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Tumour Suppressive Function and Modulation of
Programmed Cell Death 4 (PDCD4) in Ovarian Cancer
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Department of Obstetrics & Gynaecology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong

Abstract

Background: Programmed cell death 4 (PDCD4), originally identified as the neoplastic transformation inhibitor, was
attenuated in various cancer types. Our previous study demonstrated a continuous down-regulation of PDCD4 expression
in the sequence of normal-borderline-malignant ovarian tissue samples and a significant correlation of PDCD4 expression
with disease-free survival. The objective of the current study was to further investigate the function and modulation of
PDCD4 in ovarian cancer cells.

Principal Findings: We demonstrated that ectopic PDCD4 expression significantly inhibited cell proliferation by inducing
cell cycle arrest at G1 stage and up-regulation of cell cycle inhibitors of p27 and p21. Cell migration and invasion were also
inhibited by PDCD4. PDCD4 over-expressing cells exhibited elevated phosphatase and tensin homolog (PTEN) and inhibited
protein kinase B (p-Akt). In addition, the expression of PDCD4 was up-regulated and it was exported to the cytoplasm upon
serum withdrawal treatment, but it was rapidly depleted via proteasomal degradation upon serum re-administration.
Treatment of a phosphoinositide 3-kinase (PI3K) inhibitor prevented the degradation of PDCD4, indicating the involvement
of PI3K-Akt pathway in the modulation of PDCD4.

Conclusion: PDCD4 may play a critical function in arresting cell cycle progression at key checkpoint, thus inhibiting cell
proliferation, as well as suppressing tumour metastasis. The PI3K-Akt pathway was implied to be involved in the regulation
of PDCD4 degradation in ovarian cancer cells. In response to the stress condition, endogenous PDCD4 was able to shuttle
between cell compartments to perform its diverted functions.
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Introduction

PDCD4 was originally identified as the neoplasmic transforma-

tion inhibitor in the JB6 mouse epidermal cell line model [1].

PDCD4 transgenic mice showed lower tumour incidence and

papilloma-to-carcinoma conversion frequency [2]. Later reports

have implied PDCD4’s inhibitory role on protein translation

through inhibition of eukaryotic initiation factor 4A (eIF4A)

helicase, as well as interfering with the association of eIF4A with

eIF4G, resulting in the failure of formation of translation initiation

complex [3,4,5]. Since then, several studies have been conducted

to investigate the role of PDCD4 during tumourigenesis. PDCD4

was found to be capable of regulating transcription. Over-

expression of PDCD4 resulted in suppressed carcinoid cell

proliferation through repressing the transcription of the mitosis-

promoting factor cyclin-dependent kinase (CDK)1/cdc2 via up

regulation of p21Waf1/Cip1 [6,7]. PDCD4 inhibited colon cancer

cell invasion through suppressing mitogen-activated protein kinase

kinase kinase kinase 1 (MAP4K1), leading to suppressed AP-1

dependent transcription [8]. The role of PDCD4 in cell apoptosis

has also been investigated in different studies. PDCD4 was

suggested to be a proapoptotic molecule involved in transforming

growth factor beta-1 (TGF beta-1) induced apoptosis in hepato-

cellular carcinoma (HCC) [9]. Diminished PDCD4 expression

deregulated the normal DNA-damage response, thus preventing

DNA-damaged cells from undergoing apoptosis [10].

Despite the tumor suppressor properties mentioned above, the

role of PDCD4 in tumor progression has been suggested to be cell

type specific [11]. Over-expression of PDCD4 had no effect on

either proliferation or apoptosis in HEK293 cells [12], as well as in

RKO colon cancer cells [8]. Previous studies reported the depleted

PDCD4 expression in cancer compared with normal tissues

[13,14,15], and PDCD4 was targeted for degradation during

tumour promotion [16], however, the mechanisms for the

modulation of PDCD4 was not clear yet.

The investigations on the role of PDCD4 in ovarian cancer

carcinogenesis were rather limited. According to our previous

findings, loss of PDCD4 expression was found in the borderline

and malignant ovarian tissue samples, and associated with an

adverse disease outcome [17]. To further investigate the role of

PDCD4 in ovarian cancer, in the current study, we examined the

potential tumour suppressor functions of PDCD4 in ovarian

cancer cells, and the plausible mechanism that regulates PDCD4.
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Results

PDCD4 inhibited ovarian cancer cell proliferation and cell
cycle progression

To investigate the function of PDCD4 in ovarian cancer, two

PDCD4 over-expressing stable clones 433-PDCD4c1 and 433-

PDCD4c2, were established in ovarian cancer cell OVCA433.

