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Analytical Method for Magnetic Field Calculation in
a Low-Speed Permanent-Magnet Harmonic Machine

Linni Jian, Member, IEEE, Guoqing Xu, Chunting Chris Mi, Senior Member, IEEE,
K. T. Chau, Senior Member, IEEE, and C. C.Chan, Fellow, IEEE

Abstract—Magnetic-gearing effect has become increasingly at-
tractive when designing direct-drive low-speed permanent-magnet
machines. The machines derived from the magnetic-gearing ef-
fect can be termed as harmonic machines. Unlike the conventional
types, harmonic machines rely on the field harmonics to achieve
energy conversion and transmission. The detailed knowledge of
the field distributions in the air gap is vitally important for pre-
dicting and optimizing its performance. In this paper, we present
an analytical approach to calculate the magnetic field distribution
in a low-speed permanent-magnet harmonic machine. A series-slot
model which is composed of a group of partial differential equa-
tions concerning the scalar magnetic potential is built up. Then,
the field solutions are obtained by using the method of separating
variables and analyzing the field boundary conditions. Finally, the
flux densities are derived from the scalar magnetic potentials. All
the results agree well with those obtained from the finite element
method.

Index Terms—Analytical calculation, direct drive, harmonic ma-
chine, low speed, magnetic gearing, permanent magnet.

I. INTRODUCTION

LOW-SPEED permanent-magnet (PM) machines have at-
tracted increasing attention in several occasions, such as

wind power generation, electric vehicles, electric vessels, home
appliances, etc., since they can offer the so-called direct-drive
operation which is the benefit for avoiding the nuisances caused
by mechanical gearboxes. In order to result in relatively low-
rated speed, multipolar PMs are usually adopted. In [1], a 48-
pole 144-slot outer-rotor surface-mounted PM generator was
proposed for directly coupled wind turbines. A comparative
study showed that it possesses several attractive merits, such
as compact structure, light weight, and high efficiency [2].
In [3], a 24-pole 72-slot axial-flux PM motor was presented
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for a machine-room-less elevator system. In order to improve
torque density, a 30-pole 60-slot double-rotor axial-flux PM
motor was proposed for electric vehicles [4]. In these machines,
distributed windings were employed, which result in enormous
slot numbers. This will definitely cause problems, such as deep
saturation [5], high temperature rise [6], and so on. By adopting
fractional slot and concentrated windings [7]–[9], these short-
comings can be alleviated. Moreover, it can reduce the vol-
ume of the coil end, decrease the copper loss, and improve
the flux-weakening operation ability [10]. Although there are
differences on the winding structure and the field path, all the
aforementioned machines rely on the fundamental component
of the electromagnetic field to realize electromechanical energy
conversion.

Recently, the magnetic-gearing effect has become more and
more attractive when designing low-speed PM machines [11],
[12]. Coaxial magnetic gears [13], [14] rely on the field modula-
tion arising from the noneven magnetic field path to excite abun-
dant asynchronous harmonic components. With the interaction
of specific harmonics [15], both torque transmission and speed
variation can be achieved. In [16], a magnetic-geared machine
was proposed for wind power generation, in which a PM high-
speed brushless machine was artfully integrated into a coaxial
magnetic gear to realize low-speed operation. Moreover, it can
offer very large torque density due to the torque amplification
aroused by the magnetic gear. Then, a flux-modulated machine
was proposed [17], in which, the high-speed rotor adopted in
the magnetic-geared machine was removed in order to simplify
the overall structure. Thus, the asynchronous field harmonics
are directly involved into the electromechanical energy conver-
sion process. Although the field harmonics are usually weaker
than the field fundamental component, quantitative compari-
son showed that this machine can provide higher torque density
than its conventional counterparts [18]. In [19], the field modula-
tion is achieved by directly equipping flux-modulation poles on
the stator. Thus, only one air gap is needed. Calculation results
showed that it can further improve the torque density. Unlike the
conventional machines, these newly emerging types rely on the
field harmonics to achieve energy conversion and transmission.
Thus, they can be termed as harmonic machines in general.

