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A Nonconservative LMI Condition for Stability of
Switched Systems With Guaranteed Dwell Time
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Abstract—Ensuring stability of switched linear systems with a guar-
anteed dwell time is an important problem in control systems. Several
methods have been proposed in the literature to address this problem,
but unfortunately they provide sufficient conditions only. This technical
note proposes the use of homogeneous polynomial Lyapunov functions in
the non-restrictive case where all the subsystems are Hurwitz, showing
that a sufficient condition can be provided in terms of an LMI feasibility
test by exploiting a key representation of polynomials. Several properties
are proved for this condition, in particular that it is also necessary for
a sufficiently large degree of these functions. As a result, the proposed
condition provides a sequence of upper bounds of the minimum dwell
time that approximate it arbitrarily well. Some examples illustrate the
proposed approach.

Index Terms—Dwell time, homogeneous polynomial, LMI, Lypaunov
function, switched system.

I. INTRODUCTION

An important problem in control systems consists of ensuring sta-
bility of switched linear systems under a dwell time constraint, see,
e.g., [1]–[9]. Several methods have been proposed in the literature for
addressing this problem, as in [10], [11] where a condition is provided
on the basis of the norm of the transition matrices associated with the
system matrices, and as in [12] where a condition is provided by ex-
ploiting quadratic Lyapunov functions and LMIs. Unfortunately, these
methods provide conditions that are only sufficient.

This technical note addresses this problem by using homogeneous
polynomial Lyapunov functions, which have been adopted in the study
of uncertain systems [13]–[15], in the non-restrictive case where all the
subsystems are Hurwitz. It is shown that a sufficient condition can be
provided in terms of an LMI feasibility test by using a representation
of polynomials in an extended space and the concept of sum of squares
of polynomials (SOS). Several properties are proved for this condition,
in particular that it is also necessary for a sufficiently large degree of
the Lyapunov functions. As a result, the proposed condition provides a
sequence of upper bounds of the minimum dwell time that approximate
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it arbitrary well. The proposed approach is illustrated by some numer-
ical examples. A preliminary version of this technical note appeared in
[16].

Before proceeding it is worth mentioning that SOS techniques have
been proposed in the literature for investigating switched systems, as in
[17] which addresses stability analysis of switched and hybrid systems
under arbitrary switching using polynomial and piecewise polynomial
Lyapunov functions. See also the recent survey [18].

The technical note is organized as follows. In Section II the problem
is formulated and some preliminary results are given. Section III de-
scribes the proposed results. Section IV presents some examples that
illustrate the use and benefits of the proposed approach. Lastly, Sec-
tion V concludes the technical note with some final remarks. The proofs
of the proposed results are reported in the Appendix.

II. PRELIMINARIES

The notation used throughout the technical note is as follows: � :
natural and real number sets; ��: origin of �; �

� : � � ����; ��:
��� identity matrix; ��: transpose of �; � � � �� � ��: symmetric
positive definite (semidefinite) matrix �; �����: first derivative row
vector of the function ����.

We consider switched linear systems of the form

����� � ��������� (1)

where � � �, ���� � �, and 	��� is a switching signal taking values
in a finite set � � ��� � � � �
� (note that the differential equation
only holds almost everywhere), and ��� � � � � �� � ��� are given
matrices. The switching signal is assumed to belong to the set

�� � �	 � �	
� � ���� 	 �� � �� (2)

where �� are the switching instants and � � �.
Problem . The problem we consider in this technical note is to es-

tablish whether (1) is exponentially stable for all 	��� � �� .
Solving this problem allows one to address the minimum dwell time

problem, i.e., the computation of the minimum � ensuring exponential
stability of (1) for all 	��� � �� . We define this time as

���� � 	
��� � � � ��� 	� 
���


�	���� �����


��� ��� 	��� � �� �
 (3)

Let us observe that a necessary condition for (1) to be exponentially
stable for all 	��� � �� is that the matrices ��� � � � � �� are Hurwitz.
Therefore, we assume without loss of generality that ��� � � � � �� are
Hurwitz matrices.