One PDCD4 over-expressing stable clone SKOV3-PDCD4, was

established in ovarian cancer cell SKOV3 (Figure 1A). The

establishment of PDCD4 over-expressing stable clones was

indicated by the extra band compared with parental cells. pEGFP

over-expressing stable clones (433-EV and SKOV3-EV) were also

established as the empty vector control and used in the following

experiments. The quantification of the western blotting bands was

presented in Data S1.

Cell proliferation was assessed by XTT and clonogenic assay.

According to the XTT results, both of the two OVCA433-PDCD4

cells exhibited significantly slower proliferation rate compared to

the control (p,0.05 for OVCA433-PDCD4c1 and p,0.01 for

OVCA433-PDCD4c2, respectively, Figure 1B, left panel). Clono-

genic assay also indicated similar results: the numbers of colonies

formed for OVCA433-PDCD4c1 and c2 were 33% and 58% less

compared to the control (GFP only empty vector control),

respectively (p,0.05, Figure 1B, right panel).

To explore the underlying mechanisms for the inhibitory effects

of PDCD4 on ovarian cancer cell proliferation, we assessed the

effect of PDCD4 on cell cycle progression using flow cytometry

analysis. In control OVCA433, the percentage of cells in G1 stage

was 69.9% (63.1%). Comparatively, the percentages of cells in G1

stage were 84.6% (62.1%) and 80.9% (62.2%) for OVCA433-

PDCD4c1 and c2 respectively, both of which were significantly

higher than control (p = 0.004 and P = 0.01, respectively). There

was a corresponding decrease of the percentage of cells in the

S stage in the OVCA433-PDCD4c1 (10.3%62.4%) and c2

(15.7%62%)) compared to control (25.9%62.1%, Figure 1C).

Over-expression of PDCD4 in SKOV3 also affected its cell

cycle progression. In the control SKOV3 cells, the percentage of

the cells in G1 stage was 37.5% (62%). Comparatively, in

SKOV3-PDCD4 cells, the percentage of cells in G1 stage was

66.7% (61.8%), which was significantly higher than control

(p = 0.008). There was a corresponding decrease of the percentage

of cells in the S stage in SKOV3-PDCD4 cells (20.9%62.5%)

compared to control (46.2%61.9%).

The flow cytometry analysis indicated that over-expression of

PDCD4 induced cell cycle arrest mainly at G1 stage; 1.2

(p, = 0.01) and 1.8 (p,0.01) fold increase in the percentage of

the cells at G1 stage in OVCA433-PDCD4 and SKOV3-PDCD4

ovarian cancer cells, respectively (p, = 0.01).

To identify potential molecules involved in the above inhibitory

effects of PDCD4 on cell cycle progression, we assessed the

expressions of several cell cycle regulators including p21, p27, p53,

cyclinA, cyclinE, cdc25a. In OVCA433-PDCD4c1 and c2, p53

expression was barely changed and p21 was significantly up

regulated, whereas in p53-null SKOV3-pdcd4 cells, p21 was not

detected. P27 expression was up regulated in both OVCA433-

PDCD4 and SKOV-PDCD4 cells. In addition, we observed an

increase of cdc25a expression in the two 433 PDCD4 over-

expressing stable clones, and an increase of cyclinA expression in

433 PDCD4 c2 but not in c1 (Figure 1D). However, only a slightly

decrease of cdc25a was observed in SKOV-PDCD4 cell, and

cyclinA level was remained the same in both stable clone and

vector control of SKOV3 cells. The quantification of the western

blotting bands was presented in Data S1.

PDCD4 inhibited ovarian cancer cell migration and
invasion

To explore the possible effects of PDCD4 on ovarian cancer cell

migration, two different approaches were applied. Firstly, wound

healing assay was used to monitor the time required for the closing

of the wound in control and PDCD4 over-expressing ovarian

cancer cells. Prior to the assay, cells were pre-treated with

mitomycin C, a DNA synthesis and nuclear division inhibitor, to

ensure the closure of the wound was exclusively due to cell

migration but not cell proliferation. The results showed that

PDCD4 over-expressing cells exhibited slower migration rate. The

scratched wound in both control cells was closed in 23 hours after

the introduction of the wound, whereas a gap was still observed in

the PDCD4 over-expressing cells (Figure 2A).

To quantitatively assess the cell migration rate, transwell

migration assay was applied. OVCA433-PDCD4c1 and c2

showed 35% and 63% less migration, respectively, than that of

control cells (p,0.01 Figure 2B). SKOV3-PDCD4 cells showed

22% less migration than that of control cells (p,0.05, Figure 2B).

