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Abstract—Credit-based incentives were proposed to incite peer
contributions in P2P content distribution systems. Their effective-
ness was extensively analyzed from a game theory perspective.
Little attention however has been paid to a potential threat
to such systems—the possible condensation of credits in a
small number of peers over time. Credits condensation puts
system sustainability on the line: many peers gradually run out
of credits and cannot keep up a decent download rate. We
study the sustainability of credit-based P2P systems running
for a long period of time. We first introduce a new queueing
network based model for credit circulation in a P2P content
trading market. This model enables the study of credit system
sustainability via examining the stability of stochastic traffic flows
in a network of queues. We show that a stable job circulation,
i.e., an equilibrium market state, always exists. A sufficient and
necessary condition for asymptotic condensation at equilibrium is
proved. We analyze the degree of condensation in finite networks
using the Gini index, and relate condensation to P2P network
protocols and parameters. Our theoretical results are verified
and supported by extensive simulations under realistic settings.
We propose counter-actions for preventing and mitigating credit
condensation.

Index Terms—Peer-to-peer content distribution, Queueing Net-
work, Credit-based system

I. INTRODUCTION

Incentive engineering has sparked considerable interest s-
ince the beginning of research on peer-to-peer (P2P) content
distribution. The goal is to incentivize peers to contribute
resources such as upload bandwidth and storage capacity [1],
[2], [3]. Barter-like schemes (e.g., tit-for-tat), while success-
ful in P2P file sharing (e.g., BitTorrent) [4], do not suit
streaming applications well in terms of network capacity
utilization and download timeliness [5]. Two categories of
more general schemes were proposed: reputation-based in-
centives and credit-based incentives. The former maintains
a reputation score (e.g., upload/download ratio) for a peer,
which summarizes the peer’s past contributions [6]; a high
score may be rewarded with preferred-upload privilege and
a low score may lead to terminated system access [7]. The
latter implements credits (or micropayment, virtual currency)
among peers, for exchange of desired data chunks [8], [9].
Compared to reputations, credits enable more direct, flexible,
and fine-grained incentive solutions that are well-suited for
both high-usage and low-usage peers [10].

The research was supported in part by a grant from Hong Kong RGC under
the contract HKU 718710E.

Credit-based incentives have been proven to be effective
in motivating resource contribution from a game theory per-
spective [8], [9]. The security and scalability issues of credit-
based P2P systems were also extensively studied [11], [9],
[12]. However, the sustainability of such systems, which could
run for a long time, has been largely neglected: would credits
stay evenly distributed over time, or eventually converge to a
small number of peers, e.g., the ones affluent in connections
or upload bandwidth? If indeed the credits would converge to
a few peers, many peers will be shut out of the P2P service,
for lack of purchase power due to bankruptcy. This is the
“wealth condensation” [13] phenomenon in a credit-based P2P
network.

Such a practical concern can be traced to historical lessons.
The “Capitol Hill Baby Sitting Co-op” [14] was established
for parents from the same community to exchange baby-sitting
services, using coupons. The system enjoyed an initial success
only to see its own collapse due to the eventual imbalance
of coupon distribution: a small group of parents aggregated
the majority of the coupons, leading to a paradox of thrift
for the other parents who could no longer afford the service
as normal [15]. Similarly, a P2P system experiencing wealth
condensation may see degradation in content distribution ef-
ficiency. The poor peers with few credits are unable to buy
content they need, have little content to sell for revenue, and
provide little revenue opportunities for neighbors who are
probably also poor. Eventually, the P2P credit flow (and hence
the data flow) ceases healthy circulation. Periodically injecting
new credits into the system may provide a temporary remedy,
which however may lead to another classic economic problem
in the long run: the inflation of currency [16].

All these concerns raise intriguing questions on the long-
term sustainability of a credit-based P2P economy. As a first
effort for the literature, we explore the fundamental causes
to wealth condensation in a P2P system. In particular, under
what scenarios are the credits prone to aggregation by a small
number of peers? What are the important factors influencing
credit distribution? What handles do we have for condensation
avoidance and mitigation? Is it possible for a credit-driven P2P
market to stay in healthy operation over a long period of time?

To answer these questions, we first propose a novel model
for the credit transition among peers, using a Jackson queueing
network. Each peer is mapped to a queue, each unit credit
is mapped to a job, and credit circulation in a P2P market
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is transformed to job circulation in a queueing network. We
discuss advantages of the new queueing network model, and
study the credit distribution among peers by analyzing the
queue size distribution in the Jackson network.

To avoid credit condensation, a healthy, stable credit cir-
culation is required. But first of all, will a stable circulation
(equilibrium state of queueing network) always exist, given
different P2P topologies and trading preferences among peers?
We give an affirmative answer which comes from analyzing
the existence of positive eigenvectors of the credit transfer
probability matrix. While in the equilibrium state, we further
prove a sufficient and necessary condition for condensation to
happen asymptotically. The condition is based on a carefully
designed threshold criterion that connects the average amount
of credits per peer in the network to the normalized utilization
of the credit queues in the queueing network model. This result
sheds light on what parameters in the P2P market are critical to
the occurrence of condensation. In particular, if initial wealth
at the peers (i.e., the average amount of credits per peer in
a close network) exceeds a certain threshold, there will exist
at least one peer on which credits are aggregated; otherwise,
wealth condensation will not occur, and the credit system can
sustain for long.

