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Abstract: In spectral-domainoptical coherence tomography (SD-OCT),
data samples are collected nonuniformly in the wavenumber domain,
requiring a measurement re-sampling process before a conventional fast
Fourier transform can be applied to reconstruct an image. This re-sampling
necessitates extra computation and often introduces errors in the data.
Instead, we develop an inverse imaging approach to reconstruct an SD-OCT
image. We make use of total variation (TV) as a constraint to preserve the
image edges, and estimate the two-dimensional cross-section of a sample
directly from the SD-OCT measurements rather than processing for each
A-line. Experimental results indicate that compared with the conventional
method, our technique gives a smaller noise residual. The potential of
using the TV constraint to suppress sensitivity falloff in SD-OCT is also
demonstrated with experiment data.
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1. Introduction

Comparedwith other biomedical imaging technologies, optical coherence tomography (OCT)
has the advantages of a relatively high resolution but a relatively low set-up cost, making it
a very successful imaging modality to migrate from research to industry products [1, 2, 3].
To date, OCT technology has been through three generations: time-domain OCT (TD-OCT),
spectral-domain OCT (SD-OCT), and swept-source OCT (SS-OCT) [4, 5]. Resolution of an
OCT system has been improved from 10∼ 20µm to severalµm. Data acquisition speed has
also increased from 2 A-lines per second in 1991 to 480,000 A-lines per second in 2011 [6]. The
applications of OCT also extend from ophthalmology to other areas such as endoscopy, coro-
nary atherosclerosis, dermatology, dental, pulmonary medicine, gynecology, and urology [2,7].
Among the three kinds of OCT systems, SD-OCT and SS-OCT have the advantage of a higher
signal-to-noise ratio (SNR) and a higher sensitivity at a large depth position compared to TD-
OCT [8,9].
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In an SD-OCT system, the measurements are collected uniformly in wavelengthλ . This is
because the measurement device, a spectrometer, operates by tuning to different wavelengths.
On the other hand, in reconstructing the image, we use a Fourier transform of the measure-
ment with respect to the wavenumberk, wherek = 2π/λ . Therefore, the measurements are
in fact nonuniform samples ink-space [10]. Customarily, the SD-OCT measurements undergo
a resampling process to generate a uniformly-spaced data ink-space, where the resampling
is achieved through linear, or cubic, interpolations [10, 11]. However, these methods need to
face various challenges, such as improving system sensitivity falloff along the depth direction,
increasing system local SNR, or suppressing sidelobe artifacts [12,13].

An alternative to the re-sampling process is recently developed, which makes use of the
non-uniform discrete Fourier transform (NUDFT) for SD-OCT signal reconstruction [12, 13,
14]. NUDFT is a modified version of the discrete Fourier transform, aiming to compute DFT
directly on those signal points that are not uniformly sampled [15, 16]. It has been shown that
with NUDFT, the reconstructed signal in SD-OCT presents less sensitivity falloff at the deeper
position [13]. However, this gain comes at the expense of a slower computation speed. Fast
versions of NUDFT are developed with GPU programming [12], but they tend to sacrifice some
reconstruction quality. Other approaches to deal with the nonuniformly sampling issue include
the development of a more sophisticated linear-in-wavenumber (linear-k) spectrometer [17] for
measurement collection.

In this paper, we present a purely computational alternative by using inverse imaging [18].
We model the SD-OCT system with a set of linear equations, and by solving an inverse problem
we can also directly reconstruct a cross-section of the sample instead of estimating each A-
line independently. Because of the ill-posedness of the inverse problem, we need to impose a
regularization term in the optimization function. In this work, we use the total variation (TV)
norm in the regularization [19,20,21], which is known to enhance the edges in the images and
reduce the background noise [22,23].

The paper is organized as follows. In Section 2, we develop the model of the SD-OCT sys-
tem. Then, in Section 3, we discuss the TV method used for signal reconstruction. In Section 4,
experimental results are presented to demonstrate the feasibility and advantages of our tech-
nique. Concluding remarks are then given in Section 5.