Our starting point for addressing the considered problem is the fol-
lowing result that was given in [12] for guaranteeing an upper bound
to the minimum dwell time.

Theorem 1 (see [12]): Assume that, for given � � �

��� �

�� � � 
� � �

����� � ���� � � 
� � �

�� ��	�
� � � �� 
�� � � �� � �� �


(4)

Then, the system is exponentially stable for all 	��� � �� .
The above result deserves a few remarks.

1) For given Hurwitz matrices ��� � � � � �� , there always exist � �

� such that (4) holds.
2) The function ���� �� � �������� is a piecewise quadratic Lya-

punov function for (1) for all 	��� � �� .

The sufficient condition stated in Theorem 1 is not necessary for sta-
bility in �� . This means that a system can be stable in �� and no
positive definite matrices �� exist satisfying (4). The reason is that the
inequalities define a Lyapunov function ���� �� � ��������, which is
piecewise quadratic, whereas for stability in �� , more complex Lya-
punov functions are required. This latter observation is characterized
by the following result which can be found in [19].

Theorem 2 (see [19]): The system is exponentially stable in �� if
and only if there exist continuous functions ����� such that

����� � � 
� � �
� 
� � �

��������� � � 
� � �
� 
� � �

�	��
� ��� � ����� 
� �

�
� 
�� � � �� � �� �


(5)

III. PROPOSED RESULTS

The idea exploited in this technical note is to adopt homogeneous
polynomials. Any homogeneous polynomial ���� of degree �� in � �
� can be expressed as

���� � �
�
� �� � �
������
� (6)

where ��
� � ����
� contains all monomials of degree � in �,
where

������ �
����	 ���

��	 �����
(7)

� � ����
������
� is a symmetric matrix, �
��� is a linear
parametrization of the linear subspace

�
 � � � �
� � ��
� ���
� � � 
� � � (8)

and � � � ���
� is a free vector, where

�
������� �
�

�
������ ������� � ��	 ���� ���
 (9)

The representation (1) is known as square matrix representation (SMR)
and Gram matrix method, and allows one to establish whether a poly-
nomial is SOS via an LMI feasibility test, specifically ���� is SOS if
and only if there exists� such that���
��� � �. , See e.g., [20] and
references therein for details on SOS polynomials, and [21] for details
on LMIs.

Now, there exists ���
 � ����
������
� satisfying

���
�

��
��� � ���
�

�
� 
� � �

 (10)

This matrix, called extended matrix of �� with respect to ��
�, can be
computed as [15]

���
 � �� �
����

��
�
�
�


��

�	�

�� � �� �� �� (11)

where �� is the matrix satisfying

�
�
 � ���

�
� (12)

and ��
 denotes the �-th Kronecker power of �. The following the-
orem provides a condition for guaranteeing exponential stability of (1)
under a dwell time constraint based on homogeneous polynomial Lya-
punov functions.
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TABLE I
TOTAL NUMBER OF LMI VARIABLES IN (13)

FOR� � � (LEFT) AND� � � (RIGHT)

Theorem 3: Assume that, for some � � and � � with � � �
and � � �, the following condition holds:

���� ��� ���� �

�� � � �� � �

��
����� � ������ � ������ � � �� � �

	
� ���	

� � � �� � �������� ��� 
 � �� � �� 
�

(13)

Then, (1) is exponentially stable for all ���� � 
� .
Theorem 3 states that one can establish whether there exists a homo-

geneous polynomial Lyapunov functions ensuring that (1) is exponen-
tially stable for all ���� � 
� through an LMI feasibility test.

Let us observe that (13) coincides with (4) for� � �, i.e., in the case
where the homogeneous polynomial Lyapunov functions are quadratic.
Let us also observe that, as � tends to zero, the matrices �� tend to a
common matrix �, and (13) tends to the condition provided in [15] for
robust stability of time-varying polytopic systems based on a common
homogeneous polynomial Lyapunov function.

Table I shows the total number of LMI variables in (13) for some
values of �, � and � .

The following result provides a monotonicity property of the condi-
tion (13) with respect to � .