PDCD4 also has effect on ovarian cancer cell invasion

demonstrated by transwell invasion assay. OVCA433-PDCD4c1

and c2 showed 27% and 30% less invasion compared to control

(p,0.05 Figure 2C). SKOV3-PDCD4 showed 19% less invasion

compared to control (p,0.05, Figure 2C).

Modulation of PDCD4
PDCD4 was reported as a translation inhibitor. As protein

translation could be stimulated by serum and inhibited when cells

were starved in the absence of growth factors, we thereby

examined the effects of serum on the abundance of PDCD4.

Both OVCA433 and SKOV3 were starved in serum free medium

for 48 hours before serum was re-admitted at indicated time

intervals, including 1 h, 2 h, 6 h and 24 h. In both cells, PDCD4

was elevated when starved. However, upon the re-administration

of serum, PDCD4 gradually decreased in a time dependent

manner in SKOV3 and rapidly disappeared within 1 h in

OVCA433 (Figure 3A). The quantification of the western blotting

bands was presented in Data S2.

To explore the potential pathways involved in the modulation of

PDCD4 in above treatment, the expressions of PTEN, p-Akt and

p-ERK (extracellular signal-regulated kinase) were examined.

PTEN was elevated after the serum was removed, and there was

no further change after re-addition of the serum till up to 24 h.

There was a significant decrease of p-Akt when serum was

removed in both OVCA433 and SKOV3 cells, followed by

resumption at 6 h after serum re-addition in OVCA433. In

SKOV3, the recovery of p-Akt was as fast as 1 h. A slight decrease

of p-ERK was observed in both cells in the absence of serum, and

a further reduction was also observed in both cells when serum was

re-admitted for 1 h. The expression of p-ERK was resumed after

2 h of serum administration and gradually reached to the original

level at 24 h. No profound change was observed in either total Akt

or ERK (Figure 3A).

To confirm the potential involvement of PI3K-Akt and MEK-

ERK pathways in the regulation of PDCD4, Specific PI3K

inhibitor LY294002, and MEK inhibitor U0126 were introduced

to the starved cells together with serum and incubated for 2 h and

4 h after 48 hours’ starvation treatment. When p-Akt was

specifically down regulated upon the treatment of LY294002,

the depletion of PDCD4 was prevented (Figure 3B). However, the

administration of U0126 did not exhibit any effect on the

prevention of PDCD4 degradation (Figure S1). In addition, when

proteasome inhibitor MG132 was introduced to the starved cells,

the depletion of PDCD4 was also prevented (Figure 3B). No effect

Function and Modulation of PDCD4 in Ovarian Cancer
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Figure 1. PDCD4 inhibited cell proliferation and cell cycle progression through up regulation of p21 and p27. (A) PDCD4 over-
expressing stable clones 433-PDCD4c1, 433-pdcd4c2, and SKOV3-PDCD4, were established in ovarian cancer cells OVCA433 and SKOV3. 433-EV and
SKOV3-EV: GFP over-expressing empty vector stable clones for control. (B) 433 PDCD4c1 and 433 PDCD4c2 exhibited significant slower proliferation
rate compared with control (*p,0.01 and **p,0.05, respectively) according to XTT (left panel) and clonogenic assay (p,0.05) (right panel). (C)
PDCD4 induced cell cycle arrest at G1 stage. Representative data are from one of the three independent experiments. The percentages of cells that
were in G1 stage for OVCA433 c1 and c2 were 84.6% (62.1%) and 80.9% (62.2%), respectively. Both were significantly higher compared with control
(69.9%63.1%) (p = 0.004 and P = 0.01, respectively). The percentage of cells that was in G1 stage for SKOV3-PDCD4 was 66.7% (61.8%), which was
significantly higher compared with control (37.5%62%) (p = 0.008). (D) PDCD4 over-expressing stable clones as well as control empty vector stable
clones were maintained in MEM with 10% FBS, and then harvested for protein extraction. Protein expressions of a panel of cell cycle regulators
including p53, p21, p27, cdc25a, cyclinA and cyclinE were analyzed. The intensity of the band was determined by densitometric scanning. The
quantification of the bands was presented in Data S1. GAPDH was included as internal loading control. Three independent experiments were
performed.
doi:10.1371/journal.pone.0030311.g001
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Figure 2. PDCD4 inhibited ovarian cancer cell migration and invasion. (A) Both control and PDCD4 over-expressing cells were treated with
mitomycin C (10 ug/ml) for three hours prior to introduction of the wound. Photos were taken at indicated time points (0, 5, 8 and 23 h). PDCD4
over-expressing stable clones exhibited slower wound healing process compared with the control. (B) Ovarian cancer cells were allowed to migrate
through the microporous membrane for 9 hours in transwell migration assay. The numbers of cells migrated through for PDCD4 over-expressing

Function and Modulation of PDCD4 in Ovarian Cancer
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was observed in DMSO control cells. Our results indicated that

the depletion of PDCD4 after the re-addition of serum in ovarian

cancer cells was due to the proteasome-mediated degradation. The

quantification of the western blotting bands was presented in Data

S2.