As is well known that the detailed knowledge of the mag-
netic field distribution in air gap is vitally important for design
and optimization of PM machines, especially for low-speed
PM harmonic machines. Although numerical tools, such as fi-
nite element method (FEM), are able to offer precisely field
prediction, they can provide neither closed-form solution nor
physical insight. In recent years, much progress has been made

0885-8969/$26.00 © 2011 IEEE
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Fig. 1. Magnetic-gearing effect. (a) Coaxial magnetic gear. (b) Magnetic-
geared machine. (c) Flux-modulated machine. (d) Harmonic machine.

in analytical modeling of PM machines. Generally, there are
two sorts of analytical methods for calculating magnetic field
distribution in PM machines: one is based on conformal trans-
formation [20]–[22], while the other is based on Fourier se-
ries decomposition [23]–[27]. The purpose of this paper is to
propose an analytical method for magnetic field calculation in
low-speed PM harmonic machines. Fourier series decomposi-
tion will be engaged to obtain the solutions of Laplace/Poisson
equations that represent the field behavior in each calculation re-
gion. Moreover, a series-slot model will be employed to improve
the calculation accuracy. The validity of the proposed analytical
approach will be verified by comparing the calculation results
with those obtained from the FEM.

II. PM HARMONIC MACHINES

PM harmonic machines are derived from the magnetic-
gearing effect. Fig. 1(a) shows the topology of a coaxial mag-
netic gear (CMG). It consists of two rotational parts: the inner
rotor (high-speed rotor) and the outer rotor (low-speed rotor),
and one stationary part: the modulating ring. PMs are employed
on the two rotors. p1 and p2 denote the pole-pair numbers (PPN)
of PMs on the outer rotor and the inner rotor, respectively. The
modulating ring is composed of several ferromagnetic segments
that are symmetrically deployed in the space between the two
rotors. In order to enforce the structural strength for high-torque
transmission, epoxy is filled in the slot area.

The modulating ring takes charge of modulating the magnetic
fields in the two air gaps beside it. Denoted by Ns the number
of ferromagnetic segments, the magnetic field in the both air
gaps built up by the PMs on the two rotors consists of abundant

harmonics, and the PPN of these harmonics can be expressed as

PPNi,j,k = |(2i − 1) pk + jNs | (1)

where i = 1, 2, 3, ...,∞, j = 0,±1,±2,±3, ...,±∞, k = 1, 2,
and k = 1 implies that the harmonic component is excited by
the outer rotor PMs, while k = 2 means that it is excited by the
inner rotor PMs.

For each harmonic, the corresponding rotational speed can be
given by

ωi,j,k =
(2i − 1) pk

(2i − 1) pk + jNs
ωk (2)

where ω1 and ω2 are the rotational speeds of the outer rotor and
the inner rotor, respectively.

Stable torque transmission can be achieved between the two
rotors, as long as it satisfies

Ns = p1 + p2 (3)

and the rotational speeds of the two rotors are governed by

ω2 = −p1

p2
ω1 = −Grω1 (4)

where Gr is the so-called gear ratio. The minus sign indicates
that the two rotors rotate in opposite directions.

