<table>
<thead>
<tr>
<th>Title</th>
<th>Distributed clock synchronization for wireless sensor networks using belief propagation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Leng, M; Wu, YC</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Signal Processing, 2011, v. 59 n. 11, p. 5404-5414</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/155677</td>
</tr>
<tr>
<td>Rights</td>
<td>©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
Distributed Clock Synchronization for Wireless Sensor Networks Using Belief Propagation
Mei Leng and Yik-Chung Wu

Abstract—In this paper, we study the global clock synchronization problem for wireless sensor networks. Based on belief propagation, we propose a fully distributed algorithm which has low overhead and can achieve scalable synchronization. It is also shown analytically that the proposed algorithm always converges for strongly connected networks. Simulation results show that the proposed algorithm achieves better accuracy than consensus algorithms. Furthermore, the belief obtained at each sensor provides an accurate prediction on the algorithm’s performance in terms of MSE.

Index Terms—Belief propagation, fully distributed, global clock synchronization, wireless sensor network (WSN).

I. INTRODUCTION

WIRELESS sensor network (WSN), emerged as an important research area in recent years, consists of many small-scale miniature devices (known as sensor nodes) capable of onboard sensing, computing, and communications. WSNs are used in industrial and commercial applications to monitor data that would be difficult or inconvenient to monitor using wired equipment. These applications include habitat monitoring, controlling industrial machines and home appliances, object tracking, and event detection, etc. [1], [2]. Most of these applications require collaborative execution of a distributed task amongst a large set of synchronized sensor nodes. Furthermore, data fusion, power management and transmission scheduling require all the nodes running on a common time frame. However, every individual sensor in a WSN has its own clock. Different clocks will drift from each other with time due to many factors, such as imperfection of oscillators and environmental changes. This makes clock synchronization between different nodes an indispensable piece of infrastructure [3], [4].

A. The Clock Synchronization Problem

Considering a network with $M+1$ sensors $\{S_0, S_1, \ldots, S_M\}$, these sensors are randomly distributed in the field and can be self-organized into a network by establishing connections between neighboring sensors that are in each other’s communication range. An example of a network with 10 sensors is shown in Fig. 1(a), where each circle represents a sensor and each edge represents the ability to transmit and receive packets between the corresponding pair of sensors.

In the problem of clock synchronization, each sensor S_i has a clock which gives clock reading $c_i(t)$ at real time t. The first-order model for the function $c_i(t)$ is

$$c_i(t) = t + \theta_i$$

(1)

where θ_i represents the clock offset of S_i. This first-order clock model has been widely used in the literature (see [3], [4], [7], [8], [10], [13], [14], [16], and references therein), and in order to achieve global clock synchronization, the clock offsets of all $M+1$ sensors (i.e., $\{\theta_i\}_{i=0}^M$) should be estimated and compensated. Without loss of generality, suppose S_0 is the reference node with $\theta_0 = 0$, the task of global clock synchronization is then to synchronize the other M sensors $\{S_i\}_{i=1}^M$ to the reference node S_0, that is, to recover clock offsets $\{\theta_i\}_{i=1}^M$.

B. Related Works

A wide variety of clock synchronization protocols have been proposed in the literature. Depending on how sensors are networked, we can put existing protocols into three categories: tree-structure-based, cluster-structure-based, and fully distributed. In tree-structure-based protocols, one sensor is elected as the reference node, then a spanning tree rooted at this node is constructed, and each sensor synchronizes with its parent in the tree [35], as shown in Fig. 1(b). One of the most representative protocols in this class is time-synchronization protocol for sensor network (TPSN) [4], where each sensor obtains its clock offset with respect to the root by adding message delays along its unique path to the root. Other similar schemes are flooding time synchronization protocol (FTSP) [7], lightweight tree-based synchronization (LTS) [8], and tiny-sync [9]. This approach suffers from two main limitations. The first limitation is that it requires high overhead to maintain the tree structure and it is sensitive to root failure. The second limitation is that two sensors which are close to each other geographically may belong to different levels which are far in terms of tree distance from the root, for example S_k and S_0 in Fig. 1(b). Since clock errors are directly related to the tree distance, such structures can be harmful in applications where clocks are required to degrade smoothly as a function of geographic distance, such as object tracking [15].

On the other hand, in cluster-structure-based protocols, sensors are grouped into clusters according to their geographical locations. Generally, several reference nodes are selected first, then sensors in the listening distance of the same reference node are grouped into one cluster and are synchronized by the reference node. Sensors belonging to multiple neighborhoods act as gateways to convert local clocks of one cluster into that of
another cluster, as shown in Fig. 1(c). Typical protocol in this
class include reference broadcast synchronization (RBS) [10],
pairwise broadcast synchronization (PBS) [11], and hierarchy
referencing time synchronization (HRTS) [12]. Unfortunately,
these protocols suffer from similar disadvantages to TPSN that
they require substantial overhead to group sensors into clusters
and are sensitive to reference nodes failures [36].

Finally, in fully distributed protocols, no global structure
needs to be maintained and there is no special node such as
root or gateway. With all sensors running exactly the same al-
gorithm and communicating with nodes in their neighborhoods
only, these protocols are robust to dynamic topology changes
and are highly scalable. Existing protocols in this category
can be further divided into two classes: physical-layer-based
synchronization and packet-based synchronization. In the
former scheme, based on the fact that clocks are generated by
oscillators, only pulses emitted by oscillators are exchanged
at the physical layer, and sensors are synchronized to transmit
and receive at the same rate. Existing algorithms of this class
are presented in [17]–[19]. Since oscillators cannot be adjusted,
clocks are usually left unsynchronized in this scheme. There-
fore, this scheme has limitations in application where timing
information is required. On the other hand, in the latter scheme,
time messages between two sensors are exchanged in the form
of packets, and sensors synchronize with each other using
timing information extracted from these packets. Several dis-
tributed algorithms have been proposed in [13]–[15]. However,
these algorithms are based on the average consensus principle,
where clock offsets are adjusted to an average common value,
which may result in abrupt changes in local clocks and hence
discontinuity in local times. For example, when a sensor with
maximum clock offset goes down, the average of remaining
clock offsets then reduces, and the common clock will head
backwards after resynchronization. This can lead to serious
faults, such as a node missing important deadlines or recording
the same event multiple times. Moreover, message delays are
not considered in these algorithms. As shown in [16], when
message delays exist, the steady state in such consensus pro-
tocols will deviate from the average value and hence sensors
cannot be synchronized with high accuracies. Since our objec-
tive is to provide global clock synchronization, we adopt the
packet-based synchronization scheme in this paper and propose
a fully distributed algorithm which overcomes aforementioned
limitations of existing average consensus algorithms.