For wealth condensation in finite networks, we study the
degree of condensation, based on the joint distribution of
queue sizes computed using the property of Jackson queueing
networks. We make approximate simplifications on the joint
probability mass function of queue sizes, and apply the Gini
index [17] from economics to evaluate the relative skewness
of queue lengths. The skewer the distribution of queue sizes
is, the more condensed the wealth distribution is. We expound
how average peer wealth may affect the skewness: the average
wealth at the peers should not be too large, as otherwise
condensation will more likely happen; it cannot be too small
either, limiting the content download rate. Moreover, pricing
on the data chunk transfers influences wealth distribution.

The skewness of wealth distribution is also studied through
extensive simulations which further explicate and verify the
effects of different network parameters on the degree of
condensation in dynamic P2P systems. We discuss a number of
counter-actions for preventing credit condensation, such as the
taxation strategy. Our results reveal that, bringing taxes (with
a suitable taxing threshold) into credit-based P2P systems can
effectively inhibit the skewness of credits distribution when
the taxing threshold is well-designed and not too low.

In the rest of the paper, we discuss related work in Sec. II,
present the modeling details in Sec. III. Sec. IV proves the
existence of the equilibrium of credit distribution. Sec. V
analyzes conditions that promote wealth condensation and
the impact of different network parameters. Sec. VI presents
simulation studies and Sec. VII concludes the paper.

II. RELATED WORK

Credit (or micropayment, virtual currency) was considered
in a number of P2P system designs, for motivating peer
cooperation and contribution [8], [9], [12]. The majority of

them focus on system protocol design or the implementation
of the credits. For example, Lightweight Currency [18] is
an application-layer protocol implementing such a virtual
currency. KARMA [9] keeps track of resource contribution and
consumption of its peers, using a virtual currency maintained
by a set of bank-set nodes. PPay [12] discusses a secure
payment scheme for P2P file sharing. The BitCoin project [19],
which has attracted hundreds of thousands of users by 2011,
implements a virtual currency system where users manage
the currencies collectively in the peer-to-peer fashion, without
involvement of any central authority. All these work focus
on implementation of an online currency and are orthogonal
to our work, which will assume such an implementation is
feasible.

Game theory was applied to the analysis of credit-based
P2P systems, on the effectiveness of using credits to motivate
peers’ maximum contributions at Nash equilibrium [8]. A
focus here is the design and analysis of pricing schemes, under
which peers pay calculated amounts of credits to obtain desired
content [20]. Pricing schemes examined include: a single price
per peer [20], linear pricing [3], and auction based pricing [1].
The impact of pricing on credit condensation in a P2P market
is discussed in Sec. V in this paper.

Few existing work investigates the sustainability of credit-
based P2P systems or considers long-term evolution of the
credit distribution. The most relevant work is probably by
Friedman et al. [8], which studies system performance as a
function of the total amount of internal currency available. It
concludes that too large an amount of total internal currency
causes the system to collapse. Via simulations, Hales et al. [21]
show that insufficient initial credits can lead to a system
state where many peers lack credits. Dandekar et al. [22]
constructs a general credit model with a complete graph,
and show through simulations that the system robustness
(probability of peer bankruptcy) is related to credit capacity
and network density. Different from these two studies, our
work will investigate analytically the impact of factors on
credit distribution in a P2P system.

In the realm of economics, simple models were proposed
to capture the distribution of money [17]. In the field of
physics, there also exist models for studying the condensation
of materials [13]. Nevertheless, these models are not directly
applicable in the scenario of a P2P network. Instead, we
propose a new, queueing network based model for analyzing
credit distribution within a P2P system.

Queueing models have recently been applied in P2P net-
works to capture user channel-switching and peer churn behav-
iors [23], to derive the number of servers in a P2P online stor-
age system [24], as well as to characterize content availability
in a bundled P2P swarm system [25] and content retrieval
strategies [26]. However, we are not aware of previous research
that applies queueing networks to model the circulation of
credits.
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III. MOTIVATION AND SYSTEM MODEL

We introduce the credit-based P2P content distribution sys-
tem and an example to motivate our study in Sec. III-A, and
describe how the P2P system is modeled using a queueing
network in Sec. III-B.

A. The Threat of Wealth Condensation

We consider a mesh P2P content distribution system (e.g.,
P2P file sharing or streaming), where users exchange data
chunks among each other by acting as both a client (down-
loading from others) and a server (uploading to others). While
users are naturally motivated to download data chunks they
desire, motivating them to upload has been an important
subject of study known as P2P incentive engineering. A credit-
based solution employs a virtual currency within the P2P
swarm, to incentive peers’ mutual upload.

