
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 2,JUNE 2012 691

Three-Dimensional Model-Based Human
Detection in Crowded Scenes
Lu Wang and Nelson Hon Ching Yung,Senior Member, IEEE

Abstract�In this paper, the problem of human detection in
crowded scenes is formulated as a maximum a posteriori problem,
in which, given a set of candidates, prede�ned 3-D human shape
models are matched with image evidence, provided by foreground
extraction and probability of boundary, to estimate the human
con�guration. The optimal solution is obtained by decomposing
the mutually related candidates into unoccluded and occluded
ones in each iteration according to a graph description of the can-

I. I NTRODUCTION

AUTOMATED video surveillance of human objects has
many applications in intelligent transportation systems.

Monitoring pedestrian number and movement at road intersec-
tions provides useful information for the design of an adaptive
signal control system [12], in which motor vehicle delay should
be balanced with pedestrian delay in terms of their respec-
tive quantities. In addition, trajectory data obtained by human
tracking are needed by the studies of pedestrian ßows [31],
which can be used for human trafÞc prediction, transportation
infrastructure design, and evacuation control [29]. Furthermore,
human behavior understanding would be helpful for Þghting
crime and terrorism in transit systems, such as airports, subway
terminals, and bus stations [4].

Human detection, as a crucial step in the aforementioned ap-
plications, plays a vital role in automated human surveillance.
However, human detection is not a trivial task. The appearance
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of human objects varies due to many factors, including view-
point changes, lighting conditions, articulation, variations in
clothing, poor Þgure-ground contrast, background clutter, etc.
It becomes even more challenging in crowded scenarios where
human objects visually occlude each other prevalently.

Recently, many methods have been proposed for crowd
detection [2], [11], [14], [16], [26], [30], [34], [41], [42].
Most systems are based on 2-D template matching [2], [16]
or 2-D discriminative training [11], [14], [26], [30], [34], [41].
Two-dimensional methods require a large amount of templates
or training images to cover different postures and orientations.
Furthermore, 2-D methods have the problem that they are not
camera-angle invariant. If the camera parameters, e.g., swing
angle and tilt angle, become signiÞcantly different from the
assumed parameters, the system would fail, and new templates
or training images need to be collected. On the contrary, a 3-D
model-based approach does not have these problems. First, it
is view invariant, i.e., given the camera parameters, the shape
appearance of a human at any location within the image can be
reasonably predicted. Second, as postures of 3-D models are
easy to deÞne, it does not need exemplar/training images. Third,
a 3-D model-based approach can perform occlusion reasoning
naturally. Given a model on the 2-D image, its position in the
3-D world can be obtained, and hence, its distance to the camera
can be calculated. Then, based on the fact that the object nearer
to the camera occludes the one farther away from the camera,
the occlusion order between models can be determined.
Reference [42] is based on 3-D human shape models. However,
its proposed Markov chain Monte Carlo (MCMC) based
optimization method requires a signiÞcant amount of compu-
tation. What is more, in [42], human shape information is not
sufÞciently utilized in the interior foreground region, resulting
in a method that does not have enough discriminative power.

Considering the problems of the foregoing methods, this pa-
per proposes a Bayesian 3-D model-based approach for human
detection in crowded scenes, where computation and efÞciency
are balanced. In the proposed method, we assume that the
camera is Þxed and humans walk on a ground plane; therefore,
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limitation is obeyed. The image likelihood distribution is used
to measure how well the conÞgurations are consistent with the
foreground regions and the imageÕs gradient information.