The rest paper is organized as follows. The cooperative clock
synchronization algorithm is proposed in Section II. Conver-
genence analysis is presented in Section III. In Section IV, simu-
lations results are presented to demonstrate the superior perfor-
mances of the proposed algorithm in terms of accuracy. Finally,
conclusions are drawn in Section V.

II. DISTRIBUTED CLOCK SYNCHRONIZATION USING
BELIEF PROPAGATION

A. System Model

Before discussing global clock synchronization across the
whole network, we first consider two-way timing message ex-
change between two sensors S_i and S_j, which is shown in Fig. 2.
Fig. 2. The \(n \)-th round of two-way time-stamps exchange between two nodes \(i \) and \(j \).

In the first round of message exchange, \(S_i \) sends a synchronization message to \(S_j \), at real time \(t_i^1 \) with its clock reading \(c_i(t_i^1) \) embedded in the message. On reception of that message at real time \(t_j^1 \), \(S_j \) records its corresponding clock reading \(c_j(t_j^1) \), and replies \(S_i \) at real time \(t_j^2 \). The replied message contains both \(c_j(t_j^1) \) and \(c_i(t_i^2) \). Then \(S_i \) records the reception time of \(S_j \)’s reply as \(c_i(t_i^2) \). The next round message exchange is the same as the first round except that \(S_i \) also embed time-stamp \(c_i(t_i^2) \) in its synchronization message to \(S_j \). After \(N \) rounds of message exchange, \(S_i \) informs \(S_j \) about \(c_j(t_j^N) \) with one more message, and then both nodes obtain a set of time stamps \{ \(c_i(t_i^N), c_j(t_j^N) \) \} \(i, j \). With \(c_i(t_i^1) = t_i + \theta_i \), the above procedure can be modeled as

\[
\begin{align*}
\theta_j &= c_i(t_i^1) - \theta_i + d_{i,j} + X_n \\
\theta_i &= c_j(t_j^1) - \theta_j + d_{j,i} - Y_n
\end{align*}
\]

where \(\theta_i \) and \(\theta_j \) represent the clock offsets at \(S_i \) and \(S_j \), respectively; \(d_{i,j} \) stands for the fixed portion of message delay between \(S_i \) and \(S_j \); and \(X_n \) and \(Y_n \) are variable portions of the message delay. Since \(X_n \) and \(Y_n \) are due to numerous independent random processes, we can assume that \(X_n \) and \(Y_n \) are independent and identically distributed (i.i.d.) Gaussian random variables, and this assumption was experimentally verified in [10].

Based on (2) and (3), pairwise clock synchronization has been extensively studied in [11], [20]–[22]. However, extending these algorithms to network wide requires construction of spanning tree, and the disadvantages have been discussed in the previous section. In the following, we will develop a fully distributed algorithm which estimates the clock offsets using the Bayesian framework. First, denote \(T_{i,j,n} \overset{\Delta}{=} [t_{i,j,1}, t_{i,j,2}, \ldots, t_{i,j,N}] \). We have the following likelihood function:

\[
p(T_{i,j}, \theta_i, \theta_j) = \frac{1}{(2\pi\sigma_i^2)^N} \exp \left\{ -\frac{1}{2\sigma_i^2} \left[T_{i,j} - 2(\theta_i - \theta_j) \mathbf{1} \right]^2 \right\} \]

where \(\mathbf{1} \) is a vector with length \(N \) and elements 1, and the superscript \(\{ \}^T \) represents the transpose operation. Denote the prior distributions of \(\theta_i \) and \(\theta_j \) as \(p(\theta_i) \) and \(p(\theta_j) \), respectively, the joint posterior distribution \(p(\theta_i, \theta_j | T_{i,j}) \) is given by

\[
p(\theta_i, \theta_j | T_{i,j}) \propto p(T_{i,j} | \theta_i, \theta_j) p(\theta_i) p(\theta_j),
\]

To make inferences on \(\theta_i \) and \(\theta_j \), we need to obtain their respective marginal distributions, which are denoted as \(g_i(\theta_i) \) and \(g_j(\theta_j) \). Mathematically

\[
g_i(\theta_i) = \int p(\theta_i, \theta_j | T_{i,j}) \, d \theta_j
\]

and the clock offset \(\theta_i \) can be estimated by maximizing \(g_i(\theta_i) \), which is equivalent to maximizing the posterior distribution \(p(\theta_i | T_{i,j}) \) and hence achieves the optimal solution in Bayesian sense. Similar derivation can be obtained for \(\theta_j \).

Extending the above idea to a network with \(M \) sensors, we need to find the joint posterior distribution \(p(\theta_1, \ldots, \theta_M | \{T_{i,j}\}_{i=1,j=1}) \), where \(B_i \) denotes the indices of neighboring sensors of \(S_i \). Then the marginal distribution \(g_i(\theta_i) \) is obtained by integrating out all other variables, that is

\[
g_i(\theta_i) = \int \ldots \int p(\theta_1, \ldots, \theta_M | \{T_{i,j}\}_{i=1,j=1}) \, d \theta_1 \ldots d \theta_M.
\]

Apparantly, the joint distribution depends on interactions among all the variables and is complicated. Even when the joint distribution is obtained in closed-form, it is almost impossible to find the marginal distributions \{ \(g_i(\theta_i) \) \} \(i=1 \ldots M \) by brute-force integration.

