

A MULTIPLE LEVEL DETECTION
APPROACH FOR DESIGN

PATTERNS RECOVERY FROM
OBJECT- ORIENTED PROGRAMS

MOHAMMED GHAZI KATTAR AL-OBEIDALLAH

A thesis submitted in partial fulfilment of the

requirements of the University of Brighton

for the degree of Doctor of Philosophy

January 2018

ii

able of Contents

Acknowledgments.. vi
Declarations .. vii
Abstract .. viii
Abbreviations .. ix
List of Figures .. xi
List of Tables ... xiii

Chapter 1: Introduction
1.1 An Overview of Software Development ... 3
1.2 Software Architecture .. 4

1.2.1 Software Architecture Design ... 5
1.2.2 Software Architecture Documentation .. 6

1.3 Software Reengineering ... 7
1.4 Design Patterns .. 10
1.5 Software Quality Attributes .. 12

1.5.1 McCall’s Quality Model .. 12
1.5.2 Boehm’s Quality Model .. 12
1.5.3 ISO Quality Model .. 13
1.5.4 Other Quality Models ... 15

1.6 Motivation ... 15
1.7 Aims and Objectives .. 18
1.8 Research Questions ... 18
1.9 Contribution to Knowledge ... 19
1.10 Thesis Organization ... 20
1.11 Summary ... 21

Chapter 2: Literature Review
2.1 Introduction ... 22
2.2 Overview of Detection Approaches .. 23

2.2.1 Database-Query Approaches .. 24
2.2.1.1 Rasool et al. Approach ... 24
2.2.1.2 Stencel and Wegrzynowicz Approach 24
2.2.1.3 Marek Vokac Approach .. 25
2.1.1.4 SPOOL .. 25

T

iii

2.2.2 Metrics-Based Approaches .. 25
2.2.2.1 MAISA .. 27
2.2.2.2 FUJABA ... 28
2.2.2.3 Antoniol et al. Approach ... 29
2.2.2.4 Detten and Becker Approach .. 29
2.2.2.5 Uchiyama Technique ... 29

2.2.3 UML Structure, Graph and Matrix-Based Approaches 31
2.2.3.1 Seeman and Gudenberg Approach 31
2.2.3.2 DEPAIC++ ... 31
2.2.3.3 Columbus ... 31
2.2.3.4 Similarity Scoring Approach ... 32
2.2.3.5 DP-Miner .. 35
2.2.3.6 Sub-Patterns Approach .. 39

2.2.4 Miscellaneous Approaches .. 41
2.2.4.1 Kraemer and Prechelt Approach 41
2.2.4.2 PTIDEJ .. 41
2.2.4.3 CrocoPat .. 44
2.2.4.4 SPQR .. 46
2.2.4.5 PINOT .. 47
2.2.4.6 DeMIMA ... 49
2.2.4.7 DPRE ... 53
2.2.4.8 MARPLE .. 55
2.2.4.9 Sempatrec ... 56

2.3 Analysis and Discussion .. 61
2.3.1 Intermediate Representation of the Source Code 61
2.3.2 Subject Systems .. 62
2.3.3 Recovered Design Patterns ... 65
2.3.4 Evaluation Criteria ... 66

2.4 Reported Impact of Design Patterns .. 68
2.5 Lessons Learned ... 79
2.6 Summary ... 80

Chapter 3: Methodological Approach
3.1 Introduction .. 82
3.2 Research Methodology .. 84
3.3 The Catalog of Design Patterns ... 85

 3.3.1 Design Pattern Elements .. 85
 3.3.2 Design Pattern Classifications... 86

3.4 MLDA Architecture ... 87

iv

 3.4.1 Parsing Level .. 89
 3.4.2 Searching Level ... 93
 3.4.3 Method Signatures Matching Level .. 97

3.5 Summary ... 98

Chapter 4: Structural Search Model Evaluation
4.1 Introduction .. 85
4.2 Experiments Setup ... 86

 4.2.1 Subject Systems ... 86
 4.2.2 Effectiveness Evaluation ... 88
 4.2.3 Results Validation ... 89

4.3 Recovering Design Pattern Instances .. 89
 4.3.1 Parsing and Source Code Model Generation 89
 4.3.2 Recovering Accuracy .. 93