In credit-based P2P content distribution [9], [1], [20], [12],
[18], when a peer 𝑖 helps upload a data chunk to another peer
𝑗, 𝑗 transfers credits (virtual money) to 𝑖 for remuneration.
The amount of credits transferred is determined in various
ways, e.g., decided by the seller (uploading peer) using a flat
or linear rate [20], [3], or settled through an auction [1]. Credit
flows therefore accompany data flows within the P2P system,
along reverse directions. Through buying from and selling to
neighbors, a user should strike to maintain its credit pool at a
healthy level, for enjoying a steady downloading rate.

In this paper, we explore long-term evolution of such a
credit-based P2P system. The questions at hand to investigate
are: Do credits in the system tend to aggregate onto a small
number of peers over time? If so, does such wealth condensa-
tion really constitute a threat to download performance? The
condensation of the majority of wealth to a small number of
individuals in a community has been previously observed in
the economics literature [27], [17]. We also perform simulation
studies based on realistic settings of a P2P live streaming
protocol, where results suggest that credit-based P2P systems,
without careful design, are also prone to such a phenomenon,
which leads to low streaming performance at the peers.

In particular, we simulate a state-of-the-art mesh-based P2P
live streaming system with 500 peers in a scale-free overlay
topology, running a protocol similar to that of UUSee [28].
Each peer is assigned a certain amount of initial credits;
different data chunks transferred between peers may request
different amounts of credits to be paid, according to the pricing
scheme employed. Chunk transfers (with credit transfers in the
inverse direction) among peers are based on chunk availability
at the peers.

With different settings of parameters (such as the average
amount of credits per peer, and specific pricing scheme over
data chunks), we have observed that distributions of credits
vary when the system has evolved for a long period of time.
We evaluate the degree of condensation using the Gini index, a
measure of inequality of income or wealth [17]. A Gini index
ranges between 0 and 1, with 0 representing perfect equality
and 1 representing extreme inequality. We will formally define
the Gini index in Sec. V-B2.
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Fig. 1. Distribution of credit spending rates, with and without wealth
condensation.

Fig. 1 presents the distribution of credit spending rates
at peers after the system has evolved for a long time, in
two cases: (1) We set the initial credits at the peers to be
200, and peers charge different credits for selling different
chunks, which follow a poison distribution with an average
of 1 credit per chunk; the resulting Gini index=0.9 shows
that wealth condensation has occurred. (2) We set the initial
credits at each peer as 12, and peers charge 1 credit per
chunk uploaded uniformly; the Gini index=0.1 corresponds to
relatively balanced credit distribution in the system. The rate
of credit spending at a peer reflects the chunk download speeds
of the peer. Therefore, the much lower credit spending rates
in the first case with condensed credit distribution exhibit the
much lower download speeds (and thus much worse streaming
performance) in the system in that case. This observation
confirms that wealth condensation may lead to reduced levels
of content exchange in a P2P system, and seriously deteriorate
the overall content distribution performance. In the following
sections, we seek to investigate critical network parameters
that affect the distribution of wealth, in order to explore
counter-actions to avoid the condensation.

B. From a P2P Market to a Queueing Network

1) Network of Queues and the Jackson Network: The
classic field of queueing theory studies the stochastic arrival,
buffering, and servicing of “jobs” at “servers”. The network of
queues branch further considers a network of interconnected
queues, where a job departing from a queue 𝑖 travels to another
neighboring queue 𝑗 with probability 𝑝𝑖𝑗 . Such probabilities
aggregately form the transfer probability matrix P.

A Jackson Network [29] is a network of queues where
the arrival process at each queue, as well as the job service
times, are memoryless. In other words, the arrivals at each
queue form a Poisson process, and the job service times are
randomly distributed. The average service time at queue 𝑖 is
1
𝜇𝑖

, taking exponential form as the general setting of queueing
networks. It is worth noting that the all-Poisson arrivals
assumption is possible, since: (i) Stochastically splitting a
Poisson flow results in sub-flows that are still Poisson, and (ii)
the aggregation of two Poisson flows is still a Poisson flow. A
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TABLE I
MAPPING BETWEEN A CREDIT-BASED P2P SYSTEM AND A CLOSED

QUEUEING NETWORK

A P2P Overlay A Queuing Network
No. of peers, 𝑁 No. of queues, 𝑁
A peer 𝑖 A queue 𝑖
A unit credit A job
Total credits of peer 𝑖, 𝐵𝑖 No. of jobs at queue 𝑖, 𝐵𝑖

Total credits 𝑀 in the overlay Total no. of jobs 𝑀 in the network
Fraction of purchase made by peer 𝑖
from peer 𝑗, 𝑝𝑖𝑗