In order to provide a computationally efficient algorithm to calculate the marginal distributions, we observe that the state of clock offset at any sensor depends directly only on its neighboring sensors whose number is usually far less than the total number of variables. To explore such conditional independence structure, we make use of belief propagation in the following and propose an efficient algorithm which computes a set of marginal distributions from the joint posterior distribution without full integration in (8).
B. Cooperative Clock Synchronization Using Belief Propagation (BP)

BP works on graphical models, and one of the most widely used graphical models, factor graph, is used in this paper. Let us consider the factor graph for pairwise clock synchronization first. The two random variables \(\theta_i \) and \(\theta_j \) are represented by variables nodes (circles), and they are connected to factor nodes (squares) which represent prior information and relationships between variable nodes. This is shown in Fig. 3, in which the factor node \(f_{i,j} \) represents the likelihood function \(p(T_{i,j} | \theta_i, \theta_j) \) and is connected to both \(\theta_i \) and \(\theta_j \). On the other hand, the factor node \(f_i \) represents the prior distribution of \(\theta_i \), i.e., \(p(\theta_i) \), and is connected only to the variable node \(\theta_i \). This can be easily extended to a network with multiple sensors, since any two neighboring sensors establish a connection between each other in the same way as they do during pairwise clock synchronization. Therefore, for the network in Fig. 1(a), we can build a factor graph as shown in Fig. 4. Notice that the function represented by factor nodes \(f_{i,j} \) and \(f_{j,i} \) is the same likelihood function, either notation can be used.

With this factor graph, BP calculates the marginal distribution at every variable \(\theta_t \) based on local message-passing. Specifically, it involves two kinds of messages:

- \(b_i(\theta_i) \): belief of its own state at the variable node \(\theta_i \), which equals to product of all the incoming messages from neighboring factor nodes. That is
 \[
 b_i^{(t+1)}(\theta_i) = m_f^{(t)} \prod_{j \in B_i} m_{f_{i,j}}^{(t)}(\theta_i)
 \]
 where \(B_i \) is the set of indices of \(S_i \)’s neighboring sensors.

- \(m_{x \rightarrow \theta_i}^{(t)}(\theta_i) \): message from the factor node \(x \) to the variable node \(\theta_i \). For \(x = f_{i,j} \), it indicates \(f_{i,j} \)’s belief on \(\theta_i \)’s state, resulting from interactions between \(\theta_i \) and other variable nodes connected to \(f_{i,j} \). The message is defined as
 \[
 m_{f_{i,j}}^{(t)}(\theta_i) = \int p(T_{i,j} | \theta_i, \theta_j)b_{i,j}^{(t)}(\theta_j) \, d\theta_j.
 \]

For the message from the factor node \(f_{i,j} \) to the variable node \(\theta_i \) (i.e., \(x = f_{i,j} \)), we have

\[
\begin{align*}
 m_{f_{i,j} \rightarrow \theta_i}^{(1)}(\theta_i) &= \int p(T_{i,j} | \theta_i, \theta_j)b_{i,j}^{(1)}(\theta_j) \, d\theta_j, \\
 &= p(\theta_i)
\end{align*}
\]

where (11) is due to the fact that beliefs are probability functions.

In the BP procedure, beliefs and messages are iteratively updated at variable nodes and factor nodes, respectively. For the global clock synchronization problem, denoting the belief of \(\theta_i \) at iteration \(i \) as \(b_i^{(i)}(\theta_i) \) and the message from \(f_{i,j} \) to \(\theta_i \) at iteration \(i \) as \(m_{f_{i,j} \rightarrow \theta_i}^{(i)}(\theta_i) \), each iteration is carried out in three steps:

1) Every variable node \(\theta_i \) broadcast its current belief \(b_i^{(i)}(\theta_i) \) to neighboring factor nodes \(\{ f_{i,j} \}_{j \in B_i} \);

2) Acting like intermediate processors, the factor node \(f_{i,j} \) calculates \(m_{f_{i,j} \rightarrow \theta_i}^{(i)}(\theta_i) \) with (10) based on the belief \(b_j^{(i)}(\theta_j) \) it receives from \(\theta_j \), and then transmits this message to \(\theta_i \). Notice that from (11), \(m_{f_{i,j} \rightarrow \theta_i} \) does not depend on information from other nodes and thus is fixed during iterations;

3) After collecting all the messages \(\{ m_{f_{i,j} \rightarrow \theta_i}^{(i)}(\theta_i) \}_{j \in B_i} \) from neighboring factor nodes, the variable node \(\theta_i \) updates its belief with (9), and obtain \(b_i^{(i+1)}(\theta_i) \).

After convergence, the belief at each variable node corresponds to the marginal distribution of that variable exactly (when the underlying topology is loop free) or approximately (when the...
underlying topology has loops) [24], [25]. Therefore, the estimates obtained by maximizing these marginal distributions are optimal in Bayesian sense. Moreover, since each sensor runs exactly the same algorithm and communicates only with its neighbors, this procedure is fully distributed and computationally efficient.