4.4 Results Comparison ... 98
4.5 Threads to Validity ... 98
4.6 Summary ... 99

Chapter 5: Method Signatures Matching
5.1 Rule-Based Systems .. 116

 5.1.1 Motivation ... 120
 5.1.2 Rule-Based Systems and Design Patterns 121

5.2 CLIPS .. 123
 5.2.1 Rete Algorithm ... 124
 5.2.2 Rules and Facts Matching in CLIPS ... 126

5.3 Methodology .. 128
 5.3.1 Rules Template for Method Signatures of Design Patterns 130
 5.3.2 MLDA Rules/Facts Generator .. 134

5.3.2.1 Generating Rules .. 134
5.3.2.2 Generating Facts .. 134

 5.3.3 Matching Rules and Facts .. 136
5.4 Summary ... 136

Chapter 6: Applying A Rule-Based Approach
6.1 Introduction ... 138
6.2 Method Signatures Representation ... 139
6.3 Rules and Facts Matching ... 141

v

 6.3.1 CLIPS Processing .. 141
 6.3.2 A PMD Example ... 142

6.4 Accuracy Evaluation ... 144
 6.4.1 Experiment and Results ... 144
 6.4.2 Average Accuracy .. 147

6.5 Results Comparison .. 147
6.6 Summary .. 150

Chapter 7: Design Patterns Impact
7.1 Introduction .. 151
7.2 Methodology .. 153

 7.2.1 JHawk Tool .. 154
 7.2.2 A Metrics-Based Approach ... 155
 7.2.3 Correlation of Software Metrics to Quality Attributes 157

7.3 Experiments and Results ... 161
 7.3.1 Recovered Design Instances ... 162
 7.3.2 Participation Percentage in the Total Metric Value 163

7.4 Threats to Validity .. 168
7.5 Summary ... 168

Chapter 8: Conclusions and Future Directions
8.1 Conclusions ... 170
8.2 Limitations .. 173
8.3 Future Directions .. 174

References .. 176

Appendix A: Design Patterns Library Generated by MLDA 185

Appendix B: Structural Search Model .. 202

Appendix C: Pseudocode of the Structural Search Model 214

Appendix D: List of Publications ... 227

vi

Acknowledgments

Undertaking this Ph.D. has been a truly life-changing experience for me and

it would not have been possible to do without the support that I received from

many people.

I am heartily thankful to my supervisors, Prof. Miltos Petridis and Dr.

Stelios Kapetanakis. Their encouragement, supervision, and support from

the preliminary to the concluding level enabled me to develop an

understanding of the subject. Without their guidance and constant feedback,

this Ph.D. would not have been achievable.

I would like to thank my family: my parents and to my brothers and

sisters for supporting me spiritually throughout writing this thesis and my life

in general. In fact, acknowledge my strength, my inspiration, my guide, and

my soul – my mother and my father. I offer my blessings to all of those who

supported me at any level during the completion of the thesis.

Finally, this effort is dedicated to the soul of my grandmother who

passed away during the completion of this thesis. May her soul rest in peace.

vii

Declarations

I declare that the research contained in this thesis, unless otherwise formally

indicated within the text, is original work of the author. The thesis has not

been previously submitted to this or any other university for a degree, and

does not incorporate any material already submitted for a degree.

Mohammed Ghazi Kattar Al-Obeidallah

viii

Abstract

Design patterns have a key role in software development process.

They describe both structure and the behavior of classes and their

relationships. Maintainers can benefit from knowing the design

choices made during the implementation.

This thesis presents a Multiple Level Detection Approach (MLDA)

to recover design pattern instances from the Java source code.

MLDA is able to recover design pattern instances based on a

generated class-level representation of an investigated system.

Specifically, MLDA presents what is the so-called Structural

Search Model (SSM) which incrementally builds the structure of

each design pattern based on the generated source code model.