To deal with occlusion, we perform occlusion compensated
model matching, which requires that the occluding objects
of the object in consideration have already been known. To
achieve this, we propose to estimate the human conÞguration
by an iterative process of candidate selection, candidate model
matching, and candidate validation and rejection. In candidate
selection, we select those unoccluded candidates or the can-
didates whose occluding objects have been identiÞed so that
model matching can be correctly performed. To this end, the
relationship among the multiple candidates is depicted using a
directed graph, and candidates are selected based on this graph.
For candidate validation and rejection, a minimum description
length (MDL)-based method is Þrst applied to reject those infe-
rior candidates, and then model matching qualities and modelsÕ
distances to the camera are compared to validate qualiÞed
candidates based on the argument that, generally, within a local
neighborhood, true human objects have better model matching
qualities than false objects, and unoccluded human objects have
better model matching qualities than occluded objects.

The proposed human conÞguration estimation procedure
balances between accuracy and computation. In each iteration,
because candidates that are mutually dependent are considered
simultaneously, wrong decisions that might be made by consid-
ering only one candidate at a time [2], [16], [41] can be avoided.
On the other hand, as only a small portion of the candidates are
considered, the computational cost is much lower than those
methods that consider all the candidates at the same time [11],
[26], [34], [42].

A problem with the 3-D model-based method is that the
model parameter space is quite large. To solve the problem,
we use a number of prototype 3-D models to approximate the
whole model space, and for each scene, a 2-D model shape hier-
archy is automatically constructed for efÞcient model matching.

The rest of this paper is organized as follows. In Section II,
we review related works about human detection and crowd
detection. Section III provides a theoretical formulation of the
proposed method. In Section IV, we introduce the proposed
optimization solution. In Section V, we demonstrate the per-
formance of the system with experimental results on two data
sets. Finally, we conclude this paper in Section VI.

II. RELATED WORK

To begin with, we brießy review techniques that aim at single
human detection. Then, we review those methods that aim at a
group of humans.

A. Single Human Detection

From the feature detection point of view, there are global and
local features that can be utilized for human detection. Global
image features such as the image gradient, or the binarized
edge, and image intensities are usually employed. References
[10] and [16] proposed to use distance transform (DT) to
match 2-D shape templates with image edges. In [22], image

intensity is combined with shape to enrich the representation of
pedestrians. A texture-based classiÞer, based on artiÞcial neural
networks, is then trained on the shape-normalized human fore-
ground to help discrimination. Global features are computed
quickly; however, 2-D template matching tends to produce false
alarms in heavily cluttered areas, whereas the texture-based
classiÞer is computationally demanding because the feature
(image intensity) itself is not sparse enough.

More works use statistics of the basic image features in
local image blocks. For instance, in [24], Haar wavelets are
extracted to represent local intensity differences at various
locations, scales, and orientations. In [36], use of AdaBoost
cascades to automatically select the most discriminative Haar-
like features was proposed, and the system is demonstrated to
be quite efÞcient compared with some other popular methods
[7]. In [5], densely calculated histograms of oriented gradients
(HOGs) that are able to capture edge or gradient structures
that are characteristic of the local shape and robust to location
variability of body parts is introduced. HOG has been proven to
be quite promising for human detection in many experimental
studies [6], [7], [39], and many improvement works based on it
have been proposed [15], [17], [25], [38], [43]. In [35], a new
type of features that are based on the covariance of basic image
features in blocks is proposed. Using LogitBoost classiÞcation
on Riemannian manifolds, this method obtained a 5% higher
detection rate on the INRIA data set than HOG. Some other
shape-based features, such as edgelet [40], shaplet [27], local
binary patterns (LBPs) [21], shape context (SC) [39], and adap-
tive contour features [9], have also been proposed for human
detection. In general, local features have higher discriminative
power and robustness than global features, which is paid for by
higher computational complexity.

Some methods combine global information with local fea-
tures to further improve detection performance and increase
robustness. In [14], local appearance information from image
patches is combined with global constraint from pedestrianÕs
silhouette for robust pedestrian detection. In [25], global seg-
mentation is used to verify object hypotheses generated by local
feature-based classiÞers. In [28], locally learned coarse shape
information is combined with the global restriction of regularity
and closure using Markov random Þeld for simultaneous human
detection and segmentation.