C. Computation of Beliefs and Messages

In the following, exact expressions of the beliefs and messages at different nodes will be derived. First, let us focus on the beliefs before any message is exchanged. As introduced in Section I, a reference node S_0 with $\theta_0 = 0$ is assigned in the network and all other sensors $\{S_i\}_{i=1}^{M-1}$ synchronize their clocks to S_0. Mathematically, this means that the belief of θ_0 is deterministic and given by $b_0^{(0)}(\theta_0) = \delta(\theta_0, 0)$ for $l = 0, 1, 2, \ldots$, where $\delta(\theta_0, 0)$ is the Dirac delta function. On the other hand, for the rest of M sensors, it is reasonable to set their initial beliefs as their prior distributions, i.e., $b_i^{(0)}(\theta_i) = p(\theta_i)$. However, in practice, it is difficult to obtain a prior distribution on the clock offset. It can be assumed that θ_i is uniformly distributed in the range $[-\infty, +\infty]$. Notice that the uniform distribution can be equally represented as a Gaussian distribution with zero mean and infinite variance $p(\theta_i) \sim \mathcal{N}(\theta_i ; 0, +\infty)$. Therefore, we have $b_i^{(0)}(\theta_i) \sim \mathcal{N}(\theta_i ; 0, +\infty)$ for $i = 1, \ldots, M$.

At the first iteration, the message from the factor node $f_{i,j}$ to a neighboring variable node θ_j is defined in (10). If S_j is the reference node (for example from $f_{1,0}$ to θ_1 in Fig. 4), the message is given by

$$m_{f_{i,j}, \theta_j}^{(1)} = \int p(T_{i,j} ; \theta_j, \theta_i) \delta(\theta_i - \theta_j, 0) d\theta_i \propto \exp \left\{ -\frac{1}{2} \left(\frac{\sigma^2}{N} \right)^{-1} \left(2\theta_j - 2\theta_i + \frac{1}{N} \mathbf{1}^T \mathbf{T}_{i,j} \right)^2 \right\}. \quad (12)$$

It can be seen that the message in (12) is in the form of Gaussian distribution. By denoting its mean as $\mu_j^{(1)} = \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{i,j}$ and variance as $C_{\theta_j}^{(1)} = \frac{\sigma^2}{2N}$, we have

$$m_{f_{i,j}, \theta_j}^{(1)} \sim \mathcal{N}(\theta_j ; \mu_j^{(1)}, C_{\theta_j}^{(1)}) \quad (13)$$

On the other hand, if S_j is not the reference node (for example from $f_{2,1}$ to θ_2 in Fig. 4), the message is given by

$$m_{f_{i,j}, \theta_j}^{(1)} = \int p(T_{i,j} ; \theta_j, \theta_i) b_j^{(0)}(\theta_j) d\theta_i \propto \int p(T_{i,j} ; \theta_j, \theta_i) d\theta_i$$

$$= 1 \quad (14)$$

and

$$\mu_j^{(1)} = \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{i,j} \quad (15)$$

where in (14) we used $b_j^{(0)}(\theta_j) \sim \mathcal{N}(\theta_j ; 0, +\infty)$ and (15) is due to the fact that the result from integration in (14) does not depend on θ_i. Therefore, from (9), (13), and (15), we can write the updated belief $b_i^{(1)}(\theta_i)$ at S_i in the Gaussian form, that is

$$b_i^{(1)}(\theta_i) \sim \mathcal{N}(\theta_i ; \mu_i^{(1)}, P_i^{(1)}) \quad (16)$$

where $\mu_i^{(1)} = \mu_j^{(0)}$ and $P_i^{(1)} = C_{\theta_j}^{(1)}$, if S_i is directly connected to the reference node, and $\mu_i^{(1)} = 0$ and $P_i^{(1)} = +\infty$ otherwise.

At the next iteration, variable nodes broadcast their new beliefs to neighboring factor nodes and this results in new messages at the intermediate factor nodes. Specifically, with belief $b_j^{(1)}(\theta_j)$ at θ_j, the new message from $f_{k,j}$ to a neighboring node θ_k, $m_{f_{k,j}, \theta_k}^{(1)} = \theta_k$, can be obtained as

$$m_{f_{k,j}, \theta_k}^{(1)} = \int p(T_{k,j} ; \theta_k, \theta_j) b_j^{(1)}(\theta_j) d\theta_j \propto \int \exp \left\{ -\frac{1}{2} \left(\frac{\sigma^2}{N} \right)^{-1} \left(2\theta_k - 2\theta_j + \frac{1}{N} \mathbf{1}^T \mathbf{T}_{k,j} \right)^2 \right\} \times \exp \left\{ -\frac{1}{2} \left[\frac{\sigma^2}{4N} + P_j^{(1)} \right] \right\} d\theta_j \propto \exp \left\{ -\frac{1}{2} \left[\frac{\sigma^2}{4N} + P_j^{(1)} \right] \right\} \int \left(\theta_k - \mu_j^{(1)} + \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j} \right)^2 d\theta_j$$

$$= \mathcal{N}(\theta_k ; \mu_k^{(1)} + \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j}, C_j^{(1)}) \quad (17)$$

It can be seen that the message in (17) is also in the Gaussian form. By denoting its mean as $\mu_j^{(1)} = \mu_k^{(1)} - \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j}$ and variance as $C_j^{(1)} = \frac{\sigma^2}{2N} + P_j^{(1)}$, we have

$$m_{f_{k,j}, \theta_k}^{(1)} = \mathcal{N}(\theta_k ; \mu_j^{(1)} + \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j}, C_j^{(1)}) \quad (18)$$

After collecting all the incoming messages from neighboring factor nodes, variable node θ_k updates its belief $b_k^{(1)}(\theta_k)$ by using (9). Since both the prior distribution and the incoming messages have the form of Gaussian, the updated belief of θ_k must be Gaussian distributed.

