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We present a novel approach to modified theories of gravity which consists of adding to the Einstein-

Hilbert Lagrangian an fðRÞ term constructed à la Palatini. Using the respective dynamically equivalent

scalar-tensor representation, we show that the theory can pass the Solar System observational constraints

even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to

modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the

absence of instabilities in perturbations and provide explicit models which are consistent with local tests

and lead to the late-time cosmic acceleration.
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I. INTRODUCTION

In the last ten years, modified theories of gravity in
which the Einstein-Hilbert Lagrangian is supplemented
with additional curvature terms, the so-called fðRÞ theories
[1], have been extensively studied in cosmology. More
recently, generalizations of fðRÞ gravity have been ex-
plored, namely, C theories [2] and nonminimal curvature-
matter couplings [3]. There was the hope that the addition
of new curvature terms could have an effect on the late-
time cosmic dynamics [4], thus providing a gravitational
mechanism to explain the accelerated cosmic expansion
rate. Though many of the initially proposed models natu-
rally produced the desired late-time acceleration [5], it was
soon observed that they were generically affected by seri-
ous problems. In particular, in the usual metric-variational
approach, the modified dynamics of fðRÞ theories can be
interpreted as due to a Brans-Dicke scalar field with pa-
rameter w ¼ 0 and a nontrivial potential Vð�Þ. To satisfy
the constraints imposed by laboratory and Solar System
tests, a perturbative approach indicates that the w ¼ 0
scalar should be massive, with an interaction range not
exceeding a few millimeters. Such scalars, obviously, can-
not have any impact on the cosmology. Metric fðRÞ theo-
ries, therefore, could only have a chance of being viable if,
by means of nonperturbative effects, the scalar somehow
managed to hide itself in local experiments while behaving
as a long-range field at cosmic scales. Such models are also
strongly constrained by the observation of cosmological

perturbations, and none of them seems to perform better
than general relativity (GR) with a cosmological constant.
On the other hand, fðRÞ theories have also been studied

in the Palatini approach, where the metric and the connec-
tion are regarded as independent fields [6]. In this case, the
gravitational dynamics is equivalent to aw ¼ �3=2Brans-
Dicke theory with the same potential Vð�Þ as in the metric
formulation. The w ¼ �3=2 theory is characterized by a
nondynamical scalar, which makes it completely different
from the other w � �3=2 theories in which the scalar is
dynamical and, therefore, propagates. The nondynamical
nature of the w ¼ �3=2 scalar implies that in vacuum the
theory turns into GR with an effective cosmological con-
stant �eff . This property guarantees the existence of accel-
erating de Sitter solutions at late times if �eff is small.
Despite this appealing property, all the Palatini fðRÞ mod-
els studied so far with a small �eff lead to microscopic
matter instabilities and to unacceptable features in the
evolution patterns of cosmological perturbations [6,7].
In this work we present a new class of modified theories

of gravity in which the usual Einstein-Hilbert Lagrangian
is supplemented with an fðRÞ Palatini correction. This
type of hybrid theory generically arises when perturbative
quantization methods are considered on Palatini back-
grounds [8] which, on the other hand, have interesting
connections with nonperturbative quantum geometries [9].
Already in classical gravitation, one has to specify two

connections with physically distinct roles [2], so it is
natural to consider that the action depends upon both of
the associated curvatures. Metric-Palatini theories admit a
nonstandard scalar-tensor representation in terms of a dy-
namical scalar that needs not be massive to pass laboratory
and Solar System tests. Microscopic matter instabilities are
also absent in this model because the field is very weakly
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coupled to matter. In this theory, therefore, the scalar can
play an active role in cosmology without being in conflict
with local experiments. We provide explicit examples that
illustrate these aspects.

II. SCALAR-TENSOR REPRESENTATION OF
METRIC-PALATINI GRAVITY

Consider the action

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ� þ Sm; (1)

where Sm is the matter action, �2 � 8�G,R is the Einstein-
Hilbert term, R � g��R�� is the Palatini curvature, and

R�� is defined in terms of an independent connection �̂�
��

as R�� � �̂�
��;� � �̂�

��;� þ �̂�
���̂

�
�� � �̂�

���̂
�
��.

