x2 � 1�
with a set of base pairs U ; and 2) S½x2 . . . k0� with a set of
base pairs V . U ¼ fði; jÞ 2Mi0;k0

ji0 � i < x1 � j � x2 � 1g
and V ¼ fði; jÞ 2Mi0;k0

jx1 � i < x2 � j � k0g. According to
the definition of simple pseudoknot, since U ¼ML and V ¼
MR (defined in Section 2), U [ V ¼Mi0;k0

and both of U and
V are regular structures. Also, there is no branching in the
structure of U (or V ). That means there does not exist two
base pairs ði1; j1Þ; ði2; j2Þ 2 U (or V ) such that i1 < j1 < i2 <
j2 or i2 < j2 < i1 < j1.

Let T ½1 . . .n� be the target sequence with unknown
structure. The high level idea of the heuristics to compute
the lower bound of the optimal semiglobal alignment
score is first to perform an optimal semiglobal structural
alignment between the first part (i.e., S½i0 . . .x2 � 1� with a
set of base pairs U) and the target T ½1 . . .n�. Let T ½e0 . . . f 0�
be the resulting subregions on T having optimal alignment
score. We then perform an optimal prefix-global structural
alignment between the second part (i.e., S½x2 . . . k0�) with a
set of base pairs V and T ½f 0 þ 1 . . .n�. The lower bound of
the score is set to be the sum of the optimal semiglobal
structural alignment score for the first part and the
optimal prefix-global structural alignment score for the
second part. The optimal prefix-global structural align-
ment is defined as follows.

Definition 3. The optimal prefix-global structural alignment
problem between S½1 . . .m� and T ½1 . . .n� is to find a prefix
T ½1 . . . p� where 0 � p � n (i.e., T ½1 . . . p� is an empty string
when p < 1) such that the score of the optimal structural
alignment between S½1 . . .m� and the prefix T ½1 . . . p� is
maximum. This alignment is referred as the optimal prefix-
global structural alignment.

Considering the computation of the semiglobal structur-
al alignment between the first part S½i0 . . .x2 � 1� with a set
of base pairs U and the target T ½1 . . .n�, due to the
characteristics that there does not exist two base pairs
ði1; j1Þ; ði2; j2Þ 2 U such that i1 < j1 < i2 < j2 or i2 < j2 <
i1 < j1, the time complexity of the algorithm is only Oðmn2Þ
where m is the length of S and n is the length of T . Let
StructUði; jÞ be the set of base pairs ði0; j0Þ 2 U such that
i � i0 < j0 � j. Define Cði; j; e; fÞ be the score of the optimal
structural alignment between S½i . . . j� with substructure
StructUði; jÞ and the target T ½e . . . f�. The score of the
optimal semiglobal structural alignment between S½i0. . .
x2 � 1� and T ½1 . . .n� ¼ max1�e0;f 0�nfCði0; x2 � 1; e0; f 0Þg,
where T ½e0 . . . f 0� is the resulting subregions on T having

optimal semiglobal structural alignment score. Cði; j; e; fÞ
can be computed as follows.

Lemma 2. If ði; jÞ is a base pair, Cði; j; e; fÞ ¼ max

==MATCHboth

Cðiþ 1; j� 1; eþ 1; f � 1Þ þ �ðS½i�; T ½e�Þ þ �ðS½j�; T ½f �Þ
þ �ðS½i�; S½j�; T ½e�; T ½f�Þ;

==MATCHsingle

Cðiþ 1; j� 1; eþ 1; fÞ þ �ðS½i�; T ½e�Þ þ �ðS½j�;0 0Þ;
Cðiþ 1; j� 1; e; f � 1Þ þ �ðS½i�;0 0Þ þ �ðS½j�; T ½f �Þ;
==DELETE
Cðiþ 1; j� 1; e; fÞ þ �ðS½i�;0 0Þ þ �ðS½j�;0 0Þ;
==INSERT
Cði; j; eþ 1; fÞ þ �ðT ½e�;0 0Þ;
Cði; j; e; f � 1Þ þ �ðT ½f �;0 0Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

The case, which ði; jÞ is not a base pair, is also similar.
Similarly, to fill the dynamic programming table, not all
entries for all possible subranges of S needs to be filled. Let
v ¼ ði; jÞ representing a subregion S½i . . . j�, a function �ðvÞ
can be defined as follows to determine for which subregions
in S we need to fill the corresponding C entries.