In general, it can be seen that all the messages and beliefs during the iterative procedure are in Gaussian forms. Denoting

$$b_j^{(1)}(\theta_j) \sim \mathcal{N}(\theta_j ; \mu_j^{(1)}, P_j^{(1)}) \quad (19)$$

and with similar calculations in (17), we can always obtain the message

$$m_{f_{k,j}, \theta_k}^{(1)} = \mathcal{N}(\theta_k ; \mu_j^{(1)} + \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j}, C_j^{(1)}) \quad (20)$$

with

$$C_j^{(1)} = \frac{\sigma^2}{2N} + P_j^{(1)} \quad (21)$$

and

$$\mu_j^{(1)} = \mu_j^{(1)} - \frac{1}{2N} \mathbf{1}^T \mathbf{T}_{k,j} \quad (22)$$

The message in (20) represents the general form for all the messages circulating around the network. To see this, we notice that the belief at the reference node S_0, i.e., $\delta(\theta_0, 0)$, can be equally
represented in the Gaussian form with $\mu_0^{(l)} = 0$ and $\sigma_0^{(l)} = 0$. Putting this into (21) and (22), it can be seen that (20) reduces to (13) and it represents the message from S_0 to its neighboring sensors. Moreover, for other sensors, their beliefs are initially in Gaussian forms with infinite variance, that is, $\mu_j^{(0)} = +\infty$ for $j \in \{1, \ldots, M\}$, hence (20) reduces to a constant and is consistent with (15).

After collecting incoming messages from neighboring factor nodes, the belief of θ_i is updated by using (9), that is
\[
b_i^{(l+1)}(\theta_i) = p(\theta_i) \prod_{j \in \mathcal{B}_i} m_j^{(l)} \rightarrow \theta_i(\theta_i). \tag{23}
\]
Substituting $p(\theta_i) \sim \mathcal{N}(\theta_i; 0, +\infty)$ and (20) into (23), the variance of $b_i^{(l+1)}(\theta_i)$ is obtained as
\[
\left[P_i^{(l+1)} \right]^{-1} = (+\infty)^{-1} + \sum_{j \in \mathcal{B}_i} \left[C_j^{(l)} \rightarrow i \right]^{-1}
\]
\[
= \sum_{j \in \mathcal{B}_i} \left[\frac{\sigma_j^2}{4N} + P_j^{(l)} \right]^{-1} \tag{24}
\]
and the mean of $b_i^{(l+1)}(\theta_i)$ is obtained as
\[
\mu_i^{(l+1)} = \mu_i^{(l)} + \left[\frac{\sigma_i^2}{4N} + P_i^{(l)} \right]^{-1} \mu_j^{(l)} - \frac{1}{2N} 1^T \mathbf{T}_{i,j} \tag{25}
\]
where from (25) to (26), we have used (21) and (22). Notice that an equivalent form of (25) is
\[
\mu_i^{(l+1)} = \frac{\sum_{j \in \mathcal{B}_i} \left[C_j^{(l)} \rightarrow i \right]^{-1} \mu_j^{(l)}}{\sum_{j \in \mathcal{B}_i} \left[C_j^{(l)} \rightarrow i \right]^{-1}} \tag{27}
\]
it can be seen from (27) that each variable θ_i updates its mean of belief as weighted average of expectations from neighboring factor nodes, and expectations with small variance will contribute more to θ_i’s update, and hence uncertainties due to noises and random delays are reduced. In contrast, although algorithms based on the average consensus principle have similar forms as in (27), the averaging coefficients are usually fixed to be constant.

At the end of iteration l, sensor S_i can estimate its clock offset by maximizing the belief $b_i^{(l)}(\theta_i)$ with respect to θ_i. Since $b_i^{(l)}(\theta_i)$ is Gaussian, the optimal estimation for θ_i at iteration l is given by $\hat{\theta}_i^{(l)} = \mu_i^{(l)}$. This iterative procedure is formally given in Algorithm 1. Notice that factor nodes are imaginary for derivation of algorithm only. In practice, the update is performed at individual sensor directly.

Algorithm 1: Distributed clock synchronization using belief propagation

1. **Initialization:**
2. Set the belief at the reference node S_0 as $b_0(\theta_0) \sim \mathcal{N}(\theta_0; \mu_0, P_0)$, where $\mu_0 = 0$ and $P_0 = 0$.
3. Set the belief at S_i as $b_i^{(0)}(\theta_i) \sim \mathcal{N}(\theta_i; \mu_i^{(0)}, P_i^{(0)})$ for $i = 1, \ldots, M$, where $\mu_i^{(0)} = 0$ and $P_i^{(0)} = +\infty$.
4. **Iteration until convergence:**
5. for the lth iteration do
6. sensors S_i with $i = 1 : M$ in parallel
7. broadcast the current belief $b_i^{(l-1)}(\theta_i)$ to neighboring sensors;
8. receive $b_j^{(l-1)}(\theta_j)$ from its neighboring sensor S_j, where $j \in \mathcal{B}_i$ and $j \neq i$;
9. update its belief as $b_i^{(l)}(\theta_i) \sim \mathcal{N}(\theta_i; \mu_i^{(l)}, P_i^{(l)})$, where
\[
\mu_i^{(l)} = P_i^{(l)} \sum_{j \in \mathcal{B}_i} \left[\frac{\sigma_j^2}{4N} + P_j^{(l-1)} \right]^{-1} \mu_j^{(l-1)} - \frac{1}{2N} 1^T \mathbf{T}_{i,j} \tag{28}
\]
10. estimate its clock offset as $\hat{\theta}_i^{(l)} = \mu_i^{(l)}$.
11. end parallel
12. end for

Remark 1: For a network with only two sensors, say S_1 and S_2, it can be seen that $b_1^{(0)}(\theta_1) = p(\theta_1)m_{1,2}^{(0)} \rightarrow s_1(\theta_1) = p(\theta_1) \int p(T_{1,2})p(\theta_1)p(\theta_2) \, d\theta_2$, which equals to the marginal distribution $g_i(\theta_i)$ in (7). Therefore, the algorithm based on belief propagation includes the pairwise clock synchronization as a special case.

Remark 2: The result in (15) indicates that if the belief at θ_i has an infinite variance, the message from θ_i to its neighbor sensor θ_j has no impact on θ_i’s belief update. Notice that every sensor except the reference node has an infinite variance in their beliefs initially, in order to save energy, a sensor can keep silence and only receive messages at the beginning stage of synchronization, and start to broadcast when its belief changes.