In the PDCD4 over-expressing ovarian cells, PTEN was up

regulated, and p-Akt and p-ERK was significantly down regulated,

whereas total Akt and ERK were not affected (Figure 3C). The

quantification of the western blotting bands was presented in Data

S2.

Intracellular translocation of PDCD4
Our previous immunohistochemistry study showed a differential

cellular localization pattern of PDCD4 between normal and

malignant ovarian cells [17], suggesting that PDCD4 might

translocate from the nucleus to the cytoplasm during ovarian

cancer development. Other study also demonstrated the intracel-

lular translocation of PDCD4 under some stress conditions [18].

We then investigated the endogenous PDCD4 localization in

ovarian cancer cells. Two ovarian cancer cell lines, OV2008 and

C13, have high expression level of the endogenous PDCD4, which

was found localized exclusively in the nucleus under normal

culture condition (Figure 4). After serum starvation treatment for

48 hours, the endogenous PDCD4 was found to be translocated

from nucleus to the cytoplasm (Figure 4).

Discussion

A number of studies have reported the inhibitory effects of

PDCD4 on protein translation [19,20], and AP-1 dependent

transactivation [12,21]. Studies on PDCD4’s function on cell cycle

have generated inconsistent results. In breast cancer cells, PDCD4

caused an increased population in G0 to G1 phase without

affecting other phases of cell cycle suggesting a potential role in

apoptosis [22]. In Glioma cancer cells, PDCD4 delayed cell cycle

transition from G1-to-S phase [23]. Another group reported that

PDCD4 induced cells in both sub-G1 and G2-S phase, indicating

its effects on both apoptosis and cell cycle arrest [24]. However, in

colon cancer cells, PDCD4 did not alter cell cycle progression or

induce apoptosis [8]. In the current study, ectopic PDCD4

expression induced cell cycle arrest at G1 stage and consequently

suppressed ovarian cancer cell proliferation.

Figure 3. Involvement of p-Akt in the proteasome mediated degradation of PDCD4 during serum deprival-readdition treatment. (A)
OVCA433 and SKOV3 were deprived from serum (SD) for 48 hours before serum was re-administrated for 1 h, 2 h, 6 h and 24 h. There was a dramatic
increase of PDCD4 protein expression upon serum deprival treatment. PDCD4 rapidly disappeared after serum was re-administered. P-Akt and p-ERK
were down-regulated when serum was withdrawn and gradually resumed after serum was added back. Total Akt and ERK were not affected during
the treatment. (B) PDCD4 was elevated in serum deprived cells (SD) and depleted when serum was added back (SA, serum addition) for 2 and
4 hours. The administration of either proteasome inhibitor MG132 (S+MG132), or PI3K inhibitor LY294002 (S+LY294002) prevented the depletion of
PDCD4. DMSO was also included as control (S+DMSO). Negative control (2ve) indicated for cells cultured with medium containing serum. (C) The
expression of PTEN, p-Akt and p-ERK were altered in all PDCD4 over-expression stable clones, whereas the expressions of total Akt and ERK remained
unchanged. Three independent experiments were performed. The quantification of the western blotting bands was presented in Data S2.
doi:10.1371/journal.pone.0030311.g003

stable clones were significantly fewer compared with control (*p,0.01 and **p,0.05, respectively). (C) Ovarian cancer cells were allowed to invade
through the ECMatrix for 72 hours in transwell invasion assay. The numbers of cells invaded through for PDCD4 over-expressing stable clones were
significantly fewer compared with control (*p,0.05). Experiments were performed in triplicate.
doi:10.1371/journal.pone.0030311.g002
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We assessed the expression of a panel of cell cycle regulators

that play important roles in G1-S transition in PDCD4 over-

expressing cells. PDCD4 induced the expression of p27 and p21,

but not the expressions of cyclin E. Our results were consistent

with the findings that knockdown of PDCD4 in AML cells resulted

in down regulation of p27 [25]; and the induction of p21 and p27

by PDCD4 [26]. The cellular effects of PDCD4 were suggested to

be different in cell models with or without p53 expression [10,27].