Since all the PMs are involved into the torque transmission,
the CMG can provide as high-torque density as its mechanical
counterparts. Moreover, the noncontact torque transmission can
avoid the nuisances existing in the mechanical gearboxes, such
as friction loss, audible noise, mechanical vibration, and need
of regular lubrication and maintenance. Fig. 1(b) shows the
topology of the magnetic-geared machine. A PM high-speed
brushless machine is artfully placed in the inner bore of the
CMG, and shares its rotor with the CMG (inner rotor of the
CMG). Although it can provide both very high torque density
and low-speed operation, its mechanical structure is too com-
plex: it consists of two rotational parts, two stationary parts,
and three air gaps. Fig. 1(c) shows the topology of the flux-
modulated machine. It can be seen that the inner rotor exist-
ing in Fig. 1(b) is removed, and the harmonics excited by the
modulating ring directly interact with the armature windings
to achieve electromechanical energy conversion. This machine
can also provide low-speed operation, and it can offer higher
torque density than the conventional PM machines. However,
it is still composed of one rotational part, two stationary parts,
and two air gaps. In order to further simplify the mechanical
structure, as illustrated in Fig. 1(d), the ferromagnetic modu-
lating poles (FMPs) are directly installed on the stator of the
machine; thus, only one air gap is needed. Moreover, central-
ized armature windings are employed to improve air ventilation
and heat dissipation, and reduce copper loss and manufactur-
ing cost. Similar to the flux-modulated machine, this harmonic
machine also replies on the field harmonics to achieve energy
conversion and transmission. In what follows, the magnetic field
distribution in it will be theoretically analyzed.
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Fig. 2. Analytical model in a pseudopolar coordinate.

III. ANALYTICAL MODEL

In the harmonic machine shown in Fig. 1(d), the PPN of PMs
on the outer rotor equals 24 (p1 = 21), and the three-phase arma-
ture windings has six poles (p2 = 3). Moreover, the number of
FMPs is 24. Thus, the gear ratio of 7:1 is resulted. The series-slot
model within a pole-pair pitch can be represented in the pseu-
dopolar coordinate as shown in Fig. 2. The widths of the slots,
openings, and FMPs are denoted by g, f, and e, respectively. r1 ,
r2 , r3 , and r4 are the inside radius of the openings, outside radius
of the FMPs, inside radius of the PMs, and outside radius of the
PMs, respectively. The θ-axis coordinates of the central lines
of the kth FMP Tk , ith opening Oi , and jth slot Sj are denoted
by αk , βi , and γj , respectively. ωt denotes the rotational speed
of the outer rotor. Moreover, for simplicity, several assumptions
should be made.

1) The permeabilities of the iron yokes are infinite.
2) The PMs have the same permeability with the airspace.
3) The depth of the slots is infinite.
The calculation region can be classified into four parts: PMs

(Region I), air gap (Region II), openings between the FMPs
(Region III), and slots (Region IV). In various regions, the flux

density
⇀

B and field intensity
⇀

H are expressed as

in Region I:
⇀

B = μ0μr

⇀

H + μ0
⇀

M (5)

in Regions II, III, IV:
⇀

B = μ0
⇀

H (6)

where μr is the relative recoil permeability and
⇀

M is the residual
magnetization vector. By employing the scalar magnetic poten-
tial ϕ, the field behavior can be governed by a set of 2-rank
partial differential equations (Laplace/Poisson equations)

in Region I: ∇2ϕI (r, θ) =
div

(
⇀

M
)

μr
(7)

⇀

M = Mr
⇀
r + Mθ

⇀

θ (8)

where Mθ = 0 and Mr = Mr (θ0 , ωt , t) indicates the PM mag-
netization distribution shown in Fig. 3. By using Fourier series

Fig. 3. PM magnetization distribution.

decomposition over [−π, π], it yields

Mr =
∞∑

m=1

Zm

[
cos (mp1 (θ0 + ωtt)) sin mp1θ

− sin (mp1 (θ0 + ωtt)) cos mp1θ

]
(9)

Zm =
2 [1 − (−1)m ] Br

mπμ0
(10)

in Region II: ∇2ϕII (r, θ) = 0 (11)

in Region III: ∇2ϕIII (r, θ) = 0 (12)

in Region IV: ∇2ϕIV (r, θ) = 0. (13)

Then, the corresponding boundary conditions can be defined as
following.