Moreover, MLDA uses a rule-based approach to match the

method signatures of the candidate design instances to that of the

subject system. As the experiment results illustrate, MLDA is able

to recover 23 design patterns with a reasonable detection

accuracy. Furthermore, this thesis presents a metrics-based

approach to address the impact of design pattern instances on

software understandability and maintainability. This approach

classifies system classes into two groups: pattern classes and

non-pattern classes. The experimental results show that pattern

classes have better inheritance and size metrics than do non-

pattern classes. Unfortunately, no safe conclusion can be drawn

regarding the impact of design patterns on software

understandability and maintainability, since non-pattern classes

have better coupling and cohesion metrics than do pattern

classes.

ix

Abbreviations

SDLC System Development Life Cycle

XP eXtreme Programming

RUP Rational Unified Process

ADD Attribute Driven Design

GoF Gang of Four

ISO International Organization for Standardization

MLDA Multiple Levels Detection Approach

SSM Structural Search Model

AST Abstract Syntax Tree

ASG Abstract Syntax Graph

SPOOL Spreading Desirable Properties into the Design
of Object-Oriented, Large Scale Software

MAISA Metrics for Analysis and Improvement of
Software Architecture

CSP Constraint Satisfaction Problem

FUJABA From UML to Java and Back Again

AOL Abstract Object Language

GQM Goal Question Metric

DEPAIC++ DEsgin PAtterns Identification of C++ programs

SSA Similarity Scoring Approach

DP-Miner Design Patterns Discovery Matrix

CFG Control Flow Graph

AWT Abstract Windowing Toolkit

PTIDEJ Pattern Traces Identification, Detection, and
Enhancement

PADL Pattern and Abstract Level Description
Language

SAD Software Architectural Defects

EPI Efficient Pattern Identification

x

DRAM Dynamic Relational Adjacency Matrix

BDD Binary Decision Diagram

SPQR System for Pattern Query and Recognition

PINOT Pattern Inference and Recovery Tool

DeMIMA Design Motif Identification, Multi-Layered
Approach

DPRE Design Patterns Recovery Environment

MARPLE Metrics and Architecture Reconstruction plug-in
for Eclipse

ARG Attributed Relational Graph

Sempatrec SEMantic PATtern RECovery

RDF Resource Description Framework

SCRO Source Code Representation Ontology

OWL Web Ontology Language

SWRL Semantic Web Rule Language

DL Description Logic

CLIPS C Language Integrated Production System

R/F generator Rules/Facts generator

APIs Application Programming Interfaces

CVS Concurrent Versioning System

NOM Number Of Methods

LCOM Lack of Cohesion Of Methods

RFC Total Response for Class

CBO Coupling Between Objects

LOC Total Lines of Code

F-IN Fan-IN

DIT Depth of Inheritance Tree

COH Cohesion

FOUT Fan-Out

NOC Number of Children

xi

List of Figures

1.1 History of software development .. 03
1.2 Extreme programming development methodology 04
1.3 The seven parts of a documented view .. 07
1.4 The process model of software reengineering 08
1.5 McCall’s quality factors ... 13
1.6 Boehm’s quality model ... 13
1.7 ISO/IEC 9126 quality attributes .. 14
2.1 The SPOOL environment ... 25
2.2 Uchiyama technique ... 30
2.3 DP-Miner architecture .. 35
2.4 PTIDEJ architecture ... 42
2.5 SPQR components ... 46
2.6 CFG of getInstance .. 48

2.7 DeMIMA tractability link between layers ... 50
2.8 DeMIMA source code model example .. 50
2.9 DeMIMA design motif of the source code example 52
2.10 DPRE recovery process .. 54
2.11 DPRE representation of the adapter design pattern 54
2.12 Programming languages used to program the subject systems 63
2.13 Summary of design patterns recovered by detection approaches 66