Two ovarian cell lines selected in this study have differential p53

status, OVCA433 bearing wild type p53, and SKOV3 being null

p53. Both cell lines had elevated p27 expressions upon

overexpression of PDCD4, and the up-regulation of p21 was not

mediated by p53 in OVCA433 cells. Similar findings have been

reported that induction of p21 by PDCD4 in carcinoid cells was

independent of p53 [7]. Our findings implied that one of the

potential mechanisms for the induction of cell cycle arrest at G1

stage by PDCD4 was due to the up regulation of p21 and p27. We

noticed that there was no difference in cyclin A or cdc25a

expressions between stable clone and empty vector control in

SKOV3 cell lines. However, for OVCA433 cells, we observed an

increase of cdc25a expression in the two PDCD4 over-expressing

stable clones, and an increase of cyclin A expression in 433

PDCD4 c2 but not in c1. The differential expression of cyclin A

may be due to the different proliferative and clonogenic activities

of PDCD4-expressing clone c1 and c2. Nevertheless, the effects of

PDCD4 on cyclin A and cdc25a would need further investigation.

Besides proliferation, we also demonstrated the inhibitory effects

of PDCD4 on ovarian cancer cell migration and invasion. Similar

effects have also been reported in studies conducted in colon and

HCC cells [8,20,28]. PDCD4 was found to be induced upon the

treatment of pro-apoptotic substances [29,30]. Investigations on its

role in apoptosis have generated inconsistent results. PDCD4 has

been demonstrated to induce apoptosis in breast and lung cancer

cells [22,26] In contrast, no apoptotic effect of PDCD4 was

observed in other studies [8,12]. Additionally, higher PDCD4

expressions were reported to be correlated with increased

sensitivity to geldanamycin and tamoxifen [31]. Moreover, a

recent study conducted in prostate cancer cells suggested an

increased cisplatin and paclitacel sensitivity by over-expression of

PDCD4 [32]. In the present study, overexpression of PDCD4 did

not induce apoptosis according to flow cytometry and western blot

assay through PARP expression (Figure S2). We also assessed the

potential role of PDCD4 on cisplatin sensitivity. However, no

significant difference was observed between PDCD4 over-

expressing cells and the control cells in response to cisplatin

treatment (Figure S2), which was consistent to our previous

published data that no correlation of PDCD4 expression with

chemosensitivity status of ovarian cancer patients was observed

[17]. Given that the mechanism for cisplatin to kill cancer cells is

to initiate cell apoptosis, and PDCD4 showed no apoptotic effect

in ovarian cancer cells, this might be one of the reasons

contributing to the above-mentioned observation.

Figure 4. Intracellular translocation of PDCD4 under normal and serum-free culture medium. Endogenous PDCD4 in both OV2008 and
C13 ovarian cancer cells was localized exclusively in the nucleus when cultured in medium with serum. More cytoplasmic localization of PDCD4 was
observed under serum starvation treatment. Endogenous PDCD4 was detected by immunofluorescent staining using PDCD4 primary antibody and
FITC-labeled goat anti-rabbit secondary antibodies. Dapi staining indicated nuclear localization. Representative translocation was indicated by arrows.
doi:10.1371/journal.pone.0030311.g004

Function and Modulation of PDCD4 in Ovarian Cancer
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As noted from our results, the magnitude of suppression of

ovarian cancer cell proliferation, migration and invasion was not

in proportion to the over-expression levels of PDCD4 protein in

those stable clones. Similar findings were also reported in the study

conducted by Yang et al. in mouse epidermal JB6 RT101 cells

[21]. We proposed that there might be a concentration threshold,

when exceeded, the inhibitory function of PDCD4 on tumor

progression would occur. According to our flow cytometry

assessment, over-expression of PDCD4 in both OVCA433 and

SKOV3 cells induced cell cycle arrest at G1 stage. However,

although a suppressive effect on cell proliferation and colony

formation was observed in PDCD4 over-expressing SKOV3 cells,

the effect was not statistical significant when comparing to the

parental control cells (Figure S3). Whether it was due to the

genetic background of SKOV3 cells or the involvement of other

mechanisms and factors were currently not clear and required

further investigation.