2. SD-OCT system modeling

Fig. 1 shows an SD-OCT system. A low coherence Superluminescent Diode (SLD) is used as
an illumination source. Most of the source light is split equally through the coupler into a refer-
ence arm and a sample arm. Then, the reflected beams from a reference mirror and the beams
reflected from the sample are coupled again into a detecting arm for signal detection. In the
detecting arm, a spectrometer consisting of a grating and a line-scan CCD is used for collect-
ing measurements. During a detector exposure, each pixel of the CCD collects a measurement
corresponding to one source wavelength. With all pixels of the CCD, the data for one A-line
along a sample’s axial direction are collected. To obtain all A-line data of a sample, two galvano
mirrors, labeled GM1 and GM2, are used to scan through the sample’s transversal plane.

Let Ĩ(k) be the system measurement as a function of the wavenumberk, andG(k) the source
power spectrum. The SD-OCT system measurements for one A-line is [10]

Ĩ(k) = G(k)

{

p2
r +2

∫ ∞

0
pr ps(z)cos(2askz) dz+

∫ ∞

0

∫ ∞

0
ps(z)ps(z

′)ej2kas(z−z′) dz dz′
}

, (1)

wherepr is the reflective ratio of the reference mirror (normally we takepr = 1), ps(z) is the
reflective ratio of the sample varying with depth valuez, as is the sample refractive index (also
assumed to be unity), and j=

√
−1. Eq. (1) consists of three terms. The first term corresponds to
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Fig. 1. The SD-OCT system diagram.

the reflected light from the reference mirror, the second term records the interference between
the reflected lights from the mirror and the sample, while the third term is the cross-interference
between the reflected lights from different sample layers. Of the three, the second term is the
most important, and from it we aim to reconstruct the sample signalps(z).

Conventionally, the signalps(z) is further assumed to be symmetric with respect toz = 0,
and therefore it can be estimated from measurementsĨ(k) using the fast Fourier transform
(FFT) [13]. On the other hand, we note that if the source spectrumG(k) can be estimated
independently, we can substractG(k)p2

r (sincepr = 1) from Eq. (1) and represent the last term
as an errore(k), which is usually small compared with the other two terms. Thus, the SD-OCT
measurement is simplified to

I(k) = 2G(k)
∫ ∞

0
ps(z)cos(2kz) dz+ e(k). (2)

In the discrete domain, this measurement can be written as

I(km) = 2G(km)
N−1

∑
n=0

ps(zn)cos(2kmzn)+ e(km), (3)

where we have discretized toN sections in the axial direction, andm∈ {0,1, . . . ,M−1}denotes
themth pixel of the line-scan CCD camera. The value ofN is not required to be the same asM,
which is different from the FFT or NUDFT methods. However, the largestN should be limited
by the largest detectable depth, which is determined by the spectrometer’s spectral resolution.
Writing Eq. (3) into a matrix formulation, we have











I(k0)
I(k1)

...
I(kM−1)











=











H0,0 H0,1 · · · H0,N−1

H1,0 H1,1 · · · H1,N−1
...

...
. . .

...
HM−1,0 HM−1,1 · · · HM−1,N−1





















ps(z0)
ps(z1)

...
ps(zN−1)











+











e(k0)
e(k1)

...
e(kM−1)











,

(4)
whereHm,n = 2G(km)cos(2kmzn).

To write the above compactly, we usey = [I(k0) I(k1) . . . I(kM−1)]
T , x =

[ps(z0) ps(z1) . . . ps(zN−1)]
T , ande = [e(k0) e(k1) · · · e(kM−1)]

T to represent the SD-OCT
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measurement vector, one A-line sample signal, and the detection error vector, respectively. Ma-
trix H is defined as the SD-OCT system impulse response matrix withHm,n in the (m,n)th
position. Using these notations, we can write the measurement process asy = Hx + e. This
formulation represents the basic idea for the FFT and NUDFT methods as well. Furthermore,
the SD-OCT measurements forL number of A-lines can be represented as

Y = HX+E, (5)

where matricesY and E are of sizeM × L, andX is of sizeN × L. Each column of these
quantities represents the measurement for one A-line.

3. Signal reconstruction using TV regularization

From Eq. (5), our task is to reconstructX given the observationY and the systemH. This is an
inverse problem. We solve it by minimizing the Frobenius norm [24] (which is equivalent to
theℓ2 norm for a vector) for signal fidelity together with a total variation regularization, i.e.