Routing probability, 𝑝𝑖𝑗

Peer 𝑖’s average credit spending rate
𝜇𝑖

Queue 𝑖’s service rate 𝜇𝑖

Peer 𝑖’s average income earning rate
𝜆𝑖

Queue 𝑖’s arrival rate 𝜆𝑖

closed Jackson Network is one in which jobs circulate within
the network, without arrivals or departures. In this case, the
transfer probabilities satisfy

∑
𝑗 𝑝𝑖,𝑗 = 1, ∀𝑖, by the rule of

total probability.
2) The Mapping and Assumptions: As a novel contribution,

we model a credit-based P2P system using a Jackson queueing
Network, by mapping the circulation of credits in a P2P system
to the circulation of jobs within a queueing network. We map
each P2P user 𝑖 into a queue 𝑖. Two queues are neighbors in
the queueing network if the corresponding users are neighbors
in the P2P system. A unit credit corresponds to a job. The
credit pool at a user 𝑖 maps to the buffer at queue 𝑖. A user
𝑖’s income earning rate 𝜆𝑖 equals the job arrival rate at queue
𝑖. Spending a credit in the P2P system maps to finishing a job
in the queueing network.

For an average credit earning rate 𝜆 over time, we ap-
proximate the arrival process using a Poisson process. The
transfer duration of a unit credit at peer 𝑖 is modeled with
an exponentially distributed variable with expectation 1

𝜇𝑖
. The

service rate 𝜇𝑖 relates to the credit spending rate at peer 𝑖
when it has credits. The stochastic nature of the queueing
network model naturally reflects the inherent randomness of
chunk transactions in a P2P market, due to heterogeneity in
peer bandwidth, connectivity, wealth, and operation timing.

We use 𝑁 to denote the total number of users/queues, and
𝑀 the total number of credits/jobs. The fraction of purchase
a user 𝑖 made from a neighbor 𝑗, i.e., what fraction of credits
paid by 𝑖 goes to 𝑗, becomes the job transfer probability 𝑝𝑖𝑗 .
Reserving a fraction of credits from trading can be modeled
by a 𝑝𝑖𝑖 > 0.

We first focus on a static P2P network without peer joins
and departures, leading to a closed Jackson Network. Each
user 𝑖 in the network is assigned with an initial credit pool
𝑐. We extend the discussion to dynamic P2P environments in
Sec. VI, where an open Jackson network models peer joins
and departures.

For ease of reference, we summarize the mapping from a
P2P network to a Jackson network in Table I.

IV. EQUILIBRIUM OF CREDIT DISTRIBUTION: EXISTENCE

To avoid wealth condensation, we need equilibrium states
of a P2P market with a healthy and stable credit circulation.
Does an equilibrium state exist at all, given the P2P network

topology and content trading preferences among peers? - that
is our subject of study in this section.

The existence of equilibrium for a queue 𝑖 depends on 𝜆𝑖

and 𝜇𝑖. Since the purpose of earning credit is to redeem them
for data chunks, it is reasonable to assume that over the long
term, the average data earning rate 𝜆𝑖 is upper-bounded by the
maximum spending rate 𝜇𝑖, i.e., 𝜇𝑖 ≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁 .

Recall P is the transfer probability matrix, derived from the
network topology and peer trading preferences. Given 𝜆𝑖 ≤
𝜇𝑖, ∀𝑖, �⃗�P provides the new arrival rate vector in the next
time instance. The system is at a steady state if �⃗� becomes
stable:

�⃗�P = �⃗�. (1)
When arrival rates in �⃗� are stable, so are credit departure

rates in �⃗�P, and we obtain a stable credit circulation within
the network. We show that such an equilibrium of the credit
system exists.
Lemma 1. Given the transfer probability matrix P that satis-

fies 𝑝𝑖𝑗 ≥ 0,∀𝑖, ∀𝑗,∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑝𝑖𝑗 > 0, and

𝑁∑
𝑗=1

𝑝𝑖𝑗 = 1, ∀𝑖,

there always exists a positive �⃗� (𝜆𝑖 > 0,∀𝑖) satisfying �⃗�P = �⃗�.
Lemma 1 can be proved by applying the Perron-Frobenius

Theorem [30] on eigenvalues of nonnegative matrices. We
prove Lemma 1 in our technical report [31]. A trivial solution
to Eq. (1) always exists, by letting �⃗� = 0. Lemma 1 shows
that a nontrivial solution �⃗� > 0 can always be found. Can �⃗�
still be uninteresting by being very small? This is not a worry,
since Eq. (1) remains valid under scaling of �⃗�.

Lemma 1 shows that a steady state of a credit-based
P2P system always exists. We next investigate the detailed
credit distribution at the equilibrium state. We first define a
normalized utilization vector �⃗� = {𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑁}:

𝑢𝑖 =
𝜆𝑖/𝜇𝑖

max𝑗(𝜆𝑗/𝜇𝑗)
, (2)

where each normalized utilization of peer 𝑖, 𝑢𝑖, is between 0
and 1.