Remark 3: The proposed algorithm is robust to both packet losses and node failures. For the former issue, packets correspond to time-stamps obtained in two-way message exchanges between two sensors. From (21) and (22), it can be seen that both $C_j^{(l)} \rightarrow i$ and $\mu_j^{(l)} \rightarrow i$, i.e., the variance and mean of the message $m_j^{(l)} \rightarrow i(\theta_j)$, depend on the number of rounds of message exchange N and the values of time-stamps. If time-stamps in the Kth round are lost, N in (21) and (22) would become $N - 1$, resulting in smaller variance and the average time-stamp used for belief update. For the latter issue, if a sensor fails, the belief update process will automatically terminate, and the system can be easily healed by exchanging messages with other sensors.
and the only consequence is that \(C_j^{(t)} \) increases due to less timing information. Moreover, this increased variance is further reflected in the stage of belief update in (24) and (27). For the latter issue, since our algorithm is fully distributed, communications occur only between neighboring sensors and no global structure is required. When any sensor, for example \(S_j \) (which is a neighbor of \(S_i \)), failed after the \(t^{th} \) iteration of belief updates, \(S_i \) will set \(b_j^{(t+1)}(i) \) will automatically remove the contribution from the failed node \(S_j \).

III. CONVERGENCE ANALYSIS

It is well known that algorithms based on belief propagation converge if the underlying topology has no loops, for example in tree structure. However, for general topology, the issue of convergence is poorly understood and difficult to prove. As observed numerically in [27], when there exist loops, these algorithms can diverge. A sufficient condition for convergence was proposed in [28] for Gaussian graphical models. Unfortunately, it requires the knowledge of the joint posterior distribution of all variables, and is difficult to verify for large sensor networks. Nevertheless, we can establish convergence of our proposed algorithm as follows.

Theorem 1: The beliefs at variable nodes \(\{b_k\}^M_{k=1} \) in Algorithm 1 always converge for strongly connected networks\(^1\) in the sense that there exists a unique fixed point \(\{P^*, \mu^*_i\} \) such that

\[
\lim_{i \to \infty} P_i^{(t)} = P^* \tag{28}
\]

and

\[
\lim_{i \to \infty} \mu_i^{(t)} = \mu_i^*. \tag{29}
\]

Proof: Notice from (24) that \(P_i^{(t)} \) is updated independently of \(\mu_i^{(t)} \), we first analyze the convergence property of \(P_i^{(t)} \). Next, notice from (27) that the update of \(\mu_i^{(t)} \) involves \(b_j \), we analyze the convergence property of \(\mu_i^{(t)} \) under the assumption that \(P_i^{(t)} \) has converged.

1) Convergence of \(P_i^{(t)} \): For notation simplicity, we denote \(\alpha = \frac{\sigma^2}{2N} \) and \(K_i^{(t)} = \left[P_i^{(t)} \right]^{-1} \). The update equation for \(P_i^{(t)} \) in (24) is then rewritten as

\[
K_i^{(t+1)} = \sum_{j \in B_i} \frac{1}{\alpha + K_j^{(t)}}. \tag{30}
\]

Since \(P_i^{(t)} \) is the variance, we always have \(0 \leq P_i^{(t)} \leq +\infty \) and hence \(K_i^{(t)} \geq 0 \) for any \(i \in \{1, \ldots, M\} \) and \(t = 0, 1, 2, \ldots \). Denote the size of \(B_i \) as \(|B_i| \), which is the number of \(S_j \)'s neighboring sensors, and bring \(K_j^{(t)} \geq 0 \) into (30), we have

\[
0 \leq K_i^{(t)} \leq \frac{|B_i|}{\alpha} \leq \frac{M}{\alpha} \quad \forall \ t = 0, 1, 2, \ldots \tag{31}
\]

Therefore, the sequence \(\{K_i^{(0)}, K_i^{(1)}, K_i^{(2)}, \ldots\} \) is bounded for any \(i \in \{1, \ldots, M\} \). Furthermore, we show in the following that this sequence is also monotonic increasing. First, we have

\[
K_i^{(t+1)} - K_i^{(t)} = \sum_{j \in B_i} \frac{1}{\alpha + K_j^{(t)}} - \sum_{j \in B_i} \frac{1}{\alpha + K_j^{(t-1)}}
\]

\[
= \sum_{j \in B_i} \frac{K_j^{(t)} - K_j^{(t-1)}}{(1 + \alpha K_j^{(t)})(1 + \alpha K_j^{(t-1)})}
\]

\[
\geq \frac{1}{(1 + M)^2} \sum_{j \in B_i} [K_j^{(t)} - K_j^{(t-1)}]^+ \tag{32}
\]

where we used the upper-bound in (31). Denote the \(M \)-by-\(M \) adjacency matrix of a graph as \(A \) with its \((i, j)^{th}\) element given by

\[
A(i, j) = \begin{cases}
1, & \text{if } S_i \text{ and } S_j \text{ are neighbors, } i \neq j \\
0, & \text{otherwise.}
\end{cases}
\]

And denoting \(K^{(t)} \triangleq [K_1^{(t)}, K_2^{(t)}, \ldots, K_M^{(t)}] \), we can rewrite the inequality in (32) as

\[
K_i^{(t+1)} - K_i^{(t)} \geq \frac{1}{(1 + M)^2} \times A \left[K^{(t)} - K^{(t-1)} \right]
\]

\[
\geq \frac{1}{(1 + M)^2} \times A^1 \left[K^{(t)} - K^{(0)} \right]. \tag{33}
\]

Notice that \(K^{(0)} = [0, \ldots, 0] \) due to \(P^{(0)} = +\infty \) for \(i = 1, \ldots, M \). Together with the fact that \(K_i^{(t)} \geq 0 \) for all \(i \), we have

\[
K^{(1)} - K^{(0)} \geq 0. \tag{34}
\]

Moreover, the \((i, j)^{th}\) element of \(A^1 \) counts the number of paths of length \(l \) between \(S_i \) and \(S_j \) and hence is always nonnegative. Therefore, we have

\[
A^1 \left[K^{(1)} - K^{(0)} \right] \geq 0. \tag{35}
\]

Putting (35) into (33) gives

\[
K^{(t+1)} - K^{(t)} \geq 0. \tag{36}
\]

and hence \(K_i^{(t+1)} - K_i^{(t)} \geq 0 \) for any \(i \in \{1, \ldots, M\} \). Therefore, the sequence \(\{K_i^{(0)}, K_i^{(1)}, K_i^{(2)}, \ldots\} \) is monotonic increasing.