3.1 The architecture of the proposed MLDA ... 88

3.2 The source code model generated by MLDA 92

3.3 The representation of the Command design pattern in the library 93

3.4 The structural search model of the Builder design pattern 94

3.5 The structural search model of the Proxy design pattern 96

3.6 The structural search model of the Command design pattern 96

4.1 A screenshot for the source code model of JHotDraw generated by
MLDA ... 105

4.2 The Pseudocode of the SSM for the Proxy design pattern 107

5.1 The basic architecture of a rule-based system 118

xii

5.2 Part of Sempatrec’s knowledge base representation of JHotDraw ... 122

5.3 A simple Rete algorithm example ... 127

5.4 The architecture of MLDA’s level three .. 128

5.5 An example of the MLDA R/F generator for Proxy candidate instances
 .. 135

5.6 An example of the MLDA R/F generator for a subject system facts
generation .. 135

6.1 A screenshot for the running of the MLDA R/F generator 141

6.2 A screenshot of CLIPS after loading the rules and facts of PMD 142

6.3 A candidate Builder instance with its generated rule 143

6.4 Part of the generated fact list of PMD .. 143

7.1 A metrics-based approach to assess the impact of design patterns . 156

xiii

List of Tables

2.1 DP-Miner’s Adapter pattern matrix ... 38

2.2 CPU times of PINOT’s subject systems ... 49

2.3 Summary of detection approaches based on their detection
methodology and analysis style .. 60

2.4 The intermediate representation used by existing approaches 62

2.5 Summary of the subject systems used by detection approaches 64

2.6 Summary of reported accuracy by detection approaches 68

2.7 Reported impact of design patterns on understandability and
maintainability .. 79

3.1 The catalog of GoF design patterns ... 87
3.2 The relationships and their common syntax 91
4.1 The characteristics of the systems used in the experiments 102
4.2 The results of the parsing of the subject systems using MLDA 104
4.3 The experimental results of recovering 23 GoF design patterns from the
subject systems-part 1 ... 109

4.4 The experimental results of recovering 23 GoF design patterns from the
subject systems-part 2 ... 110

4.5 The average accuracy of the Structural Search Model 111

4.6 Comparison of the results of SSM and that of other approaches for
JHotDraw ... 113

4.7 Comparison of the results of SSM and that of other approaches for
JUnit ... 113

5.1 The created rules template syntax and its significance 130

5.2 Rules template for the method signatures of GoF design patterns ... 131

6.1 The number of generated facts and rules .. 140

6.2 The experimental results of recovering 23 GoF design patterns after
applying the rule-based system-part 1 .. 145

6.3 The experimental results of recovering 23 GoF design patterns after
applying the rule-based system-part 2 .. 146

6.4 Summary of the average accuracy achieved after applying SSM and
the rule-based approach .. 147

xiv

6.5 Comparison of the results of MLDA and that of other approaches for
JHotDraw .. 149

6.6 Comparison of the results of MLDA and that of other approaches for
JUnit .. 149

6.7 Comparison of the results of MLDA and that of the sub-patterns
approach for 23 design patterns .. 150

7.1 The correlation between software metrics and software
understandability and maintainability .. 158

7.2 Total number of design instances implemented in subject systems . 163

7.3 The number of classes playing roles in design patterns in all subject
systems .. 164

7.4 The participation percentage in the total metric value for both classes
groups in all subject systems ... 167

1

hapter One
Introduction
Software engineering is a branch of computer science that

concerns with the design, coding and testing of software

applications. Software engineering aims to improve the quality of software

production by managing different software aspects such as reliability,

security, dependability, portability and functionality.

The need for software engineering is increasing tremendously due to the

changes in the functional and non-functional requirements. In addition,

object-oriented software becomes the key element in the evolution of

computer systems and the development of a high-quality software is one of

the main intentions of software engineering [1].

Software engineering focuses on the behavior and specification of

system structures. More specifically, software engineering is concerned with

processes, methods and software tools. It involves the extraction of

functional and non-functional system requirements, system architectural

design, system specific design and a set of activities such as testing,

deployment and maintenance.

Pressman, in his book [2], defines software engineering as "the

establishment and use of sound engineering principles in order to obtain

economically software that is reliable and works efficiently on real machines".

The Institute of Electrical and Electronics Engineers (IEEE) defines software

engineering as "the application of a systematic, disciplined and quantifiable

approach to the development, operation, and maintenance of software" [3].

Software engineering does not focus on the programming itself as the main

activity. Instead, during the development process, most software engineers

use ready software packages which are easy to import. The main role of a

software engineer is to define "what to do" activities. In contrast, the system

analyst should define "how to do" activities. The key software engineering

activities are: requirements eliciting, software architecture design, coding,

software integration, software deployment and software testing.

C

2

The System Development Life Cycle (SDLC) is a key concept in

software engineering which involves a number of activities such as planning,

analysis, design, implementation and testing. The quality of the final software

system is directly affected by the earliest set of design decisions [2].

Specifically, the quality should be considered through the design,

implementation and testing phases. To build and design software

applications, all functional and non-functional requirements must be elicited

and defined. In addition, the software architecture should be created.

Software architecture involves one or more software structures which

comprise elements and relationships among them. It provides a black-box

representation of the software.

This chapter aims to introduce the reader to areas and aspects related

to this thesis. In addition, this chapter presents our motivations for writing

this thesis.