�ðvÞ ¼

ðiþ 1; j� 1Þ; if ði; jÞ is base pair;
ðiþ 1; jÞ; else if i is single base and i0 � i < x1;
ði; j� 1Þ; else if j is single base and x1 � j < x2;
empty region; otherwise:

8>><
>>:

Similarly, let v� ¼ ði0; x2 � 1Þ. We only need to fill in the
entries for C provided that v can be obtained from v� by
applying � function repeatedly. Intuitively, � guides which
recursion formula to use. And, there are only OðmÞ such
v values. Therefore, the total time complexity to compute the
semiglobal structural alignment between the first part
S½i0 . . .x2 � 1� with a set of base pairs U and the target
T ½1 . . .n� is Oðmn2Þ.

After obtaining the resulting subregion T ½e0 . . . f 0� which
has maximum semiglobal alignment score between
S½i0 . . .x2 � 1�, the next step is to compute the optimal
prefix-global structural alignment between the second part
(i.e., S½x2 . . . k0�) with a set of base pairs V and T ½f 0 þ 1 . . .n�
based on the resulting alignment between S½i0 . . .x2 � 1� and
T ½e0 . . . f 0�. Let StructV ðkÞ be a set of base pairs ði; jÞ 2 V such
that x2 � j � k. Define Dðk; gÞ be the score of the optimal
prefix-global alignment between S½x2 . . . k�with a set of base
pairs StructV ðkÞ and the target T ½f 0 þ 1 . . . g� based on the
alignment between S½i0 . . .x2 � 1� and T ½e0 . . . f 0�. The
optimal prefix-global structural alignment between
S½x2 . . . k0� with a set of base pairs V and T ½f 0 þ 1 . . .n�
given the alignment between S½i0 . . .x2 � 1� and T ½e0 . . . f 0�
can be obtained from the entry Dðk0; nÞ. Dðk; gÞ can be
computed as follows.

Lemma 3. Let pairðkÞ ¼ j if ðj; kÞ 2 V or �1 otherwise. Let

�ðjÞ ¼ f where i0 � j � x2 � 1 and e0 � f � f 0 if S½j� is

aligned with T ½f� in the resulting optimal alignment between

S½i0 . . .x2 � 1� and T ½e0 . . . f 0�. Otherwise, set �ðjÞ ¼ �1 if

S½j� is aligned with space in the resulting optimal alignment.

Dðk; gÞ ¼ max
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==MATCH
== if k involves a base pair in V and �ðpairðkÞÞ 6¼ �1
Dðk� 1; g� 1Þ þ �ðS½k�; T ½g�Þ
þ �ðS½pairðkÞ�; S½k�; T ½�ðpairðkÞÞ�; T ½f �Þ;

== else
Dðk� 1; g� 1Þ þ �ðS½k�; T ½g�Þ;
==DELETE
Dðk� 1; gÞ þ �ðS½k�;0 0Þ;
==INSERT
==if k ¼ k0

Dðk; g� 1Þ;
== otherwise
Dðk; g� 1Þ þ �ðT ½g�;0 0Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

The time complexity of computation of the optimal
prefix-global structural alignment between the second part
(i.e., S½x2 . . . k0�) with a set of base pairs V and T ½f 0 þ 1 . . .n�
based on the alignment between S½i0 . . .x2 � 1� and
T ½e0 . . . f 0� can be done in OðmnÞ time.

The lower bound of the score is set to be the sum of the
optimal semiglobal structural alignment score for the first
part and the prefix-global structural alignment score for the
second part, which can be computed in Oðmn2Þ þOðmnÞ ¼
Oðmn2Þ time.

Lemma 4. The resulting lower bound is always less than or equal
to the score of the optimal semiglobal structural alignment
between S and T .