By properties of a Jackson Network, the joint equilibrium
distribution of credits equals the product of individual peer
credit distribution [29]. Recall that 𝐵𝑖 is the amount of credits
at peer 𝑖 and 𝑀 is the total amount of credits. The joint
equilibrium distribution can be represented by the following
joint probability mass function Q.

Q{𝐵1 = 𝑏1, ⋅ ⋅ ⋅ , 𝐵𝑁 = 𝑏𝑁} = 1

𝑍𝑀

𝑁∏
𝑖=1

𝑢𝑏𝑖
𝑖 , (3)

where 𝑍𝑀 =
∑

∑𝑁
𝑖 𝑏𝑖=𝑀

𝑁∏
𝑖=1

𝑢𝑏𝑖
𝑖 .

What are the properties of the joint probability Q, and under
what condition can the budgets be evenly distributed, need
further investigation. We analyze these questions and the key
factors affecting the phenomenon of wealth condensation in
the next section.
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V. EQUILIBRIUM OF CREDIT DISTRIBUTION: PROPERTIES

We analyze wealth condensation in an asymptotic fashion
in Sec. V-A, and for finite networks in Sec. V-B. Sec. V-C
discusses the role of pricing schemes.

A. Asymptotic Condensation With Growing Network Sizes

Consider a P2P network with its size growing unboundedly.
The total credit 𝑀 approaches infinity, while the average peer
wealth 𝑐 = 𝑀

𝑁 remains constant (also equal to the amount
of initial credits at each peer). In such a growing network,
we declare that wealth condensation occurs if the amount of
credits at at least one peer grows unboundedly. We prove in
Theorems 2 and 3 that condensation will not occur if average
peer wealth is smaller than a threshold, and vice versa. Let’s
first define a threshold constant 𝑇 :

𝑇 = lim
𝑧→1−

∫ 1

0

𝑤

1− 𝑧𝑤
𝑓(𝑤)𝑑𝑤, (4)

where 𝑓(𝑤) is a continuous, first-order differentiable function
over [0, 1], satisfying 𝑢𝑖 = 𝑓(𝑢𝑖), ∀𝑖.
Theorem 2. If average peer wealth 𝑐 satisfies 𝑐 ≤ 𝑇 , then as
𝑁 → +∞, there exists a finite constant 𝑌 that upper-bounds
the expected wealth 𝐵𝑖 at each peer 𝑖 at equilibrium, i.e.,
𝐵𝑖 < 𝑌 , ∀𝑖.

Proof can be found in our technical report [31]. Theorem
2 shows that when average peer wealth is below a threshold
decided by the normalized utilization vector, the expected peer
wealth at equilibrium is always bounded, and thus no wealth
condensation occurs.
Theorem 3. If the average peer wealth 𝑐 is larger than 𝑇 , then
as 𝑁 → +∞, there exists a peer 𝑖 whose expected wealth 𝐵𝑖

at equilibrium is unbounded, i.e., 𝐵𝑖 → +∞.
We prove Theorem 3 in our technical report [31]. Theorem

3 states that if average wealth exceeds 𝑇 , wealth condenses
to at least one of the peers.

The following corollary shows that if we have symmetric
utilization among the peers, i.e., the ratio of earning rate over
spending rate 𝜆𝑖

𝜇𝑖
is equal at any peer 𝑖, wealth condensation

is unlikely to happen.
Corollary. Under symmetric utilization at equilibrium, the
threshold 𝑇 in Theorem 2 and 3 goes to +∞, and no wealth
condensation will occur as 𝑁 → +∞.

Under symmetric utilization, �⃗� = {1, ⋅ ⋅ ⋅ , 1}. Furthermore,
𝑓(𝑤) = 1 satisfies Eqn. (4). Therefore

𝑇 = lim
𝑧→1−

∫ 1

0

𝑤

1− 𝑧𝑤
𝑓(𝑤)𝑑𝑤 = lim

𝑧→1−

∫ 1

0

1

1− 𝑧
𝑑𝑤 → +∞

The condition in Theorem 2 becomes 𝑐 < +∞, and is
always satisfied. No wealth condensation occurs in this case.

B. Credit Distribution in Finite Networks

We now turn our attention to the case where network
size and total wealth are finite. In such networks, a peer’s
wealth cannot grow unboundedly and wealth condensation
refers to the extremely unbalanced distribution of credits.
We study the skewness of the distribution, i.e., degree of

condensation, and its dependence on P2P system parameters.
We first derive the probability mass function for each queue’s
length at equilibrium. We then consider the case of symmetric
utilization to analyze the impact of 𝑐 on the skewness of the
wealth distribution and the efficiency of P2P content exchange.

1) Credit Distribution: Joint Probabilities: Based on the
product form equilibrium distribution in Eqn. (3), we apply
the multinomial theorem to derive:

( 𝑁∑
𝑖=1

𝑢𝑖

)𝑀
=

∑
∑𝑁

𝑖 𝑏𝑖=𝑀

𝑀 !∏𝑁
𝑖 𝑏𝑖!