The action (1) can be turned into that of a scalar-tensor
theory by introducing an auxiliary field A such that

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðAÞ þ fAðR� AÞ� þ Sm; (2)

where fA � df=dA. Rearranging the terms and defining
� � fA, Vð�Þ ¼ AfA � fðAÞ, the action (2) becomes

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ�R� Vð�Þ� þ Sm: (3)

Variation of this action with respect to the metric, the
scalar �, and the connection leads to

R�� þ�R�� � 1
2ðRþ�R� VÞg�� ¼ �2T��; (4)

R � V� ¼ 0; (5)

r̂ �ð ffiffiffiffiffiffiffi�g
p

�g��Þ ¼ 0; (6)

respectively. The solution of Eq. (6) implies that the inde-
pendent connection is the Levi-Civita connection of a
metric t�� ¼ �g��. This means that R�� and R�� are

related by

R �� ¼ R�� þ 3

2�2
@��@��� 1

�
ðr�r��þ 1

2
g��h�Þ

(7)

, which can be used in Eq. (3) to obtain the following scalar-
tensor theory:

S¼
Z d4x

ffiffiffiffiffiffiffi�g
p
2�2

�
ð1þ�ÞRþ 3

2�
@��@���Vð�Þ

�
þSm:

(8)

This action differs from thew ¼ �3=2Brans-Dicke theory
in the coupling of the scalar to the curvature, which in the
w ¼ �3=2 theory is of the form �R. As we will see, this
simple modification will have important physical conse-
quences. By using the expression for R�� and Eq. (5),

Eq. (4) can be written as

ð1þ�ÞR�� ¼ �2

�
T�� � 1

2
g��T

�
þ 1

2
g��ðV þh�Þ

þ r�r��� 3

2�
@��@��: (9)

The scalar-field equation can be manipulated in two differ-
ent ways which illustrate how this theory is related with the
w ¼ 0 and w ¼ �3=2 Brans-Dicke theories. Contracting
Eq. (4) with g�� and using Eq. (5), we find

2V ��V� ¼ �2T þ R: (10)

Similarly as in the Palatini (w ¼ �3=2) case, Eq. (10) tells
us that � can be expressed as an algebraic function of the
scalar X � �2T þ R, i.e., � ¼ �ðXÞ. In the pure Palatini
case, however,� is just a function of T. The right-hand side
of Eq. (9), therefore, besides containing new matter terms
associated with the trace T and its derivatives, also contains
the curvature R and its derivatives. Thus, this theory can be
seen as a higher-derivative theory in both the matter fields
and the metric. However, an alternative interpretation
without higher-order derivatives is possible if R is replaced
in Eq. (10) with the relation R ¼ Rþ ð3=�Þh��
ð3=2�2Þ@��@��, together with R ¼ V�. One then finds

that the scalar field is governed by the second-order evolu-
tion equation

�h�þ 1

2�
@��@��þ�½2V � ð1þ�ÞV��

3
¼ ��2

3
T:

(11)

This latter expression shows that, unlike in the Palatini
case [6], the scalar field is dynamical and not affected by
the microscopic instabilities found in Palatini models with
infrared corrections.

III. WEAK-FIELD, SLOW-MOTION BEHAVIOR

The effects of the scalar field � on the Solar System
dynamics can be determined by studying the weak-field
and slow-motion limit of Eqs. (9) and (11). To do this, we
consider an expansion of the metric and the scalar field
about a cosmological solution, which sets the asymptotic
boundary values, using a quasi-Minkowskian coordinate
system, in which g�� � ��� þ h��, with jh��j � 1.

Denoting the asymptotic value of � as �0 and the local
perturbation as ’ðxÞ, to linear order, Eq. (11) becomes

ð ~r2 �m2
’Þ’ ¼ �0�

2

3
	; (12)

where m2
’ � ð2V � V� ��ð1þ�ÞV��Þ=3j�¼�0

, and we

have neglected the time derivatives of ’ (slow-motion
regime). Imposing standard gauge conditions, the pertur-
bations h�� ¼ g�� � ��� satisfy the following equation:
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� 1

2
~r2
h�� ¼ 1

1þ�0

�
T�� � 1

2
T���

�
þ V0 þ ~r2

’

2ð1þ�0Þ���;

(13)

where, to this order, T00 ¼ 	, Tij ¼ 0, T ¼ �	. Far from

the sources and assuming spherical symmetry, the solu-
tions to Eqs. (12) and (13) lead to (M ¼ R

d3x	ðxÞ)