Proof. Let T ½e0 . . . f 0� where e � e0; f 0 � f be the resulting
region with the optimal semiglobal structural alignment
with S½1 . . .x2 � 1�. Let T ½f 0 þ 1 . . . g0� where g0 � g be the
resulting region with the optimal prefix-global structural
alignment with S½x2 . . .m�. The lower bound equals to the
corresponding score of the resulting structural alignment
between S½1 . . .x2 � 1� [ S½x2 . . .m� and T ½e0 . . . f 0� [
T ½f 0 þ 1 . . . g0�. Since it is one of the candidates of the
optimal semiglobal structural alignment between
S½1 . . .m� and T ½1 . . .n�, the resulting lower bound is
always less than or equal to the score of the optimal
semiglobal structural alignment between S and T . tu

3.2.2 Pruning

After computing the lower bound of the optimal structural
alignment between S and T , for each subregions ðe; f; gÞ on
T (where e < f � g), we will try to estimate which ðe; f; gÞ
on T would not align with v in the optimal alignment. Then
subsequent steps of computation of the alignment which
involves ðe; f; gÞ aligned with v can be skipped and so it
would lead to a speedup in the computation of B.

Considering the computation of semiglobal structural
alignment between S½1 . . .m� and T ½1 . . .n�, for a subregion
Rx ¼ RðS; ði; j; kÞÞ on S and another subregion Ry ¼
RðT; ðe; f; gÞÞ on T , BðRx;RyÞ is defined as the score of the
optimal semiglobal structural alignment betweenRx andRy.
In the following, we will compute the maximum possible
alignment score between S and T provided thatRx is aligned
with Ry. The situation that Rx is aligned with Ry means that
S½1 . . . i� is aligned with T ½1 . . . e� and S½j . . . k� is aligned with
T ½f . . . g�. Formally,Rx is defined as aligned withRy if for the
resulting optimal alignment of S and T : S0½1 . . . r� and
T 0½1 . . . r� where r � m;n, there exists a, b, c such that after

removing the spaces, S0½1 . . . a� and T 0½1 . . . a�will be equal to
S½1 . . . i� and T ½1 . . . e� and S0½b . . . c� and T 0½b . . . c� will be
equal to S½j . . . k� and T ½f . . . g�, respectively.

Given subregions Rx ¼ RðS; ði; j; kÞÞ, Ry ¼ RðT; ðe; f; gÞÞ
and BðRx;RyÞ, let :Rx ¼ S½iþ 1 . . . j� 1� [ S½kþ 1 . . .m�
and :Ry ¼ T ½eþ 1 . . . f � 1� [ T ½gþ 1 . . .n�, given Rx is
aligned with Ry, when we consider the case that i > 1 and
k < m, the maximum semiglobal alignment score between S
and T should be equal to the sum of the optimal suffix-global
alignment score between Rx and Ry and the optimal prefix-
global alignment score between :Rx and :Ry. The optimal
suffix-global structural alignment is defined as follows:

Definition 4. Optimal suffix-global structural alignment
between S½1 . . .m� and T ½1 . . .n� is to find a suffix T ½q . . .n�
where 1 � q � nþ 1 (i.e., T ½q . . .n� is an empty string when
q > n) such that the score of the optimal structural alignment
between S½1 . . .m� and the suffix T ½q . . .n� is maximum.

Let maxsðRx;RyÞ be the maximum alignment score
between S and T provided that Rx is aligned with Ry. Since
the optimal suffix-global alignment score between Rx and
Ry is always less than or equal to BðRx;RyÞ, if we can
compute the upper bound of the optimal prefix-global
alignment score between :Rx and :Ry (let it be Eð:Rx;
:RyÞ), thenmaxsðRx;RyÞ is less than or equal to BðRx;RyÞ þ
Eð:Rx;:RyÞ. If the value BðRx;RyÞ þ Eð:Rx; :RyÞ is
smaller than the lower bound computed previously, we
can definitely know that in any of the optimal alignments,
Rx should not be aligned with Ry, and then the subsequent
steps of computation of the alignments which involve Rx

aligned with Ry can be skipped and so it would lead to a
speedup in the computation of B.

In the following, we will provide a heuristic algorithm to
compute Eð:Rx;:RyÞ. The method is time efficient and the
value is proved to be greater than or equal to the optimal
suffix-global alignment score between :Rx and :Ry.