For the ith opening Oi , i = 1, 2, ..., 6

θL
i = βi − f/2 and r ∈ [r1 , r2 ] : ϕIII

i

(
r, θL

i

)
= 0 (14)

θR
i = βi + f/2 and r ∈ [r1 , r2 ] : ϕIII

i

(
r, θR

i

)
= 0 (15)

r = r1 and θ ∈ [θL
i , θR

i ] : ϕIII
i (r1 , θ) = 0. (16)

For the jth slot Sj , j = 1, 2

θL
j = γj − g/2 and r ∈ [0, r2 ] : ϕIV

j

(
r, θL

j

)
= 0 (17)

θR
j = γj + g/2 and r ∈ [0, r2 ] : ϕIV

j

(
r, θR

j

)
= 0 (18)

r = 0 and θ ∈ [θL
j , θR

j ] : ϕIV
j (0, θ) = 0. (19)

For the air gap

r = r2 and θ ∈ [αk − e/2, αk + e/2], k = 1, 2, ..., 8 :

ϕII (r2 , θ) = 0 (20)



JIAN et al.: ANALYTICAL METHOD FOR MAGNETIC FIELD CALCULATION IN A LOW-SPEED PERMANENT-MAGNET HARMONIC MACHINE 865

r = r2 and θ ∈ [βi − f/2, βi + f/2], i = 1, 2, ..., 6:

ϕII (r2 , θ) = ϕIII
i (r2 , θ) (21)

∂ϕII (r, θ)
∂r

∣∣∣∣
r=r2

=
∂ϕIII

i (r, θ)
∂r

∣∣∣∣
r=r2

(22)

r = r2 and θ ∈ [γj − g/2, γj + g/2], j = 1, 2:

ϕII (r2 , θ) = ϕIV
j (r2 , θ) (23)

∂ϕII (r, θ)
∂r

∣∣∣∣
r=r2

=
∂ϕIV

j (r, θ)
∂r

∣∣∣∣∣
r=r2

. (24)

For the PMs
r = r3 and θ ∈ [−π/p2 , π/p2 ]:

ϕI (r3 , θ) = ϕII (r3 , θ) (25)

μr

(
∂ϕI

∂r

)∣∣∣∣
r=r3

− Mr = μr

(
∂ϕII

∂r

)∣∣∣∣
r=r3

(26)

r = r4 and θ ∈ [−π/p2 , π/p2 ]:

ϕI (r4 , θ) = 0. (27)

IV. FIELD SOLUTION

A. Field Distribution in Air Gap

The scalar potential in Region II is governed by the Laplace
equation given in (11). By separating the variables r and θ, the
general solution can be expressed as

ϕII =
∞∑

n=1

[
(Enrnp2 + Fnr−np2 ) cos np2θ

+ (Gnrnp2 + Hnr−np2 ) sin np2θ

]

+ E0 ln r + G0 (28)

where Dn , En , Fn , Gn , D0 , and E0 are the Fourier coefficients
to be determined.

It indicates that the field solutions can be expressed as the sum
of several harmonics components around the circumference, and
the magnitude of each harmonic is a function of the radial length.
It should be noted that the zero harmonic term has to be taken
into account. Due to the existence of the FMPs, the magnetic
path is no longer even. Thus, the circumferential integration of
the scalar magnetic potentials should not be zero. Moreover,
considering the periodicity, the zero harmonic term should not
be related to θ.

B. Field Distribution in Permanent Magnets

The scalar potential in Region I is governed by the Poisson
equation given in (7). According to the superposition law, its
general solution is the sum of the solution of the corresponding
Laplace equation and one special solution of its own.

First, the general solution of the corresponding Laplace equa-
tion is considered. In order to satisfy the boundary conditions
given in (25), by using the method of separating variables, the

Fig. 4. Region of openings.

general solution is given by

ϕI
1 =

∞∑
n=1

[
(Anrnp2 + Bnr−np2 ) cos np2θ

+ (Cnrnp2 + Dnr−np2 ) sin np2θ

]

+ A0 ln r + C0 . (29)

Second, the special solution of the Poisson equation is taken
into account. The residual magnetization given by (9) and (10)
can be rewritten as

Mr =
∞∑

n=1

Mrn

[
cos (np2 (θ0 + ωr t)) sin np2θ
− sin (np2 (θ0 + ωr t)) cos np2θ

]
(30)

Mrn =

⎧
⎨
⎩

4Br

(iπμ0)
, when n = iGr , i = 1, 3, 5, ...