Xmin = argmin
X

‖HX−Y‖2
F +α‖X‖TV , (6)

whereα > 0 is a penalty parameter, and‖X‖TV is the total variation ofX defined as

‖X‖TV =
N−1

∑
n=0

L−1

∑
l=0

√

|(∇nX)n,l)|2 + |(∇lX)n,l)|2, (7)

with (∇nX)n,l = Xn+1,l−Xn,l if n < N−1 and is zero whenn = N−1, and(∇lX)n,l = Xn,l+1−
Xn,l if l < L−1 and is zero whenl = L−1.

Several approaches exist to solve this minimization problem. In our work, we make use of
the augmented Lagrangian technique, which has shown to be a fast converging TV method [25],
and with results comparable to other TV minimization techniques [26]. We incorporate an
additional intermediate matrixU such that we solve for

(Xmin,Umin) = argmin
X,U

‖HX−Y‖2
F +α1‖X−U‖2

F +α2‖U‖TV , (8)

whereα1 > 0 andα2 > 0 are two predefined positive penalty parameters. We then use an
alternating minimization algorithm where each iteration consists of the following two steps:
(using the superscript(i) to denote theith step)







X
(i) = argmin

X

‖HX−Y‖2
F +α1‖X−U

(i−1)‖2
F

U
(i) = argmin

U

α1‖X(i) −U‖2
F +α2‖U‖TV

. (9)

Conjugate gradient (CG) and Chambolle’s projection algorithms are used to search forX
(i)

andU
(i), respectively. Details about these two algorithms can be found in [26,27,28,29]. Note

that the usage of the matrixU does not change the minimization problem in Eq. (6), but is
there to improve the convergence. In addition, we use the difference betweenX

(i) andU
(i) as

a stop criteria for the iterative algorithm. The parametersα1 andα2 are used to balance the
measurement error and the TV regularization penalty in Eq. (8). Largeα1 andα2 values are for
the case of a high measurement error. However, if they are set at very big values, the images
will be significantly smoothed in the reconstruction process.
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Fig. 2. (a) Raw measurementsĨl(km), where each A-line is represented by a different color.
(b) The averaged Fourier transform ofĨl(km). (c) The estimated source power spectrum.
(d) I(km) after adjustment.

4. Experimental results

Our SD-OCT system is equipped with a SLD source with the center wavelength of 850nm,
a bandwidth of 50nm, and a Gaussian-shaped power spectrum. In air, the system has a depth
resolution of 6.38µm, and a maximum detectable depth of 2.42mm. The mirror in the refer-
ence arm is silver-coated with a two-inch diameter. System measurements are collected using
a customized spectrometer consisting of a one-inch volume-phase holographic (VPH) grating
and a line-scan camera. As depicted in Fig. 1, the camera and the galvano mirrors are controlled
by a computer.

In the first experiment, 800 A-lines with 2048 samples per A-line are collected for a cross-
sectional image of a metal plate sample. This metal plate represents defective industry elements
with air cavities inside. Fig. 2(a) presents these raw measurements. To reconstruct the sample
signal, first we need to estimate the source power spectrumG(km) from the raw data. We note
that the raw measurements, denotedĨl(km), resemble a Gaussian-shaped low-frequency signal
modulated by high-frequency components. The former originates from the SLD source power
spectrumG(km), while the high-frequency components are the interference signals represented
by the second and third terms in Eq. (1), together with detector noise. These can be suppressed
by a lowpass filter when our objective is to estimateG(km).

To reduce the detector noise, we first average the 800 A-lines we acquired. Because the
Fourier transform of a Gaussian function is also Gaussian, the cut-off frequencies of the low-
pass filter are chosen as the first pair of zero points in the averaged transform result. We then
obtain the estimated source power spectrum,Gest(km), from the inverse Fourier transform of
the filtered signal. Fig. 2(b) and (c) present the averaged transformation and the spectrum es-
timation, respectively. Subtracting the latter from the system raw measurements, we have the
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Fig. 3. Reconstruction using (a) the FFT, (b) the NUDFT, and (c) the TV regularization.

800“adjusted” A-line measurementsI(km) as plotted in Fig. 2(d). For each A-line,I(km) can
now be deemed a linear combination ofps(zn) using Eq. (3).