As shown in Fig. 5, the region :Rx can be further
decomposed into two parts: 1) S½iþ 1 . . . j� 1� with a set of
base pairs Uj�1

iþ1 ; and 2) S½kþ 1 . . .m� with a set of base pairs
V m
kþ1. Uj�1

iþ1 ¼ fði0; j0Þ 2Mjiþ 1 � i0 < x1 � j0 � j� 1g and
V m
kþ1 ¼ fði0; j0Þ 2Mjkþ 1 � j0 � mg. The upper bound of

the optimal prefix-global alignment score (Eð:Rx;:RyÞ)
between :Rx (i.e., S½iþ 1 . . . j� 1� [ S½kþ 1 . . .m�) and :Ry

(i.e., T ½eþ 1 . . . f � 1� [ T ½gþ 1 . . .n�) is set to be the sum of
1) the optimal alignment score between S½iþ 1 . . . j� 1�
with a set of base pairs Uj�1

iþ1 and T ½eþ 1 . . . f � 1�; and 2) the
optimal prefix-global alignment score between S½kþ
1 . . .m� with a set of base pairs V m

kþ1 and T ½gþ 1 . . .n�. Note
that since the subregion Rx should have a valid substruc-
ture (i.e., there does not exist ði0; j0Þ 2M such that one
endpoint of ði0; j0Þ is inside Rx but another endpoint is
outside Rx), consider a region :Rx, for any ði0; j0Þ 2 V m

kþ1,
x1 � i0 � j� 1.
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Fig. 5. Breakdown of :Rx.



Let F ði; j; e; fÞ be the optimal alignment score between
S½i . . . j� with a set of base pairs Uj

i and T ½e . . . f �. Direct
computation of F ði; j; e; fÞwill require at leastOðn4Þ. Also, if
the computation of F ði; j; e; fÞ is required for each subregion
Rx, then the total time required will be further blow up.
Thus, in order to compute F ði; j; e; fÞ efficiently, we need to
make use of the triple list V in the Han’s algorithm
mentioned in Section 3.1. V is a chain of triples ði; j; kÞwhich
includes the subregions Rx on S we need to come across
during the computation ofB. There areOðmÞ elements in the
chain. V can be first computed in the beginning according to
the function � in Section 3.1. In order words, we only need to
obtain the value of F ði; j; e; fÞ for all e; f and for those i; j
such that there exists ði0; j0; k0Þ 2 V such that i ¼ i0 þ 1 and
j ¼ j0 � 1. Thus there are onlyOðmÞ number of ði; jÞ. LetR be
the set of ði; jÞ for which we need to compute the value of F
(i.e., R ¼ fði; jÞj9ks:t:ði� 1; jþ 1; kÞ 2 V g). The following
lists out the recursive formula for the computation of
F ði; j; e; fÞ:
Lemma 5. F ði; j; e; fÞ ¼ max

==MATCH
== if ði; jÞ 2 Uj

i

F ðiþ 1; j� 1; eþ 1; f � 1Þ þ �ðS½i�; T ½e�Þ
þ �ðS½j�; T ½f �Þ þ �ðS½i�; S½j�; T ½e�; T ½f�Þ;
== else if ði; j0Þ 2 Uj

i where j0 < j
F ði; j� 1; e; f � 1Þ þ �ðS½j�; T ½f �Þ;
== else if ði0; jÞ 2 Uj

i where i0 > i
F ðiþ 1; j; eþ 1; fÞ þ �ðS½i�; T ½e�Þ;
== else ði:e:; both i and j are single baseÞ
==if ðiþ 1; jÞ 2 R
F ðiþ 1; j; eþ 1; fÞ þ �ðS½i�; T ½e�Þ;
== else if ði; j� 1Þ 2 R
F ði; j� 1; e; f � 1Þ þ �ðS½j�; T ½f�Þ;
== else ði:e:; ðiþ 1; j� 1Þ 2 RÞ
F ðiþ 1; j� 1; eþ 1; f � 1Þ þ �ðS½i�; T ½e�Þ þ �ðS½j�; T ½f�Þ;

8>>>>>><
>>>>>>:
==SINGLE�MATCH; INSERT;DELETE are similar:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

There are four situations.