𝑁∏
𝑖=1

𝑢𝑏𝑖
𝑖 . (5)

We next compute the probability that peer 𝑖 has wealth 𝑏𝑖
by giving the marginal probability mass function:

Q{𝐵𝑖 = 𝑏𝑖} = 𝑢𝑏𝑖
𝑖 𝑀 !

(𝑀 − 𝑏𝑖)!𝑏𝑖!

(
(
∑𝑁

𝑗=1 𝑢𝑗)− 𝑢𝑖

)𝑀−𝑏𝑖

(∑𝑁
𝑗=1 𝑢𝑗

)𝑀 . (6)

Apply 𝑢𝑖 = 1, ∀𝑖, in cases of symmetric utilization:

Q{𝐵𝑖 = 𝑏𝑖} = 𝑀 !

(𝑀 − 𝑏𝑖)!𝑏𝑖!

(𝑁 − 1

𝑁

)𝑀

(𝑁 − 1)−𝑏𝑖 . (7)

Then further plug in (𝑁 − 1)−𝑏𝑖 = 𝑒−𝑏𝑖 ln(𝑁−1):

Q{𝐵𝑖 = 𝑏𝑖} =
(𝑁 − 1

𝑁

)𝑀
(
𝑀

𝑏𝑖

)
𝑒−𝑏𝑖 ln(𝑁−1), (8)

which is a probability mass function of a non-trivial distri-
bution. Fig. 2 depicts the Lorenz curve of the probability
distribution with different 𝑀 and 𝑁 . The Lorenz curve depicts
the cumulative distribution [32], and is generated by first
sorting the queue lengths, and then plotting the cumulative
percentage of bottom peers on the x axis, the percentage of
the total credits they have on the y axis.

2) Average Wealth vs. Skewness of Distribution: The skew-
ness of credit distribution in Eqn. (8) can be formally measured
by the Gini index [17]. Computed using the Lorenz curve of
the distribution, the Gini index is the ratio of (a) the area
between the line of perfect equality and the Lorenz curve, and
(b) the total area below the line of perfect equality. The 45∘

line in Fig. 2 represents perfect equality, for equal wealth at
each peer. The more skewed a distribution is, the lower its
Lorenz curve is, and the larger the Gini index is.

Fig. 2 shows that the distribution is more skewed with a
larger average wealth 𝑐. Our numerical results in Fig. 3 further
verify this by plotting the Gini index of the credit distribution
vs. 𝑐, in systems of various sizes after they have evolved
for a long time (uniform chunk pricing is employed; other
settings are similar to those to produce Fig. 1). The curve
indicating the Gini index grows rapidly when average wealth
increases at first and then slowly towards 1. It shows that in
finite networks, the average wealth is still an important factor
for credit distribution. Allocating more initial credits to peers
increases the risk of wealth condensation.
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3) Average Wealth 𝑐 vs. Content Exchange Efficiency:
Considering the possibility of no credits at a peer 𝑖, the actual
average departure rate of credits from 𝑖 is 𝜇𝑖 ×

(
1−𝑄{𝐵𝑖 =

0}). Based on Eqn. (8), we have

𝜇𝑖

(
1−𝑄{𝐵𝑖 = 0}) = 𝜇𝑖

(
1− (𝑁 − 1

𝑁

)𝑀)

= 𝜇𝑖

(
1− (

(1− 1

𝑁
)−𝑁

)−𝑀
𝑁

)

≈ 𝜇𝑖

(
1− 𝑒−

𝑀
𝑁

)
= 𝜇𝑖

(
1− 𝑒−𝑐

)
, (9)

when 𝑁 is large. Consequently, when the average wealth
𝑐 decreases, the actual departure rate decreases too, i.e.,
the downloading speed drops and the efficiency of content
exchange is low. Our numerical results in Fig. 4 validate the
above analysis. This observation suggests that the initial credit
allocated to peers should not be too small either, to facilitate
healthy content exchanges.

C. Effects of Pricing Schemes

In a credit-based P2P system, the max spending rates in
�⃗� and the transfer probabilities in P depend on the content
availability and prices at neighbor peers. We next assume a
system where all chunks are equivalently useful (e.g., when
they are coded with network coding), and focus on the effect of
pricing. Recall 𝑟𝑗𝑖 is the chunk transfer rate from peer 𝑗 to peer
𝑖, and 𝑠𝑗 is the chunk price at peer 𝑗. We have 𝜇𝑖𝑝𝑖𝑗 = 𝑟𝑗𝑖 𝑠𝑗 ,
and thus 𝜇𝑖 =

∑𝑁
𝑗=1 𝑟𝑗𝑖 𝑠𝑗 , since

∑𝑁
𝑗=1 𝑝𝑖𝑗 = 1, ∀𝑖. Consider

a simple uniform pricing scheme: 𝑠𝑖 = 𝑠, 𝑖 = 1, . . . , 𝑁 . In
this scenario, 𝜇𝑖 = 𝑠

∑𝑁
𝑗=1 𝑟𝑗𝑖. There are two cases:

1) Streaming content distribution, in which
∑𝑁

𝑗=1 𝑟𝑗𝑖 equals
to the required streaming rate 𝑟. Therefore, 𝜇𝑖 = 𝑠𝑟,∀𝑖, i.e.,
the max spending rates at all peers are equal. Furthermore,
since there is no difference among neighbors of peer 𝑖, its
credit transfer probabilities are equal, i.e., 𝑝𝑖𝑗 =

1−𝑝𝑖𝑖

𝑁−1 , ∀𝑗 ∕= 𝑖,
regardless of the fraction of the credits it reserves (i.e., 𝑝𝑖𝑖).
Combining this property with �⃗�P = �⃗�, we conclude 𝜆𝑖’s in
the equilibrium �⃗� are all equal too.

Therefore, we derive �⃗� = {1, ⋅ ⋅ ⋅ , 1} in such streaming
content distribution. Further by the corollary in Sec. V-A, the
credits are unlikely to condense to a small number of peers.

2) Elastic content distribution, e.g., file sharing, in which
the aggregate downloading rate

∑𝑁
𝑗=1 𝑟𝑗𝑖 at different peers

may not be the same, and thus the spending rates 𝜇𝑖’s may be
different. Though 𝜆𝑖’s are still equal at all peers, �⃗� is unlikely
to be an all-1 vector.

If peers charge non-uniform chunk prices, the utilization
𝑢𝑖’s are different, and wealth condensation could occur, for
both streaming and elastic content distribution. Analysis of
the credit distribution here is closely dependent on the system-
specific protocol implementation.

VI. SIMULATION STUDIES

We have performed extensive simulations to verify the
analytical results, as well as to derive new insights in practical
scenarios. We use Java to implement a state-of-the-art mesh-
based P2P live streaming system, with a discrete-event P2P
simulator that supports various peer dynamics. The streaming
protocol is based on a representative P2P streaming systems,
UUSee [28], while credit transfers are enabled together with
content downloads. The overlay topologies used are all scale-
free. The number of neighbors of a peer follows a Power-law
distribution, 𝑃 (𝐷) ∼ 𝐷−𝑘, where the fraction 𝑃 (𝐷) of nodes
in the system have 𝐷 neighbors, and the shape parameter is
𝑘 = 2.5. Average number of neighbors is 20. Credit transfer
probabilities to neighbors are decided by their data chunks
availability during streaming.

We configure the credit earning and spending rates into two
cases: (1) symmetric utilization with �⃗� = {1, 1, ..., 1}; (2)
asymmetric utilization. In our default setting, initial wealth
at each peer is 𝑐 = 100. We first fix the network size to 1000,
and then investigate networks with dynamic peer joins and
departures. Uniform chunk pricing is used by default, at 1
credit per chunk.

A. Convergence of Credit Distribution

We first investigate whether a stable state of the credit queue
length distribution can be reached with 𝜆𝑖 ≤ 𝜇𝑖 at each peer
𝑖, under symmetric utilization.

Fig. 5 and 6 plot the distribution of credits at the early
stage (0− 20000 seconds) and the later stage (20000− 40000
seconds) of the experiment, respectively. Each curve in each
figure plots the credit distribution at one selected time. In
Fig. 5, the flatter curves correspond to earlier times, while the
more steeper ones represent later times. Compared to Fig. 5,
the curves in Fig. 6 largely overlap, revealing the convergence
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Fig. 6. Credit distribution in the later stage.
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Fig. 7. Evolution of Gini index at �⃗� = {1, 1, ...1}.

of the credit distribution over time. This validates our analysis
in Sec. IV that the distribution of queue lengths stabilizes with
the evolution of the system.

To show the existence of stable state from another perspec-
tive, we plot in Fig. 7 the Gini index of the credit distribution
over time, with different settings of average peer wealth (equal
to the amount of initial credits per peer). We observe that the
Gini index always converges, regardless of the initial credit
amount.

B. Impact of Average Wealth

Under the same basic setting from Sec. VI-A, we investigate
the impact of 𝑐 on the skewness of the credit distribution.

First, with symmetric utilization with �⃗� = {1, 1, ...1}, Fig. 7
depicts the evolution of the Gini index over time, for different
average wealth 𝑐. Besides the convergence of the Gini index
over time, it also shows that the larger the average wealth,
the larger the Gini index, consistent with our observation in
Sec. V-B3.

With an asymmetric utilization, Fig. 8 depicts the evolution
of the Gini index over time, at different values of 𝑐. In all
cases, the stable state is reachable, and the larger 𝑐 is, the
larger the stabilized Gini indices are.

C. The Role of Taxation

Taxation is a common measure in the field of economics, for
balancing resource allocation [33]. We next explore its impact
on the credit distribution. For a peer with a wealth above a
given tax threshold, the system collects a fixed proportion of its
income. Whenever the system has collected 𝑁 units of credits,
it returns a unit to each peer. We adapt the configuration of
asymmetric utilization where the risk of condensation is high.
Average wealth is set to 𝑐 = 100. We explore whether and
how the tax rate and tax threshold have impact on credit
condensation.