Next, we note thatI(km) also has an envelope of a Gaussian function due toG(km). However,
the envelope is not symmetric with respect to zero, which seems to contradict the symmetry of
the cosine function inH of Eq. (5). In fact, this is caused by several factors. Chief among them
is the interference between different sample layersps(zn), represented by the third term of Eq.
(1). We can re-write this term as

(

∫ ∞

0
ps(z)e

j2kasz dz

)(

∫ ∞

0
ps(z

′)e−j2kasz′ dz′
)

=

∣

∣

∣

∣

∫ ∞

0
ps(z)e

j2kasz dz

∣

∣

∣

∣

2

, (10)

where the values ofps(z) are real. This nonnegative term shifts the measurement envelope to-
wards the positive side with respect to zero. Other factors causing the asymmetric envelope
include the detector noise, quantization error in data acquisition, and detector nonlinear respon-
sivity. All of these limit the reconstruction performance of the TV regularization.

At this point, we compare three different methods to reconstruct the sample signal. The
first is the conventional FFT method where the measurements for each A-line are resampled
before the transformation. The second uses the NUDFT, where the reconstructed signal for one
A-line is obtained by multiplying the measurement vectory with a matrix Ĥ, with elements
Ĥm,n = exp(− jkmzn) [12,13,14]. The third uses the TV regularization detailed in the previous
section. We chooseα1 = 20 andα2 = 100. Totally 80 iterations are used for the algorithm
defined in Eq. (9). The cross-sectional sample reconstructions using these three methods are
presented in Fig. 3. The horizontal and vertical directions are the A-line (l) and the index of the
depth (n), respectively.

When we compare the NUDFT with the FFT, the former improves the reconstruction quality,
especially in the large depth area marked by the white dash lines. However, with TV regulariza-
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Fig. 4. One line of the reconstructed signals using FFT, NUDFT, and TV along (a) the axial
direction and (b) the transversal directions.

tion, the reconstructed image preserves the sample signal and presents much less noise residue,
delivering a better SNR than the other two existing methods. Note that SNR here refers to the
difference between the desired sample signalps(z) and any remaining error in the reconstruc-
tion. BecauseG(km)p2

r or the signal from the reference mirror has been subtracted from the
system raw measurementĨ(km), this SNR is different from the value obtained by comparing
the reconstruction using a mirror sample and the signal by simply detecting the reflection from
the reference arm [9]. To have a better visualization of these results, we plot the signals for
the A-line atl = 150 in Fig. 4(a), and at the depth positionn = 425 in (b). The smoothness of
the results corresponding to the TV regularization suggests that it minimizes fluctuations in the
signal.

Furthermore, the TV method discussed in this paper focuses on improving OCT system
reconstruction performance. The gain demonstrated here comes at the expense of computation
speed. In our Matlab code for the FFT, NUDFT, and TV methods, the computation time using
the TV method to reconstruct an image consisting of 1000 A-lines with 2048 measurements
per A-line is slightly shorter than 35 minutes. For the same image, it takes about half a minute
using either the FFT or NUDFT method. We observe roughly the same order of computation
time in the following experiments.

In a second experiment, we investigate the effect of the TV regularization to an important
SD-OCT system property, namely, sensitivity falloff. We obtain the data for a cross-section of a
silver plate and reconstruct using the three methods discussed above. We capture 1000 A-line,
each with 2048 measurements. The parametersα1 andα2 for the TV regularization are still
α1 = 20 andα2 = 100. We use 100 iterations to obtain the reconstruction result. Fig. 5 presents
the reconstructed signals and their zoomed-in views.
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Fig. 5. Reconstructions using (a) the FFT, (c) the NUDFT, and (e) the TV regularization.
Zoomed-in views of the reconstructions using (b) the FFT, (d) the NUDFT, and (f) the TV
regularization.

A general trend in Fig. 5 is that as the depth valuezn increases, as evident from the slanted
lines approaching the left, errors such as the vertical line segment indicated by the arrows in
Fig. 5(b) appear in the reconstruction. This is because the wavenumberk is inversely propor-
tional to the wavelengthλ , and therefore a uniformly-spacedλ corresponds to fewer measure-
ments in the region wherek is large. As a result, more reconstruction error exists in a larger
depth. The situation is considerably better with NUDFT and TV. If we compare Fig. 5(c) with
(e), we see that the reconstruction using the TV regularization presents much less noise residue
than using NUDFT, consistent with the earlier experiment.