Theorem 4: Assume that (13) holds for some � � 	� and �. Then,
(13) holds also for � � 	� � � and � for all � � , � � �.

The following result provides a monotonicity property of the condi-
tion (13) with respect to �.

Theorem 5: Assume that (13) holds for some � and � � 	�. Then,
(13) also holds for � and � � � 	� for all � � , � � �. We now
give an important result that states that the condition by Theorem 3 s
not only sufficient but also necessary for some �.

Theorem 6: The system (1) is exponentially stable in
� if and only
if there exists � such that (13) holds.

Theorem 6 states that, whenever (1) is exponentially stable in 
� ,
there exists a homogeneous polynomial Lyapunov function of bounded
degree that can be found by solving the LMI condition (13). Let us ob-
serve that this result does not contradict the result given in [22] which
states that the degree of a polynomial Lyapunov function is not uni-
formly bounded over the class of asymptotically stable switched linear
system.

Let us indicate with �� the smallest upper bound of ���� guaran-
teed by Theorem 3 for a given �, i.e.

�� � 
�� 	� � � � � � � ��
� �����
 � (14)

Due to Theorem 6, one has that the minimum dwell time ���� can be
approximated arbitrary well by the upper bound ��, i.e.

�� � � � � �� �� � � � � � � �� � ���� � �� (15)

Moreover, due to Theorem 4, one can calculate �� via a bisection
search where at each iteration the condition (13) is tested. This search
is conducted in an interval ��� �� � where �� is such that (13) holds for

� � �� . Observe that such �� is guaranteed to exist for all � � � since
it exists for � � �[12] and due to Theorem 5.

IV. EXAMPLES

In this section, examples are presented to illustrate the usefulness
of the proposed approach. The upper bound �� provided by condition
(13) is computed by using Matlab and SeDuMi [23] on a personal com-
puter with Windows XP, Pentium 4 3.20 GHz, 2 GB RAM. Each ex-
ample shows the total number of LMI variables in the condition (3) and
the average computational time (ACT) required for testing this condi-
tion in the bisection search used to find��. The matrix function�����

is computed with the algorithm reported in [24] and available in the
Matalb toolbox SMRSOFT [25].

For comparison we consider the upper bound provided in the pio-
neering paper [10], i.e.

��� � ���
�


��
	
���
�

�

�
� 	

� 
 � 	
	��


� �� � � �

In addition, we consider

��� � 
�� � � � ���� ���
�

��

�

���

	
� �

� ���� � �

where �� denotes a generic eigenvalue and 	��� ��� � � � � ��
 are
matrices corresponding to any permutation among those of the set
	��� ��� � � � � ��
. Of course ��� � ����, i.e., ��� is a lower
bound of the minimum dwell time.

A. Example 1

Consider for � � � and � � � the matrices

�� �
� �

��� ��
� �� �

� �

���� ��
�

We have ��� � ����
� and ��� � �. By using the proposed ap-
proach, we get the following upper bounds:

� �� � �� !�"
�#�$� %&' ���

� ���(�� ) ����*(

� ����+� �+ ���))*


 ������ �* ���+,,

� ������ �, ����),

Since �� � �, it clearly follows that ���� � �� as �� is an upper
bound of ���� and ���� is nonnegative.

In order to illustrate more clearly the use of the condition provided in
Theorem 3, we report hereafter the matrices���� and����� involved
in (13) for the case � � � (homogeneous polynomial Lyapunov func-
tion of degree 4):

���� �

� � �

��� �� �

� ��� ��

�

���� �

� � �

���� �� �

� ���� �,

����� �

� � ��

� � �

�� � �

�
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B. Example 2

Here we consider an example with � � � and � � �, specifically

�� �
�� ��

� ��
� �� �

�� ���

��� ��
�

�� �
�� ��

� ��
�

We have ��� � ������ and ��� � ������. With the proposed
approach we get the following upper bounds:

� �� 	 
�� 
�������� ��� ���

� ������ � ������

� ������ �� ������

� ������ �� ������

� ������ ��� ������

The minimum dwell time ���� coincides with ��. This is confirmed
by the fact that, taking the periodic signal of period � � �� � �� with
�� � �� � ������ as

	��� �
�� � � �
�� 
� � ���� 
 �

�� � � �
� � ��� �
 � ��� �� 
 �

the associated periodic system  ���� � ��������� is not asymptotically
stable (the maximum modulus of the characteristic multipliers is equal
to 1). Hence, ���	 � �� � ������.