0, otherwise.
(31)

From (7) and (8), it yields

div
(

⇀

M
)

μr
=

Mr

μrr
+

∂ (Mr )
μr∂r

+
∂ (Mθ )
μrr∂θ

=
Mr

μrr
. (32)

Thus, from (30) to (32), it is easy to find a special solution of
(7) given by

ϕI
2 =

∞∑
n=1

Wnr

[
cos (np2 (θ0 + ωr t)) sin np2θ

− sin (np2 (θ0 + ωr t)) cos np2θ

]
(33)

Wn =

⎧
⎨
⎩

4Br

iπμ0μr [1 − (np2)2 ]
, when n=iGr , i=1, 3, 5, . . .

0, otherwise.

(34)

Finally, the general solution of the scalar potential in Region I
can be expressed as

ϕI = ϕI
1 + ϕI

2

=
∞∑

n=1

⎡
⎢⎢⎣

(
Anrnp2 + Bnr−np2

−Wnr sin (np2 (θ0 + ωr t))

)
cos np2θ

+
(

Cnrnp2 + Dnr−np2

+Wnr cos (np2 (θ0 + ωr t))

)
sin np2θ

⎤
⎥⎥⎦

+ A0 ln r + C0 (35)

where An , Bn , Cn , Dn , A0 , and C0 are the Fourier coefficients
to be determined.
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Fig. 5. Scalar magnetic potential distribution on surface of FMPs. From top to bottom: initial phase angle θ0 = 0 and θ0 = π/42.

Fig. 6. Magnetic flux density in middle of air gap. From top to bottom: radial component and tangential component.

C. Field Distribution in Opening Oi

Fig. 4 shows the detailed scheme of the region of opening.
The scalar potential in the ith opening Oi is governed by the
Laplace equations given in (12). Considering the boundary con-
ditions listed in (17) and (18), its general solution should be

expressed as

ϕIII
i =

∞∑
m=1

[(
Iim rλm f +Jim r−λm f

)
sin λmf

(
θ − βi +

f

2

)]

(36)
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Fig. 7. Flux line distribution.

where λmf = mπ/f , and Iim and Jim are the Fourier coeffi-
cients to be determined.

D. Field Distribution in Slot Sj

The scalar potential in the jth slot Sj is governed by the
Laplace equations given in (13). Similar to the case of openings,
it is easy to know that the general solution could be expressed as

ϕIV
j =

∞∑
m=1

[
Kjm rλm g sin λmg

(
θ − γj +

g

2

)]
(37)

where λmg = mπ/g, and Kjm is the Fourier coefficients to be
determined. The reason why only the positive exponential term
is employed lies in the assumption on the infinite depth of slots.

E. Boundary Conditions

In what follows, the boundary conditions are discussed so as
to determine the parameters defined in the solutions.

First, at the bottom surface of the ith opening Oi (r = r1),
from (16) and (36), it yields

Iim r
λm f

1 + Jim r
−λm f

1 = 0. (38)

Second, on the outside surface of the PMs (r = r4), from (27)
and (35), it yields

A0 ln r4 + C0 = 0 (39)

Anrnp2
4 + Bnr−np2

4 − Wnr4 sin (np2 (θ0 + ωr t)) = 0 (40)

Cnrnp2
4 + Dnr−np2

4 + Wnr4 cos (np2 (θ0 + ωr t)) = 0. (41)

Third, on the inside surface of the PMs (r = r3), from (25), (26),
(28), and (35), it yields

A0 ln r3 + C0 = E0 ln r3 + G0 (42)

Anrnp2
3 + Bnr−np2

3 − Wnr3 sin (np2 (θ0 + ωr t))

= Enrnp2
3 + Fnr−np2

3 (43)