Most of the works described in the preceding paragraphs
focus on holistic full body detection [5], [10], [14], [21], [22],
[24], [25], [27], [28], [35], [36], [39]. To deal with posture
variation and body part deformations, part-based methods have
been proposed. Some methods [19], [20], [41] do the partition
of the whole body based on semantic body parts, such as head,
torso, and legs, and handle deformation by training part classi-
Þers separately and assembling their responses. The drawback
is that training data for each body part have to be manually
labeled. Therefore, some approaches [8], [17] were proposed
to select discriminative parts automatically through training.

However, without the explicit occlusion analysis, part-based
methods are still sensitive to occlusion. References [41] and
[38] proposed to use both full and part body detectors to cope
with occlusions. In [38], full body detector based on HOG
and LBP is Þrst applied, and the classiÞcation score of each
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Fig. 2. Various postures of the 3-D human models.

In addition, the model is allowed to have 12 orientations
(0� , ± 30� , ± 60� , ± 90� , ± 120� , ± 150� , and 180� , with 0�

corresponding to human facing the camera) and four scales
(corresponding to heights of 1.55, 1.65, 1.75, and 1.85 m,
respectively). The horizontal head torso deviation is deÞned
in the image space, and the discretization step is set to be
max(2, [Whead / 6]), whereWhead is the image head width.

B. Prior Distribution

We assume that the prior term in (2) is the product of the
prior probabilities of each individual modelmi and is de-
Þned as

P(� ) =
n∏

i=1

Ppenal (mi)Ppos(mi)Pdev (mi)Pheight (mi). (3)

Ppenal (mi) gives each modelmi in � a penalty according to
its real world positionL i, which in fact controls the minimum
visible area of the model and hence avoiding the number of
modelsn to be unreasonably large.Ppenal (mi) is deÞned as

Ppenal (mi) = � 1 exp (Š� (L i)) (4)

where� (L i) represents the minimum visible area of the model
and is tunable: If it is set larger, then less false alarms would be
produced whereas more missed detections may occur. We set
its default value to be the head area of a standard human model
located at positionL i. � 1 is a normalization constant that makes
Ppenal (mi) a probabilistic distribution function.

Ppos(mi) is the prior probability aboutmiÕs real world
position relative to the others (denoted asŠi ). It represents our
prior knowledge that two persons must keep a certain distance
away from each other in the real world and is given by

Ppos(mi) = P(L i|L Ši) = � 2f
(

min
j� 1,...,n,j�= i

|L i Š L j |
)

f (d) =
{

d/d min , if d � dmin

1, if d > d min
(5)

where dmin is the minimum distance required for any two
human objects and is set to be 0.2 m in this paper.

The third and fourth terms are aboutmi itself. Pdev (mi)
limits the headÕs horizontal deviation from the torso, describing
our common sense that human head tends to lean forward, but
not always leans left or right, and seldom leans backward. The
best distribution ofPdev (mi) should be learned from ground
truth data. However, because of the large amount of work
required by manual labeling, we only approximate it in this
paper. Suppose(xh, yh, zh) is the head centroid ofmi, and
(xt, yt, zt) is the torso centroid. With reference to the 3-D
coordinate system depicted in Fig. 1,Pdev (mi) is deÞned as in
(6), shown at the bottom of the page, whereRhead is the radius
of miÕs head in the real world, and� x = 2� y = 4Rhead .

The prior about the model heightPheight (mi) is used to
penalize very short or very tall heights and is approximated by

Pheight (mi) = � 4
1

1 +
∣∣∣Hm i Ša3

a1

∣∣∣2a2
(7)

whereHmi represents the real world height of modelmi. In
our experiment, parameters of the bell function are selected
such thatPheight (mi) for Hmi = 1.7 m is 1.0 and forHmi =
1.5 m or 1.9 m is 0.95.