’ðrÞ ¼ 2G

3

�0M

r
e�m’r (14)

hð2Þ00 ðrÞ ¼
2GeffM

r
þ V0

1þ�0

r2

6
(15)

hð2Þij ðrÞ ¼
�
2
GeffM

r
� V0

1þ�0

r2

6

�
�ij; (16)

where we have defined the effective Newton constant Geff

and the post-Newtonian parameter 
 as

Geff � G

1þ�0

½1� ð�0=3Þe�m’r�; (17)


 � 1þ ð�0=3Þe�m’r

1� ð�0=3Þe�m’r
: (18)

As is clear from the above expressions, the coupling of
the scalar field to the local system depends on the ampli-
tude of the background value �0. If �0 is small, then
Geff � G and 
 � 1 regardless of the value of the effective
mass m2

’. When this mass squared becomes negative, the

exponential terms in the above expressions become cosi-
nus. This contrasts with the result obtained in the metric
version of fðRÞ theories [10]. In that case, one finds
’ ¼ ð2G=3ÞðM=rÞe�mfr, Geff � Gð1þ e�mfr=3Þ=�0,
and 
 � ð1� e�mfr=3Þ=ð1þ e�mfr=3Þ, which requires a
large mass m2

f � ð�V�� � V�Þ=3 to make the Yukawa-

type corrections negligible in local experiments. This may
be achieved in specific models implementing the chame-
leon mechanism [11]. We note that the massless limit of the
results derived in this section are in complete agreement
with the analysis of Ref. [12] for general massless scalar-
tensor theories.

IV. LATE-TIME COSMIC SPEEDUP

As a specific example of modified cosmological dynam-
ics, we consider the spatially flat Friedman-Robertson-
Walker metric

ds2 ¼ �dt2 þ a2ðtÞdx2; (19)

where aðtÞ is the scale factor. The Ricci scalar is given by
R ¼ 6ð2H2 þ _HÞ, where H ¼ _aðtÞ=aðtÞ is the Hubble
parameter, and _a � da=dt. With this metric, Eq. (9) yields
the following evolution equations:

3H2 ¼ 1

1þ�

�
�2	þ V

2
� 3 _�

�
H þ

_�

4�

��
; (20)

2 _H ¼ 1

1þ�

�
��2ð	þ PÞ þH _�þ 3

2

_�2

�
� €�

�
: (21)

The scalar-field equation (11) becomes

€�þ3H _��
_�2

2�
þ�

3
½2V�ð1þ�ÞV��¼���2

3
ð	�3PÞ:

(22)

The qualitative behavior of the scalar field can be read
directly from Eq. (22) by writing the latter as follows:

€�þ 3H _��
_�2

2�
þM2

�ðTÞ� ¼ 0; (23)

where T ¼ �ð	� 3PÞ, and we have defined M2
�ðTÞ as

M2
�ðTÞ�m2

�� 1
3�

2T¼ 1
3½2V�ð1þ�ÞV���2T�; (24)

which, despite the notation, needs not be a positive func-

tion. Aside from the _�2=� term, which is only important
when � is very rapidly changing, Eq. (23) represents a
massive scalar field on a Friedman-Robertson-Walker
background. During the matter-dominated era (T ¼ �	),
the cosmic fluid contributes to the oscillation frequency of

the scalar, while the friction term 3H _� forces a progressive
damping of its amplitude. At late times, when T � 0, the
sign ofm2

� determines whether the field oscillates or grows

exponentially fast. This aspect is model-dependent and
will be considered next.

A. Two models

We now propose two models that are consistent at Solar
System and cosmological scales and which are constructed
on grounds of mathematical simplicity. A quantitative
analysis of the high-precision astrophysical and cosmo-
logical data will be carried out elsewhere to find and
constrain more general families of models within the
metric-Palatini framework.
The first model arises by demanding that matter and

curvature satisfy the same relation as in GR. Taking

Vð�Þ ¼ V0 þ V1�
2; (25)

Eq. (10) automatically implies R ¼ ��2T þ 2V0. As
T ! 0 with the cosmic expansion, this model naturally
evolves into a de Sitter phase, which requires V0 �� for
consistency with observations. If V1 is positive, the
de Sitter regime represents the minimum of the potential.
The effective mass for local experiments, m2

’ ¼
2ðV0 � 2V1�Þ=3, is then positive and small as long as�<
V0=V1. For sufficiently large V1, one can make the field
amplitude small enough to be in agreement with Solar
System tests. It is interesting that the exact de Sitter

METRIC-PALATINI GRAVITY UNIFYING LOCAL . . . PHYSICAL REVIEW D 85, 084016 (2012)

084016-3



solution is compatible with dynamics of the scalar field in
this model.