1. Match for both bases ði; jÞ (MATCH).
2. Match for only one of bases ði; jÞ (SINGLE-MATCH).
3. Insertion of a base on S (INSERT).
4. Deletion of a base on S (DELETE).

When considering the MATCH situation, there are also
four cases: I. ði; jÞ is a base pair; II. j is a single base but i
forms a base pair with another base j0 < j; III. i is a single
base but j forms a base pair with another base i0 < i; IV.
Both i; j are single bases. For the case I, II, III, the formula is
straightforward. For case IV, we then check which i; j such
that the corresponding F has been computed. There are
three possibilities, 1) ðiþ 1; jÞ 2 R; 2) ði; j� 1Þ 2 R; or
3) ðiþ 1; j� 1Þ 2 R; For the other situations like SINGLE-
MATCH, INSERT and DELETE, the formula are similar.

The following proves that for all cases, the entries we
refer to during the computation of F are always valid.

Proof. When consider the situation MATCH, assume ði; jÞ 2
R (i.e., 9k s.t. ði� 1; jþ 1; kÞ 2 V ), for case I, since ði; jÞ is a
base pair, there must exist k such that ði; j; kÞ 2 V .
Therefore, ðiþ 1; j� 1Þ 2 R. For case II, the fact that
ði; j0Þ is a base pair (where j0 < j) implies that there exists k0

such that ði� 1; j0 þ 1; k0Þ 2 V . Since both ði� 1; j0 þ 1; k0Þ;
ði� 1; jþ 1; kÞ 2 V for some j0 < j and k; k0, there must
exist k00 such that ði� 1; j; k00Þ 2 V , which implies ði; j �
1Þ 2 R. Similarly, for case III, the fact that ði0; jÞ is a base
pair (where i0 > i) implies that there exists k0 such that
ði0 � 1; jþ 1; k0Þ 2 V . Since both ði0 � 1; jþ 1; k0Þ; ði� 1;
jþ 1; kÞ 2 V for some i0 > i and k; k0, there must exist k00

such that ði; jþ 1; k00Þ 2 V , which implies ðiþ 1; jÞ 2 R.
For case IV, F is computed according to either ðiþ 1; jÞ,
ði; j� 1Þ or ðiþ 1; j� 1Þ depending on which pair is in the
R. Therefore, for all cases, during the computation of F ,
the entries we refer to are always valid. tu

To conclude, in order to fill the dynamic programming
table, not all entries for all possible subranges ði; jÞ of S needs
to be filled For any given subregionw ¼ ði; jÞ, a function �ðvÞ
can be defined as follows to determine for which subregions
in S we need to fill the corresponding F entries.

�ðvÞ ¼

ðiþ 1; j� 1Þ; if ði; jÞ is base pair in Uj
i ;

ði; j� 1Þ; else if 9k0s:t: ði� 1; j; k0Þ 2 V ;
ðiþ 1; jÞ; else if 9k0s:t: ði; jþ 1; k0Þ 2 V ;
ðiþ 1; j� 1Þ; else if 9k0s:t: ði; j; k0Þ 2 V Þ;
empty region; otherwise:

8>>>><
>>>>:

R can be obtained by using �ðvÞ. Thus, to compute all
the F for all ði; j; kÞ 2 V , the computation can be performed
as preprocessing and the total time required is Oðmn2Þ.
Lemma 6. Computation of the optimal alignment score (F )

between S½iþ 1 . . . j� 1� with a set of base pairs Uðiþ 1Þðj�
1Þ and T ½e . . . f � for all 1 � e; f � n and for all ði; j; kÞ 2 V ,
requires time Oðmn2Þ.

Similarly, the optimal prefix-global alignment score
(Gðkþ 1; gþ 1Þ) between S½kþ 1 . . .m� with a set of base
pairs V m

kþ1 and T ½gþ 1 . . .n� for all k and g can be
computed in time OðmnÞ. The upper bound of the optimal
prefix-global alignment score between :Rx and :Ry (i.e.,
Eð:Rx;:RyÞ) is set to the sum of F ðiþ 1; j� 1; eþ 1; f � 1Þ
and Gðkþ 1; gþ 1Þ.
Lemma 7. The resulting upper bound is always greater than or

equal to the score of the optimal prefix-global alignment
between :Rx and :Ry.