The observations of the down-regulation of p-Akt and p-ERK

in PDCD4 over-expressing cells suggested a potential involvement

of p-Akt and p-ERK pathways in the regulation of PDCD4. To

address the question that whether these two pathways are actually

involved, we proceeded to study the concurrent expressions of p-

Akt, p-ERK and PDCD4 during the serum withdrawal and re-

addition treatment. There was a dramatic increase of PDCD4

upon serum withdrawal, followed by rapid depletion of PDCD4

after serum was re-administered. During the same process, a

reverse trend of the expression of both of p-Akt and p-ERK, the

two important cell proliferation regulatory molecules, was

observed: an initial decreased expression followed by a gradual

resumption. The alteration of p-Akt and p-ERK might be simply

the consequences of serum deprival treatment. And still, given the

concurrent changes of the expressions of PDCD4 and p-Akt and

p-ERK, and the altered expression level of both molecules

observed in the PDCD4 over-expressing cells, there is a possibility

that p-Akt and p-ERK pathways was involved in the regulation of

PDCD4. To further confirm it, we applied PI3K inhibitor

LY294002 (which subsequently blocks Akt phosphorylation)

together with serum, and found PDCD4 protein was no longer

degraded. Introduction of MEK inhibitor did not prevent the

depletion of PDCD4. Our results indicated that p-Akt but not p-

ERK was required for the degradation of PDCD4 upon serum

stimulation, and thus PI3K-Akt pathway might play a direct role

on the modulation of PDCD4 degradation in ovarian cancer cells.

However, the involvement of p-ERK pathway is not clear at the

present and required further investigation. There have been

studies reporting the p-Akt pathway on the regulation of PDCD4.

Dorrello’s study implicated the role of S6K1 in the regulation of

PDCD4 degradation in response to mitogen [23]. Treatment with

tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)

decreased PDCD4 expression, which was attributable to protea-

somal degradation mediated by PI3K-Akt-mTOR-p70S6K and

facilitated by MEK-ERK signaling pathway [16]. An inverse

correlation of PDCD4 and p-Akt expression has been reported in

colorectal cancer tissue samples [33]. shRNA PDCD4 activated

Akt pathway, leading to the increased expressions of p-Akt,

mTOR and p70S6K in the lungs of mice [34]. Our results were in

concordance to these findings and implied the involvement of p-

Akt pathway in the regulation of PDCD4 in ovarian cancer cells.

Combining the phenomenon that down-regulation of p-Akt

expression was observed in PDCD4 over-expressing cells, and the

fact that blocking of p-Akt by PI3K inhibitor prevented the

degradation of PDCD4 during the serum starvation and re-

addition process, we proposed a potential feedback control of

PDCD4 through p-Akt pathway: establishment of PDCD4 over-

expressing stable clones could only be achieved when degradation

of PDCD4 was inhibited, which required suppression of p-Akt

expression (Figure 5). However, the potential mechanisms

mediating this feedback control and molecules involved have not

been identified and further investigations are required.

Our current results demonstrated a translocation of endogenous

PDCD4 from nucleus to cytoplasm upon serum starvation. We

hypothesized that PDCD4 might shuttle to the cytoplasm to

exhibit its inhibitory function in protein translation when cells

were under unfavorable growth condition. According to our

previous findings, a differential localization of PDCD4 was

observed between normal and malignant ovarian tissue samples:

more cytoplasmic localization of PDCD4 was observed in ovarian

cancer tissue samples [17]. When tumour grows, there may be

some regions where the oxygen concentration is significantly lower

than that in the normal tissues, and tumour cells are under a

hypoxic stress. One hypothesis is that in these cells, PDCD4 may

shuttle to the cytoplasm to inhibit translation and subsequently cell

growth. On the whole, PDCD4 functions as tumor suppressor in

the nucleus in normal cells, however, when cells were under

certain environmental stress or undergoing potential transforma-

tion from normal to malignant, one of the cellular response might

be transporting PDCD4 to the cytoplasm. This renders the

localization of PDCD4 as an indicator of cells under abnormal

growth environment or neoplasmic transformation. Nevertheless,

the translocation mechanism of PDCD4 is still not yet clear and

the hypothesis needs to be further evaluated.

Materials and Methods

Cell culture, serum starvation treatment and drug
treatment

Ovarian cancer cell lines OVCA433 and SKOV3 used in this

study were gift from Prof. SW Tsao, Department of Anatomy, the

University of Hong Kong. Ovarian cancer cell lines C13 and

OV2008 were gift from Prof. BK Tsang, Department of Obstetrics

and Gynaecology, University of Ottawa, Canada. These cell lines

Figure 5. Involvement of p-Akt pathway in the modulation of
PDCD4. Elevated PTEN and suppressed p-Akt were found in the
PDCD4 over-expressing stable clones. When cells were starved with
serum-free medium, PDCD4 was un-phosphorylated due to suppressed
p-Akt expression. Un-phosphorylated PDCD4 was not recognized by
proteasome thus leading to the accumulation of PDCD4. When serum
was re-administrated to the cells, up-regulated p-Akt phosphorylated
PDCD4, which was then depleted through proteasome degradation.
The administration of either PI3K inhibitor LY294002, capable of
preventing PDCD4 from being phosphorylated by p-Akt, or proteasome
inhibitor MG132, preventing the depletion of PDCD4, leading to the
accumulation of PDCD4.
doi:10.1371/journal.pone.0030311.g005
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were cultured in MEM, with 10% Fetal Bovine Serum (Invitrogen

Corporation, Carlsbad, CA).