A second model can be found by rewriting Eq. (20) as

�
H þ

_�

2ð1þ�Þ
�
2 ¼ �2	þ V=2

3ð1þ�Þ �
_�2

4�ð1þ�Þ2 (26)

and looking for late-time solutions, with

H þ
_�

2ð1þ�Þ ¼
~H0 ¼ constant; (27)

which leads to

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p ¼ a0e
~H0t: (28)

When 	 ! 0, the evolution equations and _~H0 ¼ 0 lead to
�
~H2
0 �

V

6

�
2 ¼ 9 ~H2

0�

�
V

6ð1þ�Þ �
~H2
0

�
; (29)

from which one obtains

Vð�Þ ¼ 3 ~H2
0

ð1þ�Þ ½2þ 11�� 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4�

p �: (30)

Remarkably, there are no free parameters in this model
except for its amplitude ~H2

0, which should be of the same
order as the currently estimated cosmological constant, and
the sign in front of the squared root. For the minus sign, we
find that m2

’ is positive and of order � ~H2
0 for small �,

which provides another model with a long-range scalar
consistent with local tests and late-time cosmic speedup.

B. Cosmological perturbations

It should be noted that due to the appearance of an
effective sound speed for matter perturbations, most pure
Palatini-fðRÞ models can be ruled out as dark-energy
candidates [7]. In the metric-Palatini approach presented
here, however, such Laplacian instabilities are absent. Let
us describe the relative perturbation of the matter distribu-
tion in a dust-dominated universe by � � �	= �	, where �	
is the smooth background and �	 the inhomogeneous part.
Allowing also the metric and the scalar field to fluctuate,
one can consistently consider the evolution of perturba-
tions. At subhorizon scales, that is described by

€�þ 2H _� ¼ 4�Geff �	�; Geff � 1��=3

1þ�
G: (31)

In accordance with Eq. (17), the effective Newton’s con-
stant becomes now time-dependent at cosmological scales.
This modifies the growth rate of perturbations and opens
the possibility to distinguish between models with simi-
larly accelerating background, e.g. Ref. [13]. In addition,
effective anisotropic stresses will appear, which could be
detected in future weak lensing surveys such as the Euclid
mission.

One may also verify that, in vacuum, the fluctuations ��
in the effective field � at small scales propagate with the
speed of light. Thus, despite the nonstandard coupling of
the scalar field, its perturbations behave physically.

V. CONCLUSIONS

In this work, we have considered a class of modified
gravity actions where the corrections to the Einstein-
Hilbert term are given by a function of the Ricci scalar
constructed from an a priori metric-independent connec-
tion. We have shown that the theory admits a scalar-tensor
representation which possesses a new mechanism to pass
the Solar System constraints even if the scalar field is very
light. This can be seen from the first-order Post-Newtonian
corrections to the metric given in Eqs. (14)–(16).
If the current cosmic amplitude �0 is sufficiently small,
j�0j � 1, a long-range scalar field able to affect the cos-
mic and galactic dynamics can also be compatible with the
Solar System dynamics.
Motivated by mathematical simplicity, we have pre-

sented two cosmological models with asymptotically
de Sitter behavior. In both cases, the early time evolution
also seems consistent with the well-known radiation and
matter-dominated phases of the cosmic evolution. The
potential (30) had only one adjustable parameter, which
is set by the observed scale of acceleration. The simpler
potential (25) included also the parameter fixing the mag-
nitude of the quadratic correction. A quantitative analysis
of structure formation and cosmic microwave background
anisotropies can thus be used to test the viability of this and
other models.
Before concluding, we point out that a modified

gravitational potential of the form � ¼ �GM½1þ
�0 expð�r=r0Þ�=ð1þ �0Þr, with �0 ¼ �0:9 and r0 �
30 kpc [14] provides a very good description of the flat
rotational curves of a significant sample of galaxies. The
form of the weak-field potentials of the metric-Palatini
hybrid model considered in this work share an interesting
formal resemblance with this proposal. Thus, in addition to
passing the Solar System constraints, the theory considered
in this work may open new possibilities to the approach, in
the same theoretical framework, of both dark-matter and
dark-energy problems. Also, such aspects as future singu-
larities [15] would be interesting study in the hybrid theory.
Further work along these lines is presently underway.
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