C. Example 3

Next, we consider for � � � and � � � the matrices

�� �

� � �

� � �

��� �� ��

�

�� �

� � �

� � �

�� �� ���

�� �

� � �

� � �

�� �� ��

�

We have ��� � ������� and ��� � ������. With the proposed
approach we get the following upper bounds:

� �� 	 
�� 
�������� ��� ���

� ������� �� ������

� ������� �� ������

� ������� ��� ������

� ������� ���� �������

The minimum dwell time ���� coincides with ��. This is confirmed
by the fact that, taking the periodic signal of period � � �� � �� with
�� � ������� and �� � ������� as

	��� �
�� � � �
�� 
� � ���� 
 �

�� � � �
� � ��� �
 � ��� �� 
 �
�

the associated periodic system  ���� � ��������� is not asymptotically
stable (the maximum modulus of the characteristic multipliers is equal
to 1). Hence, ���� � �� � �������.

D. Example 4

Lastly, we consider for � � � and � � � the example in [26] given
by

�� �
�� ��

� ��
� �� �

�� ��
�



��

where � is a parameter. The problem consists of determining the value
�� for which the system is exponentially stable for all switching signals
in 
	 (arbitrary switching without dwell time) for all � � ��� ���.

In [26] it has been shown analytically that �� � ��, and that the set
of values of � for which there exists a quadratic Lyapunov function is
included in the interval ��� ��.

The quantity �� can be estimated with the proposed approach,
which in the case � � � coincides with the condition provided in
[15] for robust stability of time-varying polytopic systems based on a
common homogeneous polynomial Lyapunov function. Specifically,
a lower bound of �� can be found through a bisection search where
stability over ��� �� is established by using Theorem 3. Let us denote
this lower bound as ���. The results obtained are as follows:

� ���

� ������

� ������

� ������

� �������

V. CONCLUSION

This technical note has proposed for the first time in the literature a
nonconservative LMI condition for ensuring stability of switched linear
systems with a guaranteed dwell time. This condition has been derived
by exploiting homogeneous polynomial Lyapunov functions and a rep-
resentation of polynomials in an extended space. As a result, the pro-
posed condition provides a sequence of upper bounds of the minimum
dwell time that approximate it arbitrarily well. Future work will in-
vestigate the possibility of determining upper bounds of the degree of
the homogeneous polynomial Lyapunov functions required to prove
stability.

APPENDIX

Proof of Theorem 3: Suppose that (13) holds, and define

����� � �
��� !��

���
�

The first LMI in (13) clearly implies that ����� is positive definite.
Then, we have that

��������� � �
���

�
�
���!� � !����� � ������ �

���

and hence the second LMI in (13) implies that ��������� is negative
definite. Lastly, it turns out that

�
� �

�
���

� �
� �

�
���

which implies that

�
��
� �

��� ����� � �
���

���� �!
�
� �

�!� � ������
���
���

and hence �
��� ��� � ����� is negative definite. Therefore, (1) is
exponentially stable for all 	��� � 
� since (5) holds.
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Proof of Theorem 4: Suppose that (13) holds, and define ����� �
���� ���

���. Consider any � � �. From the second inequality one
has that

�������� � ��������

which implies that

�
�

����
� � � ���

Pre- and post-multiplying the third inequality of (13) by �� � and
�
� � , respectively, one gets that

�
� ��������

� �����
� �� � �

� �
���������

� �
�

Lastly, let us observe that

�
���

�
� �

���������
� �

�
���

� �
� �

�
���

�������� �
� �

�
���

� �

which implies that

�
� �

���������
� � � ��

or, in other words

������ � ��������� � �
� �

���������
� �

�

Proof of Theorem 5: Let ��	 ��	 ���� be such that (13) holds for

 � and � � 	�, and consider any � � , � � 
. We now show that
there exist ���	 ���	 ����� such that (13) holds for 
 and � � � 	�.