Cnrnp2
3 + Dnr−np2

3 + Wnr3 cos (np2 (θ0 + ωr t))

= Gnrnp2
3 + Hnr−np2

3 (44)

A0 = E0 (45)

Anrnp2
3 − Bnr−np2

3 − Enrnp2
3 + Fnr−np2

3

=
(

Wn − Mrn

μr

)
r3

np2
sin (np2 (θ0 + ωr t)) (46)

Cnrnp2
3 − Dnr−np2

3 − Gnrnp2
3 + Hnr−np2

3

=
(

Mrn

μr
− Wn

)
r3

np2
cos (np2 (θ0 + ωr t)) . (47)

Fourth, on the surface of the FMPs (r = r2), from (20),
(21), and (23), the scalar potential on this surface can also be
expressed as

ϕII (r2 , θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕIV
1 (r2 , θ) , −π/p2 ≤ θ < −π/p2 + g/2

0, αi − e/2 ≤ θ < αi + e/2

ϕIII
i (r2 , θ) , βi − f/2 ≤ θ < βi + f/2

ϕIV
2 (r2 , θ) , −g/2 ≤ θ < g/2

ϕIV
1 (r2 , θ) , π/p2 − g/2 ≤ θ < π/p2 .

(48)
Expanding (48) into Fourier series over [−π/p2 , π/p2 ], one
gets

ϕII (r2 , θ) =
E ′

0

2
+

∞∑
n=1

[E ′
n cos np2θ + G′

n sin np2θ] (49)

E
′

0 =
p2

π

∫ π/p2

−π/p2

ϕII (r2 , θ)dθ

=
p2

π

∞∑
m=1

⎡
⎢⎢⎣
1−(−1)m

mπ

⎛
⎜⎜⎝

gr
λm g

2

2∑
j=1

Kjm +fr
λm f

2

6∑
i=1

Iim

+fr
−λm f

2

6∑
i=1

Jim

⎞
⎟⎟⎠

⎤
⎥⎥⎦

(50)

E
′

n =
p2

π

∫ π/p2

−π/p2

ϕII (r2 , θ) cos np2θ dθ

=
p2

π

⎡
⎢⎢⎣

6∑
i=1

∞∑
m=1

τ(m,n, f, i, β)
(
Iim r

λm f

2 +Jim r
−λm f

2

)

+
2∑

j=1

∞∑
m=1

τ(n,m, g, j, γ)Kjm r
λm g

2

⎤
⎥⎥⎦

(51)

G
′

n =
p2

π

∫ π/p2

−π/p2

ϕII (r2 , θ) sin np2θ dθ

=
p2

π

⎡
⎢⎢⎣

6∑
i=1

∞∑
m=1

σ(m,n, f, i, β)
(
Iim r

λm f

2 +Jim r
−λm f

2

)

+
2∑

j=1

∞∑
m=1

σ(n,m, g, j, γ)Kjm r
λm g

2

⎤
⎥⎥⎦

(52)

where τ(·) and σ(·) are defined by (53) and (54), as shown at
the bottom of the next page.

Thus, from (28) and (49), it yields

E0 lnr2 + G0 = E
′

0 (55)

Enrnp2
2 + Fnr−np2

2 = E
′

n (56)

Gnrnp2
2 + Hnr−np2

2 = G
′

n . (57)
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Fig. 8. Asynchronous harmonic components of radial flux density in middle of air gap.