Proof. Consider S½1 . . .m� and T ½1 . . .n�, let Eð:Rx;:RyÞ be
the optimal prefix-global alignment score between :Rx

and:Ry whereRx ¼ RðS; ði; j; kÞÞ andRy ¼ RðT; ðe; f; gÞÞ.
Since :Rx ¼ S½iþ 1 . . . j� 1� [ S½kþ 1 . . .m� and :Ry ¼
T ½eþ f . . . f � 1� [ T ½gþ 1 . . .n�, let S0½1 . . . r� [ S00½1 . . . r0�
and T 0½1 . . . r� [ T 00½1 . . . r0� be the resulting optimal prefix-
global alignment between:Rx and:Ry. Note thatEð:Rx;
:RyÞ is the sum of the alignment score between S0½1 . . . r�
and T 0½1 . . . r�, and the alignment score between S00½1 . . . r0�
andT 00½1 . . . r0�. BecauseS0½1 . . . r� andT 0½1 . . . r� is one of the
candidates when computing the optimal alignment score
betweenS½iþ 1 . . . j� 1� andT ½eþ 1. . . f � 1�,F ðiþ 1; j�
1; eþ 1; f � 1Þ is always greater than or equal to the
alignment score between S0½1 . . . r� and T 0½1 . . . r�. Simi-
larly, because S00½1 . . . r0� and T 00½1 . . . r0� is one of the
candidates when computing the optimal prefix-global
alignment score between S½kþ 1 . . .m� and T ½gþ 1 . . .n�,
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Gðkþ 1; gþ 1Þ is always greater than or equal to the
alignment score between S00½1 . . . r0� and T 00½1 . . . r0�. There-
fore, the sum of F ðiþ 1; j� 1; eþ 1; f � 1Þ and Gðkþ
1; gþ 1Þ is always greater than or equal to the score of the
optimal prefix-global alignment between :Rx and :Ry.tu

Computation of F and G are done as preprocessing.
Thus, every time computation of the value of Eð:Rx;:RyÞ
which is the sum of F ðiþ 1; j� 1; eþ 1; f � 1Þ and Gðkþ
1; gþ 1Þ needs only constant time. If the value BðRx;RyÞ þ
Eð:Rx;:RyÞ is smaller than the lower bound computed
previously, we can definitely know that in any of the
optimal alignments,Rx would not aligned withRy, and then
the subsequent steps of computation of the alignment which
involves Ry aligned with Rx can be skipped and so it would
lead to a speedup in the computation of B.

Lemma 8. The space complexity of our method is Oðmn3Þ.
Proof. In our method, we need to compute the tablesB,C,D,
E, F , andG. For each table, the number of entries we need
to store during calculation is Oðmn3Þ. Thus, the overall
space complexity is Oðmn3Þ. tu

We remark that this space complexity is the same as that of
Han’s algorithm. Note also that if a region cannot be pruned,
we still go through the same calculation as in Han’s
algorithm, thus the worst case time complexity for evaluating
a region is still Oðmn3Þ, the same as that of Han’s algorithm.

4 EXPERIMENTAL RESULTS

We implemented our algorithm for simple pseudoknots in
C++. By inputting a query RNA sequence S with its
secondary structure, the program scan along the reference
target sequence T and output the score for every region of T .
A higher score indicates that the reference target sequence
subregion is similar to the query RNA sequence S in terms of
both structure and sequence. In the database Rfam 10.1, there
are 71 pseudoknotted families. Among them around 40 fa-
milies have simple pseudoknot structures. To evaluate the
effectiveness of our algorithm, we randomly selected around
20 families with simple pseudoknot structures for the
experiment. For each family, we randomly pick a seed
member as the query sequence S. The target sequence T is a
random sequence (with equally distribution of A, C, G, and T)

of length 50,000 and the members of the family are embedded
at the random positions on T .2 Since the PAL [13] program is
not available, we also implemented their method for
comparison on the performance. We applied the sliding
window technique for both Han’s method and our method.
Table 1 and Fig. 7 show the comparison of the running time
between our algorithm and Han’s. Our speed up gradually
increases when the query length increases. The speed up is
five times when the query length is 30. And the speed up is
seven times when the query length is 50. The speed up is 8.5 to
11.0 times when the query length is 65 or more. The
experiment was performed using a machine with 24 G
memory and a quad-core 2.6 GHz CPU. It shows that our
method is efficient especially for long query sequence.