Define ����� � �� ��� ���
� ���. We have that (5) holds with these

functions. Define also the homogeneous polynomial of degree �� 	�

������ � �
�
� ����

Clearly, (5) holds with �����	 ����� replaced by ������	 ������, respec-
tively. Now, let us define
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���
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where 
� is the (full-column rank) matrix satisfying
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where 
� is the (full-column rank) matrix satisfying
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and
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because ����� �� ��� � ������� �� and �� are SMR matrices of the same
homogeneous polynomials. Lastly, let us define
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It can be verified that

�����
� �

��	 ������ � �
�� ��� �����

�� ���
	 ���� � �

and

������ � �
� � ����

� � 	 ��� 	 �� �������� � ����

because �� � ����
� � 	 ��� and ���� are SMR matrices of the

same homogeneous polynomial.
Proof of Theorem 6: Assume that (1) is exponentially stable for

all ��
� � �� . From Theorem 2 one has that there exist functions
����� satisfying (5). As shown in [27], these functions can be chosen
of the form ������ for some matrix ��, moreover as discussed
in [28] ������	 converges uniformly on as �	�
 and the �����
can be chosen of the form ������	 for some finite �. Then, observe
that if ����� satisfies (5) then also �����
 satisfies (5) for all � � ,
� � 
. Therefore, this implies that the ����� can be chosen of the
form �����

�	
�	, which are homogeneous, positive definite, and sum of

squares of polynomials (SOS).
Define

����� � 	���������

������� � �����	 �� �
� �

� �

The functions ����� and ������� are homogeneous polynomials since
the ����� are homogeneous polynomials, and positive definite since (5)
holds.

Now, suppose that each ����� is replaced by 	����� � �����
� with

� � , � � 
. We have that ����� and ������� become

	����� � ������
���

�����

	������� � �����
� 	 �� �

� �
�

�

�

Also
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where
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For � � define

������ � ������
���������	 �����	�

�������� � ���������������	 �����	��

Since ����� and������� are positive definite, it follows that there exists
� � � such that ����� 	 �����	 and ������� 	 �����	 are positive
definite, which implies that ������ and �������� are positive definite.

Let us observe that, since ����� is positive definite and SOS,
then 	����� is positive definite and SOS for all � � 
. Also,
since ����� 	 �����	 is positive definite, from [29] it fol-
lows that there exists a sufficiently large � (denoted as ��) such
that ������ is positive definite and SOS. Similarly, one has that
�������� 	 �����	������

��� �� � �
�����

is positive definite and
SOS for all � � ��	 � 	 
� for a sufficiently large � (denoted as ��),
which implies that �������� is positive definite and SOS for all � � ��.
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Summarizing, one has that ������, ������ and �������� are positive
definite and SOS for all � � ��, where �� � ������� ���, for some
� � 	.

Then, let us observe that any homogeneous polynomial 	��� that
is SOS can be expressed as in (6) with a positive semidefinite matrix

 , see e.g., [20] and references therein. This means that one can write
������ � ���� ����

��� where � � 
 
 �� and ��� � 	. Since ������ �
�����

��
��, it is not difficult to see that ��� can be chosen not only positive

semidefinite but also positive definite (just observe that �� must have
full column rank). Similarly, one can write ������ � ���� ����

��� and
�������� � ���� ������

��� where ��� � 	 and ����� � 	. Moreover,
one can write ������ � ���� ����

��� and �������� � ���� ������
���.

Since ������� ������ � �������
��������� and ��������� �������� �

������������
��, it is not difficult to see that ��� and ����� can be chosen

positive definite (just observe that ��� � ��� 
 ��� and ����� � ����� 

����� with ��� � 	 and ����� � 	).

Lastly, since��,���
������������������� and��
���������

�
� ����

� � are SMR matrices of ������, ������ and ��������, and
since the parametrization of the SMR matrices in (13) is complete, it
follows that there exist ��, �� and ���� such that (13) holds.
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