Similarly, from (22), (24), and (49), one gets

E0(1 − (−1)m )
λmf

+
∞∑

n=1

np2

×
[

τ (m,n, f, i, β)
(
Enrnp2

2 − Fnr−np2
2

)
+σ (m,n, f, i, β)

(
Gnrnp2

2 − Hnr−np2
2

)
]

=
mπ

2

(
Iim r

λm f

2 − Jim r
−λm f

2

)
(58)

E0 (1 − (−1)m )
λmg

+
∞∑

n=1

np2

×
[

τ (m,n, g, j, γ)
(
Enrnp2

2 − Fnr−np2
2

)
+σ (m,n, g, j, γ)

(
Gnrnp2

2 − Hnr−np2
2

)
]

=
mπ

2
Kjm r

λm g

2 . (59)

Consequently, all the Fourier coefficients can be determined
by (38)–(47) and (55)–(59). After the scalar potentials in each
region are obtained, the flux density can be deduced by

Br = −μ0
∂ϕ

∂r
(60)

Bθ = −μ0
1
r

∂ϕ

∂θ
(61)

where Br and Bθ represent the radial and tangential components
of the flux density, respectively.

TABLE I
ASYNCHRONOUS HARMONICS

V. CALCULATION RESULTS

Fig. 5 shows the scalar potential distribution along the surface
of the FMPs (r = r2) with different initial phase angle θ0 . The
first harmonic component (PPN = 3) and the seventh harmonic
component (PPN = 21) are also shown. It can be found that when
the seventh harmonic component moves rightward by π/42 with
the rotor, the first harmonic component will move leftward by
π/6. This agrees well with the magnetic-gearing effect given
in (4).

τ(m,n, u, v,Γ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λmu

[
cos np2

(
Γv − u

2

)
− (−1)m cos np2

(
Γv +

u

2

)]

λ2
mu − (np2)

2 , (λmu �= np2)

cos np2

(
Γv − u

2

)
− (−1)m cos np2

(
Γv +

u

2

)

2 (λmu + np2)
+

u sin
(mπ

2
− λmuΓv

)

2
, (λmu = np2)

(53)

σ (m,n, u, v,Γ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λmu

[
sin np2

(
Γv − u

2

)
− (−1)m sin np2

(
Γv +

u

2

)]

λ2
mu − (np2)

2 , (λmu �= np2)

sinnp2

(
Γv − u

2

)
− (−1)m sinnp2

(
Γv +

u

2

)

2(λm u +np2 ) +
u cos

(mπ

2
− λmuΓv

)

2
, (λmu = np2)

(54)
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Fig. 6 shows the magnetic field density in the middle of the
air gap. In order to assess the validity of the proposed analyt-
ical method, the corresponding results derived from the FEM
are provided for comparison. When using the FEM, the calcula-
tion zone is divided into 11 320 triangular elements, and then the
Newton–Raphson (N–R) method combined with the incomplete
Cholesky-conjugate gradient (ICCG) algorithm is used to solve
the nonlinear equations. In order to test the infinite permeability
assumption, two cases have been taken into consideration: In
case 1, the infinite permeability assumption is adopted for the
iron yokes. In case 2, the B-H characteristic of the laminated
silicon steel (Type 50H470) is engaged for the iron yokes. The
calculated results did not show significant difference between
these two cases, which demonstrates that the infinite perme-
ability assumption is acceptable in this model. Fig. 7 illustrates
the flux line distribution obtained by using the FEM. It can
be seen that the analytical results closely agree with the FEM
results.

Fig. 8 shows the dominant asynchronous harmonic compo-
nents of the radial flux density in the middle of the air gap. Their
rotational magnitudes and the resulted gear ratios are listed
in Table I. It can be found that the first harmonic component
(PPN(1,−1) = 3) is of high strength and could result in remark-
able speed variation. More importantly, it has the same PPN
with the fundamental component of the electromagnetic field
excited by the armature windings; thus, stable torque trans-
mission and energy conversion can be achieved through their
interaction.

VI. CONCLUSION

In this paper, an analytical approach to calculate the mag-
netic field distribution in a low-speed PM harmonic machine
is developed. First, the magnetic-gearing effect from which the
harmonic machine is derived is discussed. Second, a series-
slot model which is composed of a group of partial differen-
tial equations concerning the scalar magnetic potential is built
up. Third, the field solutions are obtained by using the method
of separating variables and analyzing the field boundary con-
ditions. Finally, the flux densities are derived from the scalar
potentials. All the results agree well with those obtained from
the FEM.
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