C. Image Likelihood

Assuming the pixels are independent, the likelihood is de-
Þned as

P(I |� ) =
∏
p� If

P (p|� ) = exp


Š

∑
p� If

(1 Š L s(p)




= exp


∑

p� If

L s(p) Š area(I f )


 (8)

where I f is the foreground mask, andL s(p) is the shape
likelihood obtained by matching the visible part of the boundary
of mi with the foreground edge ifp belongs to the visible part
of mi; otherwise,L s (p) = 0.

IV. PROPOSEDSOLUTION

Given the problem formulation, in this section, we will intro-
duce the details of the proposed solution for optimization. As
shown in Fig. 3, given a video sequence, Þrst, we calculate the
camera parameters [13]. Then, for each frame, we extract the
foreground [37]. After that, human candidates are nominated by
a head detector and a foot detector, respectively. An iterative op-
timization procedure is then followed to Þnd the optimal human

Pdev (mi) =




� 3 exp
[
Š (xh Šxt )2

�2
x

]
exp

[
Š (yh Šyt )2

�2
y

]
, if 0 � xh Š xt � 2Rhead

and|yh Š yt| � Rhead

� 3 exp
(
Š 1

2

)
, otherwise

(6)
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Then, for each group, we construct a model shape hierarchy
based on shape dissimilarities measured by the chamfer dis-
tanceD between 2-D model boundaries.

For each group, given the models and their associated dissim-
ilarity matrix, the template hierarchy is established by agglom-
erative clustering, which stops when two clusters are left. For
each nonleaf node of the hierarchy, if models of the leaf nodes
below it areM 1, . . . , M n, the representative shape for this node
is selected as

M = arg min
Mj

(
max

i=1 ...n,i�= j
D(M i, M j)

)
. (16)

The seven hierarchies constitute the Þnal model shape hier-
archical tree with the root being empty.

For hierarchical model matching, when matching the Þrst
level of the hierarchical tree, all the possible scales and hori-
zontal head torso deviations are traversed, and the best matched
scale and head torso deviation are Þxed to that model, and
only the adjacent scales and deviations are searched when
matching models of lower levels. As in [32], at each level, the
maximum and minimum of the posterior, i.e.,Pmax andPmin ,
are computed, and a threshold is selected as

P� = Pmin + � (Pmax Š Pmin ) (17)

to discard the models that are not good enough. In our experi-
ment, we set� to be 0.3.

After the model matching, we Þnely tune the parameters for
the three best matched models and evaluate the posterior using
the foreground edge instead ofpb. As thepb magnitudes vary
over a wide range, which is caused by variations in illumination
and contrast between human objects and their background, this
procedure can be considered as contrast normalization. The
shape matching likelihoodL �

s(M j) calculated using foreground
edge is deÞned as

L �
s(M j) = 1 Š

1
�

√√√√ 1
NMbj, rem

∑
k� Mbj, rem

(min( dFE(k), � )) 2

(18)

wheredFE(k) is point kÕs nearest foreground edge point, and
� is an upper bound of the boundary pointÕs distance to the
edge point and is scale dependent, which is set to be the width
of the modelÕs head.

We also record the matched foreground edge points for each
model mi. Assuming that each edge point can only come
from one object, candidates that share a large percentage of
edge points cannot be validated at the same time. For the
same reason, edge points matched to the validated candidates
are not allowed to match with any other candidates in later
iterations.

As the subsequent candidate validation and rejection step
needs a value that indicates each candidateÕs model match-
ing quality, we deÞne the model matching score for each
model as

Sm(mi) = log ( Pheight (mi)Pdev (mi)) + L �
s(mi) (19)

where the prior termsPheight (mi) andPdev (mi) evaluate the
quality of the shape modelmi, andL �

s(mi) evaluates how well
mi matches with the foreground edge.