To evaluate the efficiency of our method, we further
examine the sensitivity of our algorithm and compare it
with the existing method called RNATOPS [15] and BLAST.
RNATOPS is a profile-based RNA structure search program
that can detect RNA pseudoknots in genomes. RNATOPS is
based on structures and BLAST is based on sequence, while
our and Han’s algorithm are based on both sequence and
structure. For each family, we embedded the corresponding
members into the random sequence and search it with the
RNA query pattern. To understand the sensitivity of the
software, say for a specific family, there areX seed members
embedded and we check the top X reported regions with
highest scores and see how many of them are the real
members. Table 2 shows the sensitivity of our method,
Han’s method, RNATOPS, and BLAST. The sensitivity of
our method is the same as that of Han’s method. As shown
in the table, the sensitivity of our method ranges from 90-
100 percent with an average of 97 percent, which out-
performs both RNATOPS (average 9 percent) and BLAST
(average 68 percent). Fig. 6 shows an example of the
distribution of our scores of the false hits (i.e., the regions
which do not contain any real member) and the true hits
(i.e., the regions which contain the real members) for the
family RF01118. One can see that the scores of the real hits
are usually higher than those of the false hits. It shows that
our method could identify the real members from the target
sequence.

Our algorithm consists of two preprocessing steps:
1) computation of the lower bound of the optimal structural
alignment between the query sequence S and the subregion
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Fig. 6. Distribution of our scores between the false hits and the true hits
in family RF01118.

Fig. 7. Speed up for various lengths of queries.

2. If there are too many seed members in the family, we will randomly
pick some of them so that the total length of all the seed members is around
2,500 (i.e., 5 percent of the total length of the target sequence).



sequence on the genome T (i.e., computation of C and D);
2) preprocessing steps for pruning (i.e., computation of the
matrix E). Table 3 shows the time required for each of
the preprocessing steps. In summary, the total time
required for both of the preprocessing steps is less than
2 percent of the total running time of our method.

To further analyze the effectiveness of our pruning
method, we selected the family RF01118 and examined the
percentage of table entries pruned for each subregion RðvÞ
on the query S. As shown in Fig. 8, in the beginning of the
algorithm, the size of RðvÞ is small and so it is expected that
not many table entries are pruned. While the algorithm
continues and the size of RðvÞ increases, the pruning works
more effectively and the number of table entries pruned
increases dramatically. When the size of RðvÞ reaches
20 percent of the query, there are over 50 percent of the
table entries pruned. This statistics therefore could explain
the resulting speed up of our algorithm.

5 CONCLUSIONS

We have designed an algorithm which first estimates the
lower bound of the optimal alignment score and then applies
an efficient pruning method for speeding up the dynamic
programming algorithm for solving the RNA structural
alignment problems. Experimental results show that the
algorithm is effective and can achieve around 8.5 to 11 times
speed up when the query length is longer than 65. On the
other hand, in practice, the user sometimes would like to set
a threshold so that only the subregions on the genome of
which the resulting scores are higher than the threshold will
be outputted. Our pruning method can work well with the
inputted threshold too. The entries are then skipped if the
estimated optimal alignment score for the entries is lower
than the inputted threshold instead of the computed lower
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TABLE 2
Comparison of the Sensitivity of Our Method, Han’s Method, RNATOPS, and BLAST

TABLE 3
Breakdown of the Running Time

Fig. 8. Percentage of table entries pruned for different size of subregion
RðvÞ on the query S in family RF01118.



bound. By setting the threshold as the 40 percent of the
maximum score for the query (i.e., the maximum score is the
score when the query is aligned with the sequence exactly
the same as the query), we found that the speed up can
further increase to 17 times to 28 times. Although the method
presented in this paper is designed for simple pseudoknots,
a similar technique can also be applied for the structural
alignment algorithms for other pseudoknot types.
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