Cells under serum starvation treatment were cultured in

MEM without FBS. Phosphoinositide 3-kinase (PI3K) inhibitor

LY294002 (Cell Signaling Technology Inc., Danvers, MA), MEK

inhibitor U0126 (Cell Signaling), proteasome inhibitor MG132

(Cell signaling) were dissolved in DMSO (Sigma Co., St. Louis,

MO) and further diluted before introduced to cells. Medium with

DMSO alone was also included as the control.

Antibodies and western blot analysis
Protein extraction and western blot methods were the same as

previously described [17]. PDCD4 antibody was from Rockland

(Rockland immunochemicals, Gilbertsville, PA); antibodies of p21,

cyclinA, cyclinE and p53 were from Santa Cruz; antibodies of

PTEN, p-Akt, Akt, p-ERK, ERK, p-JNK, JNK, cdc25a, mTOR

were from cell signaling; antibody of p27 was from BD

Transduction laboratories.

Construction of PDCD4 cDNA expression vector
PDCD4 full-length cDNA was amplified by PCR using Human

PDCD4 cDNA clone (OriGene Technologies, Inc., Rockville,

MD) (genebank accession number NM_014456.3) as the template

and the following primer pairs 59 gaattccATGGATGTA-

GAAAATGAGCAGA 39 (sense) and 59 gtcgacTCAGTAGC-

TCTCTGGTTTAAGA 39 (antisense), which contained ECORI

and SalI restriction enzyme sites. A 1.5-kb, full-length PDCD4

PCR product was then cloned in frame, into pEGFP-C1 (Clontech

laboratories, Mountain View, CA).

Establishment of PDCD4 over- expressing stable clones
PDCD4 plasmid or GFP-C1 vector was transfected into

OVCA433 and SKOV3 ovarian cancer cells using FUGENE

HD transfection reagent (Roche molecular biochemicals, Manni-

heim, Germany) according to the manufacturer’s protocol. Cells

were then harvested for western blot analysis or assay. For PDCD4

and GFP empty vector stable clone development, cells were

further treated with geneticin (G418) (Gibco) for two weeks until

single colonies could be picked and established stable clones were

further assessed and confirmed by western blot.

Cell proliferation assay
Cell proliferation was assessed by both XTT and clonogenic

assay. XTT assay (Roche) was performed according to the

manufacturer’s protocol. Briefly, 1000 cells were seeded in 96-well

plate and treatment was initiated on the next day. Cells were

further cultured and harvested on four consecutive days.

Harvested cells were incubated with XTT labeling mixture for

4 hours. The absorbance was quantitated by fluorescence

microplate reader (Infinite F200, Tecan Group Ltd., Männedorf,

Switzerland).

Clonogenic assay was used to test cell viability over a relatively

longer period of time. Cells with or without cisplatin treatments

were seeded at a concentration of 450 cells per well in 6-well plates

and allowed to grow for 9 days. Cells were fixed with 70% ethanol

and stained with 1% Giemsa (Merck). Colonies consisting of more

than 50 cells were counted.

Cell cycle analysis by flow cytometry
Cells were harvested, washed and fixed in 70% ethanol at 4uC

overnight, followed by incubation with RNaseA (100 ug/ml)

(Roche) to remove RNA contamination. Propidium iodide

(Calbiochem, Merck Biosciences) was then added in and the

DNA contents and cell cycle distributions were analyzed using an

EPICS Elite ESP flow cytometer (Beckman Coulter Ltd.). The cell

cycle was analyzed by Winlist and cylchred software.

Wound healing assay, cell migration and invasion assay
Wound healing assay was used to assess the cell migration in

vitro. Cells were seeded and allowed to grow until 100%

confluence was reached. Mytomycin C (Sigma) was introduced

3 hours prior to the start of the assay to inhibit cell proliferation. A

wound was then generated by scratching a straight line. Cells were

washed to remove dislodged cells and mitomycin C-containing

medium was replaced with normal medium. Migration of cells into

denuded areas was monitored and visualized by a phase contrast

microscope.