D. Candidate Validation and Rejection

Given the model matching results of the selected candidates,
we examine them for validation or rejection. To achieve this,
we Þrst reject the candidates that have unsatisfactory model
matching qualities and the candidates whose corresponding
image areas can be better explained by other candidates, and
then conÞrm the candidates that are less likely to be occluded
by any other candidates.

a) Consider Single Candidate’s Model Matching Quality:
For each candidateci that is selected, if its model matching
scoreSm(mi) is smaller than a thresholdST (set to be 0.4
in our experiment), or addingmi into � cannot increase the
posteriorP(� |I ), ci is rejected. This is to reject the model
mi that is either poorly matched in shape or just explains a
relatively small area of the foreground.

b) Consider Other Candidates’ Model Matching Quality:
For each remaining candidateci and the corresponding model
mi, the MDL principle is applied to evaluate if it should be
rejected. The evaluation is in terms of the savings that can be
obtained by rejectingci as follows:

Savi = SEi Š SEŠi + SMi

SEi = area(mi,rem ) (1 Š Sm(mi))

SEŠi = max
j,k�= i

∑
p� mi, rem

(1 Š max (Sm(mj , p), Sm(mk, p)))

SMi = � (L i) ·
1 Š area(mi � I occ)

area(mi)
(20)

wheremi,rem is miÕs intersection withI rem , SEi is the error
introduced by usingmi to explain mi,rem , and SEŠi is the
error introduced by combining two other candidates matched in
the current iteration to explainmi,rem . Sm(mj , p) = Sm(mj)
if p � mi,rem andSm(mj , p) = 0 otherwise.SMi is the cost of
the model. According to the MDL principle, ifSavi is positive,
ci is rejected. If two candidates can mutually explain each other,
then the candidate with larger saving is rejected.

c) Consider Candidates’ Occlusion Order:After rejecting
the candidates that are not good enough, we exclude the can-
didates that are likely to be occluded in terms of the remaining
maskI rem and then validate the remaining candidates. Specif-
ically, for any pair of intersected models, as they cannot be
unoccluded at the same time, we exclude the model that is likely
to be occluded according to the following rules.

1) If their distance to each other is smaller thandmin , or
their overlapping area is larger than 90% of the area of
the smaller model, their occlusion order is ambiguous.
To make the decision, we Þrst compare their posterior:
if oneÕs posterior is signiÞcantly larger than the other, the
one with the smaller posterior is excluded. The parameter
that indicates ÒsigniÞcantly largerÓ is learned through ex-
periments and is Þxed at 1.35 through all our experiments.
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Otherwise, we compare their shape matching scores cal-
culated by (19) and exclude that with the lower score.

2) Otherwise, the occlusion order is clear. The model that is
farther away from the camera is excluded.

The remaining candidates are then temporarily validated. To
ensure that edge points should not be shared among different
human objects, for every pair of remaining candidates, the ratio
of their shared edge points is calculated. If the ratio is higher
than a threshold (10% is used in the experiment to tolerate the
cases that would unlikely result in wrong decisions), only the
candidate that is nearer to the camera is validated.

After the validation, the candidates whose head centers are
inside the validated candidates are rejected, and all the related
quantities are updated. As the human model does not contain
arms and the items being carried, to avoid false alarms that
try to explain these unmodeled areas, the dilated area of each
validated model is used to updateI rem andI occ. The size of the
dilation structuring elementr se is tunable, and the largerr se is
relative to the scale, the less the false alarms would be produced,
whereas the more true human objects might be missed. We set
its default value to be a quarter of the modelÕs head width. The
foreground edge map is updated by removing the edge points
assigned to the validated candidates. Then, for thepbmap, the
boundary response whose nearest foreground edge point that
has been removed is set to be zero. The remaining foreground
pixels are reassigned to the remaining HCs probabilistically.

The entire optimization procedure is summarized below.