From the monotone convergence theorem [29], every bounded monotone sequence is convergent. Therefore, we can draw the conclusion that the sequence \(\{K_i^{(0)}, K_i^{(1)}, K_i^{(2)}, \ldots\} \) is convergent, and denoting its limit as \(K_i^* \), we have

\[
\lim_{i \to \infty} K_i^{(t)} = K_i^* \tag{37}
\]

which equals to (28).

\(^1\)strongly connected network: a network is called strongly connected if a path, with either single hop or multiple hops, exists between any two nodes.
2) Convergence of $\mu_i^{(t)}$: For the update equation of $\mu_i^{(t)}$, putting the definition of $T_{i,j}$ into (22), we have

$$
\hat{\mu}^{(t)}_{i,j} = \mu_{j}^{(t)} - \frac{1}{2N} \sum_{i,B} [C_{j}^{(t-1)}]^{-1} \sum_{j \in B} [C_{j}^{(t-1)}]^{-1} \mu_{i}^{(t-1)} - \theta_{j} - \theta_{i} - \frac{1}{2N} \sum_{n=1}^{N} Z_{n,i,j}^{(t)}
$$

(38)

where $Z_{j,i}$ represents the average of Gaussian random delays in the procedure of message exchange between S_i and S_j, and it is independent of the iteration number t. Putting (38) into (27), the update equation can be rewritten as

$$
\frac{\hat{\mu}^{(t)}_{i,j}}{\mu^{(t)}_{i,j}} = \sum_{j \in B} [C_{j}^{(t-1)}]^{-1} \sum_{j \in B} [C_{j}^{(t-1)}]^{-1} \mu_{i}^{(t-1)} - \theta_{j} - Z_{j,i}
$$

(39)

with $i \in \{1, \ldots, M\}$ and $j \in \{0, 1, \ldots, M\}$. Notice that for $j = 0$, the variable node θ_0 corresponds to the reference node S_0. Since the belief at S_0 does not change, we have $\theta_0 = 0$, $\mu_{0}^{(t)} = 0$ and $P_{0}^{(t)} = 0$ for all i, and hence $\hat{\mu}_{0}^{(t-1)} = 0$ and $C_{0}^{(t-1)} = \alpha$ from (21). Therefore, if the reference node is a direct neighbor of S_i, i.e., $0 \in B_i$, the update (39) is equivalent to

$$
\hat{\mu}^{(t)}_{i} = \frac{1}{\alpha} \sum_{j \in B_i, j \neq i} [C_{j}^{(t-1)}]^{-1} \mu_{j}^{(t-1)} - Z_{j,i}
$$

(40)

Otherwise, if S_i and S_0 are not directly connected, i.e., $0 \not\in B_i$, the update (39) is

$$
\hat{\mu}^{(t)}_{i} = \sum_{j \in B_i, j \neq i} [C_{j}^{(t-1)}]^{-1} \mu_{j}^{(t-1)} - Z_{j,i}
$$

(41)

with $i, j \in \{1, \ldots, M\}$. Furthermore, with t large enough, it can be assumed that $P_{j}^{(t)}$ has converged to P_{j} for $j = 1, \ldots, M$, and hence $C_{j}^{(t-1)}$ converges to C_{j} for $j \neq i$. Putting $\{C_{j}^{(t-1)}\}_{j \neq i}^{M}$ into (40) and (41), and combining these two cases, we can rewrite (39) as

$$
\hat{\mu}^{(t)}_{i,j} = \begin{cases}
\frac{1}{\alpha} \sum_{j \in B_i, j \neq i} [C_{j}^{(t-1)}]^{-1} \mu_{j}^{(t-1)} - Z_{j,i}, & 0 \in B_i, \\
\sum_{j \in B_i, j \neq i} [C_{j}^{(t-1)}]^{-1} \mu_{j}^{(t-1)} - Z_{j,i}, & 0 \not\in B_i.
\end{cases}
$$

(42)

where $i, j \in \{1, \ldots, M\}$.
with its \((i, i)\)th element given by \(\frac{1}{m_i^2}\). Defining this matrix as \(\Sigma\) and putting it into \((47)\), we have
\[
\hat{\mu}^{(n+1)} - \hat{\mu}^{(l)} < V A^t \Sigma V^{-1} \left[\mu^{(l)} - \mu^{(C)} \right]
\] (48)

Notice that \(\mu^{(1)}, \mu^{(2)}, V\), and \(\Sigma\) are fixed, and moreover, \(A^t\) is a diagonal matrix with its \((i, i)\)th element given by \(\lambda_i^t\), we can rewrite \((48)\) as
\[
\hat{\mu}^{(n+1)}_i - \hat{\mu}^{(l)}_i < \eta_i \lambda_i^t, \quad \forall i = 1, \ldots, M
\] (49)

where \(\eta_i\) is a constant defined by the product of the \(i\)th row of \(V\) and the vector \(\Sigma V^{-1} = \left[\hat{\mu}^{(1)} - \hat{\mu}^{(0)} \right] \). Since \(-1 < \lambda_i < 1\) for \(i = 1, \ldots, M\), for any real number \(\epsilon > 0\), we can always find certain \(i > 0\) such that \(\eta_i \lambda_i^t < \epsilon\), and hence \(\hat{\mu}^{(n+1)}_i - \hat{\mu}^{(l)}_i < \epsilon\).