Now to study sensitivity falloff, we make use of Fig. 5(b), (d), and (f), and pick 3 A-lines
where the two slanted lines appear in various depths. The lines we selected are atl = 9 (for deep
in the sample),l = 601 (intermediate), andl = 930 (shallow). Notice that in these images, we
masked out the places far from the two slanted lines. For example, forl = 9, we only selected
n from about 660 to 760; forl = 601, roughly for 460< n < 560; and forl = 930, around
350< n < 450. The 3 A-lines for the different methods are presented in Fig. 6. As shown in
(c) for the TV regularization, two peaks corresponding to the two layers in the sample can
be observed clearly in the reconstruction, whether for deep, intermediate, or shallow regions.
In contrast, for FFT and NUDFT, the two peaks corresponding to the intermediate and deep
regions are difficult to be identified. We locate the value ofn for each peak in Fig. 6(c). Then
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Fig. 6. Zoom-in reconstructed signals atl = 9, 601, and 930 using (a) the FFT, (b) the
NUDFT, (c) the TV regularization.

Table 1. Normalized peak values (dB) of the reconstructed signal in Fig. 6.

FFT NUDFT TV

l = 930
n = 384 −5.60 0 −1.68
n = 410 −3.54 −2.33 0

l = 601
n = 497 −14.59 −3.87 −6.12
n = 525 −1.06 −1.37 −0.60

l = 9
n = 704 −21.68 −16.23 −12.91
n = 733 −9.50 −0.52 −3.05

min - max (dB) −20.62 −16.23 −12.91

ps(zn) at these locations using the three methods are summarized in Table 1. Note that,n =
384, 497, and 704 are for the first sample layer, while the other three are for the second layer.
As expected, generallyps(zn) becomes smaller asn increases or the depth is enlarged. For
example, for the first layer, asn increases from 384 to 704, the normalizedps(zn) decreases from
−5.60dB to−21.68dB in the FFT method, from 0dB to−16.23dB in the NUDFT method, and
from−1.68dB to−12.91dB in the TV method. However, the difference between the minimum
and maximumps(zn) varies with the three schemes. The smallest is the 12.91dB in the TV
method, which is 3.32dB smaller than that for NUDFT (16.23dB) and 7.71dB smaller than
that for FFT (20.62dB).

In Fig. 7, we present the reconstruction results obtained using the three methods for an orange
flesh and a pearl sample. The former is located at a small depth position, while the pearl sample
has a large depth. We still use 100 iterations in the TV method. The parameters used in the
method areα1 = 20 andα2 = 100. Comparing the three reconstructions for the orange flesh
sample, the TV regularization shows the best reconstruction quality. In the reconstruction using
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Fig. 7. Reconstructions for an orange flesh and a pearl using (a-b) the FFT, (c-d) the
NUDFT, and (e-f) the TV regularization.

the FFT method for the pearl sample, once again we observe the artifact at a large depth region,
which does not exist in the other two reconstruction schemes. For the pearl sample we also
observe speckle noise. This is suppressed with TV regularization, because TV acts as a prior to
enhance the edges and reduce random noise.

In the last experiment, we use a fingernail sample to test the three methods. Reconstruction
results are presented in Fig. 8. Once again, we observe the TV method improves the recon-
struction quality, especially in the large depth area pointed by the green arrow. With all of these
studies, we can therefore conclude that TV regularization has less falloff, and shows better
edge performance. It is a purely computational approach to improve the SD-OCT system per-
formance. It has the advantage of a lower cost because there is no need for additional hardware.

#162387 - $15.00 USD Received 1 Feb 2012; revised 7 Mar 2012; accepted 9 Mar 2012; published 21 Mar 2012
(C) 2012 OSA 1 April 2012 / Vol. 3,  No. 4 / BIOMEDICAL OPTICS EXPRESS  751



(a) z1 = 1.32mm

100µm

(b)

100µm

(c) z1 = 1.32mm

100µm

(d)

100µm

(e) z1 = 1.32mm

100µm

(f)

100µm

Fig. 8. Reconstructions for a fingernail sample using (a-b) the FFT, (c-d) the NUDFT, and
(e-f) the TV regularization.

5. Conclusions

In this work, we use a linear system of equations to model the SD-OCT measurements, and
reconstruct the image from nonuniformly sampled signal via solving an inverse imaging prob-
lem. With a TV constraint as the regularization, we show that this method provides a better
noise suppression and delivers a better contrast compared to the conventional FFT-based and
NUDFT-based methods. Furthermore, we can reduce the system’s sensitivity falloff using the
TV regularization. In addition, by modifying the model parameters, the inverse imaging method
can also be used for other OCT systems besides SD-OCT.
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