To quantitatively assess cell migration rate, QCM 24-well

colorimetric cell migration assay kit (Millipore, Billerica, MA) was

applied according to the manufacturer’s protocol. Briefly, cells

were starved for 18 hours prior to the assay in serum-free MEM.

150,000 cells were added to the inner chamber and MEM with

10% FBS was added to the outside chamber. Cells were further

incubated for 9 hours. Cells migrated through were stained,

extracted and then measured at the optical density at 560 nm. The

CHEMICON Cell Invasion Assay Kit (Millipore) was used to

quantitatively assess cell invasion. Similar procedures were applied

and cells were allowed to invade through the chamber for

72 hours before harvested for analysis.

Immunofluorescent staining
Localization of endogenous PDCD4 was assessed by immuno-

fluorescent staining. Ovarian cancer cells OV2008 and C13 were

seeded on the sterile cover slip staged in a 6-well plate. After

attachment and treatment, cells were fixed in 4% paraformalde-

hyde (USB Corporation, cleverland, OH) in PBS (pH 7.4),

permeabilised in permeabilization solution (0.1% Triton X-100

in 0.1% sodium citrate, Sigma) and then blocked with 3% BSA in

PBS, followed by incubation with PDCD4 primary antibody

(1:500 dilution with PBS containing 3% BSA). FITC conjugated

AffiniPure Goat anti-rabbit IgG secondary antibody (Jackson

ImmunoResearch Laboratories Inc., West Grove, PA) was then

applied. Slides were then stained with Dapi and coverslips were

mounted with fluorescent medium VEITASHIELD (Vector

Laboratories Inc., Burlingame, CA) to preserve the fluorescent

signal. The localization of endogenous PDCD4 was visualized by

fluorescent microscope.

Statistical analysis
Three independent experiments were performed for each

analysis (including XTT, clonogenic assay, flow cytometry

analysis, migration assay, invasion assay and western blot). Data

collected from cell proliferation (XTT and clonogenic assays),

apoptosis and flow cytometry analysis was processed by Microsoft

Excel. Data was transformed into percentage control and

presented as mean6SEM (for flow cytometry analysis) or in

either bar (for migration and invasion assay) or line charts (for

XTT proliferation assay). Graph for clonogenic assay data was

constructed according to the actual colony numbers formed by the

end of the assay. Differences between groups were assessed by two-

tailed student t-test and were considered to be significant at

p,0.05.

Supporting Information

Figure S1 MEK inhibitor U0126 did not prevent PDCD4
degradation upon serum readdition treatment. PDCD4
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was elevated in serum deprived cells (SD) and depleted when

serum was added back (SA, serum addition) for 2 and 4 hours.

The administration MEK inhibitor U0126 (S+U0126) did not

prevent the depletion of PDCD4.

(TIF)

Figure S2 PDCD4 did not induce apoptosis or chemor-
esponse in ovarian cancer cells. PARP expression was

assessed by western blot in PDCD4 over-expressing stable clones

in ovarian cancer cells SKOV3 (SKOV3 PDCD4) and OVCA433

(c1 and c2) as well as control cells without (A) or with (B) cisplatin

treatment (15 uM, 48 h). Positive controls (+ve) were cells with

cisplatin treatment (15 uM, 48 h). Apoptosis was indicated by the

additional band (cleaved PARP) in addition to the full length

PARP. No difference on cleaved PARP was observed between

PDCD4 over-expressing stable clones and control cells either with

or without cisplatin treatment.

(TIF)

Figure S3 The effect of PDCD4 on cell proliferation of
SKOV3 ovarian cancer cells. A suppressive effect on cell

proliferation indicated by XTT assay (A) and colony formation

assay (B) was observed in PDCD4 over-expressing SKOV3 cells.

However, the effect was not statistical significant when comparing

to the parental control cells.

(TIF)

Data S1 Three independent experiments were per-
formed for all the western blot studies. The intensity of

the western blot band was determined by densitometric scanning.

The quantitative analysis of the western blot data for Figure 1A

and Figure 1C was presented in Data S1. Y-axis indicated the

relative band densities of the target proteins in PDCD4 over-

expressing stable clones compared with control (PDCD4 parental

cells or cells transfected with empty vector).

(DOC)

Data S2 Three independent experiments were per-
formed for all the western blot studies. The intensity of

the western blot band was determined by densitometric scanning.

The quantitative analysis of the western blot data for Figure 3A,

Figure 3B and Figure 3C was presented in Data S2. Y-axis

indicated the relative band densities of the target proteins in

PDCD4 over-expressing stable clones compared with control

(PDCD4 parental cells or cells transfected with empty vector).

(DOC)
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