Algorithm: Optimization Algorithm

Given the candidate nominationCtotal and the foreground
maskI f ,

initialize � = � , I occ as empty (black image),I rem = I f ,
the validated candidates setCval = � , the rejected can-
didates setCrej = � , and the posterior asP(� |I ) =
exp(Šarea(I f )) .

Assign foreground pixels probabilistically to HCs.
Build the candidatesÕ relation graphG.
while Cval

�
Crej �= Ctotal

do
1. Select the candidates for model matching according toI f ,
I rem , andG.

2. For each selected candidates in step 1, perform hierarchical
model matching and select the best matched model as the
one that results in the maximum posterior.

while at least one candidate is selected for model matching
3. Validate and reject these matched candidates, and update
Crej , Cval , � , I rem , I occ, foreground edge map,pbmap and
P̃cover (p, ci ).

end
return � .

V. EXPERIMENTAL RESULT

We evaluated the proposed method using two data sets: the
Caviar benchmark data set [1] and an outdoor scene video

TABLE I
CAMERA PARAMETERS OF THETWO TESTEDDATA SETS

Fig. 10. Evaluation criterion 1). (a) The error within the green ellipse is
counted as one missed detection and one false alarm. (b) The error within the
green ellipse is counted as two missed detections and one false alarm.

Fig. 11. ROC curves of evaluation on a subset of the Caviar data set.

taken on our HKU campus. The camera parameters of the two
data sets are illustrated in Table I. Due to the differences in
the qualities of the two videos, the reliability of the extracted
foreground is different: the foreground mask of the Caviar data
set is more fragmented than the video taken by us and, hence,
less reliable. Therefore, the parameterw in (10) is set to 0 for
the Caviar data and 0.8 for the HKU campus data. All the other
parameters are set the same for the two data sets.

The evaluation is based on the following criteria: 1) A correct
detection is a detectionDT that has a one-to-one correspondent
GT in the ground truth human objects and satisÞes

Overlap(GT, DT ) =
area(GT � DT )
area(GT 	 DT )

> 0.5 (21)

2) Human objects having less than 50% of the bodies inside
the images are not evaluated. 3) Sitting and scene occluded
(more than 20% occluded) human objects are not evaluated.
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Fig. 13. Detection results on the HKU campus data set.

Fig. 14. Failed cases of the HKU campus data set.

and the numbers of humans are relatively large. There are
in total 1105 such frames, containing 15 775 humans. The
detection rate achieved is 90.74% when the false alarm rate
is 1.88%. Fig. 13 shows some detection results, and Fig. 14
illustrates some typical failed cases. Among the errors, missed
detections mainly come from poor Þgure-ground contrast [see
Fig. 14(a) and (b)], low resolution [see Fig. 14(c)], and severe
occlusion [see Fig. 14(d) and (e)], whereas false alarms are
usually produced by texture rich regions [see Fig. 14(f)]. There
are incorrect posture estimations as well, which are caused
by shape ambiguities in 2-D and the rough approximation of
various human shapes by a limited number of models.

Observing that missed detections mainly come from low
resolution and poor contrast areas, where some human objects
are hard to be identiÞed by naked eyes, to fairly demonstrate
the performance of our method, we also report the result by
not considering these extreme cases. If the human objects

whose feet appear beyond the line on the ground marked by
the second farthest lamp pole are not counted, where a normal
human objectÕs width is less than 18 pixels (in [41], human
width less than 24 pixels are not counted), the detection rate
is 93.46%, and the false alarm rate is 1.91%. Further, if we
also do not consider the dark red area on the right hand side of
the scene, the detection rate goes up to 96.21% when the false
alarm rate comes down to 1.77%.

C. Computational Cost Analysis

Our detection method is currently implemented in Matlab.
For each candidate, depending on the resolution of the hypoth-
esized human object, model matching usually takes between 5
and 10 s. Therefore, if 50 times of model matching are needed
for a frame, we need about 4Ð8 min to produce the detection
result, not considering the computational time of the other
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