Therefore, according to Cauchy’s criterion, we can finally draw the conclusion that the sequence \(\{\hat{\mu}^{(1)}_i, \hat{\mu}^{(2)}_i, \ldots\}\) converges for any \(i \in \{1, \ldots, M\}\). And hence the sequence \(\{\mu^{(0)}_i, \mu^{(1)}_i, \mu^{(2)}_i, \ldots\}\) is convergent for any \(i \in \{1, \ldots, M\}\).

IV. SIMULATION RESULTS AND DISCUSSIONS

To validate the performances of our proposed algorithm, simulation results are presented and compared to consensus algorithms. As introduced in Section I, existing algorithms in [13]–[16] are based on the average consensus principle. Since message delays are not considered in [13]–[15], their performances deteriorate significantly when there exist fixed delays or random delays. Therefore, we compare our algorithm with the consensus algorithm in [16] which explicitly considers random delays. The error of the consensus algorithm is measured by difference between the estimated clock offset and the average value of all clock offsets. That is
\[
\text{error}(\hat{\theta})_{\text{consensus}} = \left| \hat{\theta}_i - \frac{1}{M} \sum_{i=0}^{M-1} \theta_i \right| (50)
\]
for \(i \in \{0, 1, \ldots, M - 1\}\). On the other hand, our proposed algorithm adjusts clocks to their true values, and hence avoids the issue of time discontinuity in the consensus algorithm. And the error is measured by difference between the estimated clock offset and its true value. That is
\[
\text{error}(\hat{\theta})_{\text{proposed}} = \left| \hat{\theta}_i - \theta_i \right| (51)
\]
for \(i \in \{1, \ldots, M - 1\}\). The parameters used in simulations are as follows. Clock offsets and fixed delays are uniformly drawn from ranges \([-30, 30]\) and \([0, 10]\), respectively. The variance of the random delay is 1. The number of message exchange rounds is 4. Each point in the figures is an average of 10 000 independent simulation runs. Mean squared error (MSE) at each point is presented to measure the estimation accuracy.

Simulations are carried out for a network of 25 nodes as shown in Fig. 5(a). All nodes are distributed in a standard grid pattern and communicate through a tree-structured topology. First, the convergence rate at two nodes is presented in Fig. 5(b). Node A is directly connected to the reference node, while Node B lies far away. Since Node B is 4 hops away from the reference node, its belief stays unchanged at the beginning. This is unavoidable as it takes time for messages to propagate to distant sensors.

However, once a sensor starts to update its belief, it converges quickly in 4 iterations. Furthermore, due to the fact that beliefs are represented in the forms of Gaussian, their variances correspond to the theoretical MSE for estimations in each iteration, and it shows in Fig. 5(b) that the numerical and theoretical MSE overlap after convergence, which confirms that beliefs converge to marginal distributions exactly for tree topologies. Next, the converged MSE at individual sensors are shown in Fig. 5(c),
where 20 iterations are carried to ensure convergence for both algorithms. It can be seen that the theoretical MSE of the proposed algorithm overlaps with its numerical MSE at individual sensors. Moreover, the proposed algorithm outperforms the consensus algorithm and reaches an accuracy at the order of 10^{-1}.

Another set of simulations is conducted on a loopy network as shown in Fig. 6(a). All 25 nodes are randomly distributed in the squared area and form a communication topology with multiple loops. Convergence performances at two nodes are presented in Fig. 6(b). Similar conclusion about their convergence rate can be drawn as in Fig. 5(b). On the other hand, the numerical MSE of the proposed algorithm is lower bounded by its theoretical MSE, and such a gap exists because beliefs converge to marginal distributions approximately for loopy topologies [24], [25]. When compared to the consensus algorithm, the proposed algorithm still show improved performance, and achieves an accuracy at the order of 10^{-2}, as shown in Fig. 6(c).

V. CONCLUSION

In this paper, we propose a fully distributed algorithm based on belief propagation for global clock synchronization in wireless sensor networks. The proposed algorithm requires communications only between neighboring sensors and is implemented distributedly in the network. Therefore, it has low overhead and can achieve robust and scalable synchronization. Moreover, it is shown analytically that the proposed algorithm converges for strongly connected networks. Compared to existing algorithms based on the average consensus principle, our proposed algorithm synchronizes clocks with a consistent reference value instead of adjusting clocks to an average value. This helps avoiding the issue of time discontinuity. Simulation results show that our proposed algorithm achieves better accuracy than consensus algorithms. Furthermore, the belief updated at each sensor provides an accurate prediction on the algorithm’s performance in terms of MSE.

REFERENCES

Mei Leng received the B.Eng. degree from the University of Electronic Science and Technology of China (UESTC) in 2005 and the Ph.D. degree from The University of Hong Kong in 2011. She is currently a Research Fellow with the School of Electrical and Electronic Engineering, Nanyang Technological University. Her current research interests include statistical signal processing, optimization, machine learning, as well as Bayesian analysis, with applications to wireless sensor networks and wireless communication systems.

Yik-Chung Wu received the B.Eng. (EEE) degree in 1998 and the M.Phil. degree in 2001 from The University of Hong Kong (HKU). He received the Ph.D. degree in 2005 from Texas A&M University, College Station. From August 2005 to August 2006, he was with the Thomson Corporate Research, Princeton, NJ, as a Member of Technical Staff. Since September 2006, he has been with the University of Hong Kong as an Assistant Professor. His research interests are in the general area of signal processing and communication systems, and in particular, receiver algorithm design, synchronization techniques, channel estimation and equalization. Dr. Wu is currently serving as an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS LETTERS.