This thesis presents a design pattern detection approach to recover

design instances from object-oriented programs. In addition, we tried to

address the impact of these design instances on certain software quality

attributes. It could be worthwhile to introduce the reader to the key concepts

and aspects related to this thesis. These are: software models, software

architecture, software reengineering and design patterns. Presenting these

aspects helps the reader to build a general picture of the role of design

patterns in the software development process.

Section One presents an overview of existing software development

models. Software architecture design and documentation are presented in

Section Two. Furthermore, software reengineering concepts and design

patterns are presented in Sections Three and Four respectively. Section Five

presents a brief overview of major software quality models. Finally, Sections

Six and Seven present research questions, motivations and a list of

publications made based on the thesis chapters.

3

1.1 An Overview of Software Development

The history of the software development process appears in Figure 1.1.

Software engineering was introduced in 1968. The waterfall development

model was one of the earliest developed models. Other methodologies

appear continuously after the introduction of the waterfall model. In fact, the

spiral development model is considered the most valuable addition to

software engineering development methodologies [2], [4-6].

Figure 1.1: History of software development

To face changing requirement problems, extreme programming (XP)

development methodology was developed by Kent Beck [2]. XP made a

separation between stakeholders’ decisions and business-interest

decisions. Usually, XP projects start with a simple design and get the system

working quickly. XP mainly relies on face-to-face communications with rare

use of documentation. The XP development methodology appears in Figure

1.2 [2]. Furthermore, a widely used development methodology in many

enterprises is the Rational Unified Process (RUP) [2]. It involves roles that

represent the skills and responsibilities of the developers, work products, and

tasks, which are activities assigned to a role. RUP works in an iterative

manner and involves four main phases: inception phase, elaboration phase,

construction phase and transition phase.

4

Figure 1.2: Extreme programming development methodology

1.2 Software Architecture

The software architecture is a structure, or more than one structure, which

comprises elements and relationships among them [7]. The architect plays

a major role in building and designing software architecture. However,

different factors could affect the development of software architecture, such

as stakeholders, the developing organization, architect skills and

experience, and the technical environment.

Software architecture affects the earliest set of design decisions. In

addition, software architecture can enable or inhibit quality attributes. The

architect and the development team must decide the required quality

attributes at earlier stages of the development process. For example,

performance and portability often occur in mutual tension. Increasing

portability by reducing the required attachments will hurt performance.

Furthermore, the degree of trade-offs among quality attributes could affect

the quality of the final software release.

The importance of software architecture appears clearly when

investigating the software code. The architecture defines constraints on the

implementation and makes the changes easier to manage. Consequently,

the system will be executable early in the SDLC. Software structures which

5

represent the main building unit of software architecture can be classified

into three categories based on the nature of the elements that they show [7]:

• Module structure: units of code are the main building elements of this

structure. The decomposition structure, class structure and uses

structure are a few examples of module structure.

• Component and connector structure: elements were represented as

components, whereas the relationships between them were

represented as connectors. Client-server and concurrency structures

are two popular examples of a component and connector structure.

• Allocation structure which shows the relationship between software

elements and other external elements. Work-assignment structure and

deployment structure are two popular examples of an allocation

structure.

1.2.1 Software Architecture Design

Developing software architecture's design requires the elicitation of quality

and functional and business requirements. The design of a software

architecture should provide a black-box representation of a subject system

since no details are required at this design level. The Attribute Driven Design

(ADD) is one of the most popular methods for software architecture design.

ADD has been developed by extending other design development methods

[7].

ADD uses quality attribute scenarios as input and produces levels of

a module decomposition view as output. ADD starts by selecting the module

to decompose (i.e. the whole system). Then the system will be decomposed

into a number of sub-systems which will also be decomposed in their turn

into sub-modules. Based on the quality attribute scenarios and the functional

requirements, architectural drivers will be selected. The next step in

designing the architecture is the selection of suitable architectural designs

(or, in certain cases, creating them). Finally, for each module, the

instantiation and the assigning of functionalities were performed. The

6

implementation of quality attributes during software architecture design helps

the development team to differentiate a good system from a bad one.

1.2.2 Software Architecture Documentation

Documenting a software architecture helps the development team to decide

what it is important to capture. The documentation process relies on the

collected requirements and should be abstract enough to be understood by

the stakeholders.