Fig. 9 plots the Gini index of credit queue length, from
which we note three observations. First, introducing tax can
prevent the system from evolving towards serious skewness
of credit distribution. Second, increasing the tax threshold can
reduce the Gini index of credit distribution. Third, when the
threshold is far smaller than the average amount of credits
(50 vs. 100), the curves for tax rate of 0.1 and 0.2 are

almost overlapping. This suggests that increasing tax rate can
not effectively help the poor when the threshold is too low.
When the tax threshold is close to average wealth instead (80
vs. 100), increasing tax rate can effectively redistribute wealth.

D. Dynamic Peer Spending Rates

We now consider a practical case not covered in our
analysis: we allow a peer 𝑖 to dynamically adjust its maximum
spending rate 𝜇𝑖 according to its instantaneous credit amount.
When the amount is above a threshold 𝑚, it acts more
aggressively by increasing its spending speed; otherwise, it
sticks to an initial value 𝜇𝑠

𝑖 . In particular, 𝜇𝑖 is adjusted
according to:

𝜇𝑖 =

{
𝜇𝑠
𝑖𝐵𝑖

𝑚 if 𝐵𝑖 > 𝑚
𝜇𝑠
𝑖 if 𝐵𝑖 ≤ 𝑚

.

Fig. 10 shows that the stabilized Gini index of credit
distribution, under dynamic spending rates, is smaller than that
with fixed spending rates. This suggests that allowing peers to
dynamically adjust their spending speed is generally beneficial
for mitigating credit condensation.

E. Impact of Peer Dynamics

We next examine the impact of peer dynamics on the
equilibrium and skewness of credit distribution. Upon joining
the overlay, a peer is assigned with 𝑐 credits; upon departure,
it takes away its credits in possess. Therefore, the system
studied here corresponds to an open Jackson network, and
provides complementary results to the results obtained on
closed queueing networks we have obtained so far.

Different from the static network case, the peer queues do
not have a stable state in dynamic networks. Nonetheless,
the figures in Fig. 11 reveal that the Gini indices of credit
distribution still converge into a small range over time, i.e.,
the credit distribution is pursuing the “equilibrium” state.

Fig. 11 plots the evolution of the Gini index of the credit
distribution under different dynamics settings. In Fig. 11 (1),
the size of the overlay (1000) is maintained overtime with
peer dynamics, by keeping peer arrival rate× peer lifespan =
expected size of the overlay. We observe that the Gini indices
in dynamic overlays are typically smaller than those in a static
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Fig. 11. Impact of dynamics on the skewness of credit distribution: (1) with fixed overlay size; (2) with fixed mean peer lifespan; (3) with fixed peer arrival
rate.

overlay, as peers may have departed from the system before
having a chance to accumulate an excessive amount of credits.

In Fig. 11 (2) and (3), we fix the average peer lifespan
and arrival rate, respectively. From (2), we observe that the
skewness of the credit distribution does not change much
with different peer arrival rates. From (3), we observe that
the skewness increases when peer lifespan is longer. This
shows that when the arrival rate is moderate (in contrast to
bulk arrival), increasing arrival rate has little impact on credit
condensation. However, increasing peer lifespan allows a rich
peer to become richer progressively. Overall, we conclude that
the phenomenon of wealth condensation follows similar rules
in a dynamic network (open queueing network) as in a static
network (closed queueing network).

VII. CONCLUDING REMARKS

This paper focuses on the wealth condensation phenomenon
in credit-based P2P content distribution systems. We study
whether and how a P2P system with virtual currencies can
sustain healthy wealth and data circulation. Our contributions
are three fold. First, we propose a novel, queueing network
based model to characterize credit circulation in P2P markets.
Second, we provide theoretical analysis on the occurrence of
condensation and its relation to key P2P network parameters.
Third, we perform extensive simulation studies on such rela-
tions and derive further insights. We summarize our findings
to conclude the paper:

Average Wealth. The average peer wealth level turns out to
directly affect the occurrence of condensation and the speed
of condensation. In a practical system, injecting too many
credits into the network may increase the skewness of wealth
distribution.
Credit Spending. The threshold for average wealth that leads to
condensation depends on the maximum rate peers are willing
to spend credits. Therefore, in practical system design, encour-
aging aggressive credit expenditure is a possible measure to
prevent credit condensation.
Taxation. Applying income tax may mitigate condensation,
with appropriately set tax threshold and rate. However, in
practice one needs to consider the added system complexity
and the side effect on the motivation of sharing.
Pricing Mechanism. We observe that pricing policies at peers
do affect the occurrence of credit condensation. However, a
detailed characterization of non-trivial pricing mechanisms,
e.g., pricing through auctions, is beyond the scope of this
first attempt to explore the sustainability of credit-based P2P
system. We plan to study it in future work.
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