To create a software architecture's document, the architect and the

development team should select the relevant views (the view is a

representation of the software architecture), document a view and then

document the information that fits more than one view [7][8], consequently

producing a list of candidate views. In fact, some of the views can fit every

system. Hence, the number of relevant views is quite large. To reduce the

list size, views that serve very few stakeholders can be merged with a view

that gives information from two or more views at once. Finally, the list of the

views is prioritized based on the project details. Unfortunately, there is no

standard template to document views. However, the seven-part template

presented by Bass et al. [7] shows good results in practice. The seven parts

of a documented view appear in Figure 1.3.

The first section of the template is the primary representation. This

section shows the elements of the architecture and their relationships.

Graphical representations and tables were used to represent these elements

and their relationships. The details of the elements and their relationships

appear in the element catalog section. Moreover, the element catalog

section shows the behavior and interface of each element. The context

diagram section shows the relationship between the system and its

environment. The variability guide section helps the architect and the

development team to trace any variation points. The type of variation point

depends on the type of view. In the case of module views, the variation points

are versions of the modules. On the other hand, the variation points are

7

constraints on the scheduling in a component and connector view, whereas

they are conditions on the view in an allocation view.

Figure 1.3: The seven parts of a documented view

The architecture background section explains why the design has

been made in this way. It shows how the assumptions and the analysis

results were reflected in the design. The glossary-of-terms section shows the

terms used in the views. The last section is the other information section

which shows different kinds of information, such as management and

decision support information.

The documentation of a view is completed by collecting the

information that applies to more than one view. This can be done by

developing a cross-view documentation template which shows how a

document is organized.

1.3 Software Reengineering

Reengineering is a rebuilding activity that improves the maintainability and

structure of software systems. Reengineering may involve modifying and

updating a system's internal data without affecting its functionality and/or its

architecture.

8

Moreover, reengineering provides a cost-effective development

solution. Usually, the costs of reengineering current software are less than

the costs of building a new one. Chikofsky and Cross [9] introduced the

concept of forward engineering to describe conventional software

development. Forward engineering uses a system specification as a starting

point.

In contrast to forward engineering, reengineering [2] starts with an

existing system. The quality of software to be developed, the involvement of

expert staff and data size can affect the reengineering process. The key

activities of a reengineering process are presented in Figure 1.4. The

process model of software reengineering is cyclical; this means that each

activity may be revisited more than once. The activities are performed in a

linear manner.

Figure 1.4: The process model of software reengineering

The activities of the software reengineering process model can be described

as follows:

• Inventory analysis: the inventory is a spreadsheet model that provides

certain details such as the critical business and size of every active

Inventory
analysis

Document
restructuring

Reverse
engineering

Code
restructuring

Data
restructuring

Forward
engineering

9

application. The candidates for reengineering can be achieved at this

stage by sorting the detailed information, taking into account the

maintainability aspects.

• Document restructuring: restructuring of a document is considered one

of the key reengineering activities. Weak documentation affects the

quality of the final specification. In addition, the recreation of the

documentation puts too much of a burden on the development team.

• Reverse engineering: reverse engineering is the process of design

recovery which extracts design information from the source code.

Reverse engineering normally uses object models, data models, UML

classes, state diagrams and deployment diagrams. The level of

abstraction issues, completeness issues and directionality issues must

be considered during any reverse engineering activity. The

completeness of the reverse engineering process is determined by the

level of details at any abstraction level [2]. The abstraction level

depends on the complexity of the recovered design. The completeness

and the level of abstraction often occur in mutual tension. All recovered

information from the source code could be used later during the

maintenance activities.

• Code restructuring: code restructuring aims to produce a high-quality

design that provides a functionality similar to that of the original source

code.

• Data restructuring: data can be restructured to extract certain data

items and objects. Different kind of statements (I/O statements, data-

definition statements etc.) should be evaluated. At this stage, data re-

design is performed by the so-called "data name rationalization" to

ensure that all naming conventions fit local standards.

• Forward engineering: Forward engineering uses software engineering

methods and concepts to recreate an existing application. Usually, the

newly developed application has more capabilities than does the

10

original application. Forward engineering can be applied to client/server

architectures and to object-oriented architectures.

Object-oriented development becomes the main development

paradigm in many software enterprises. The conventional software is

reverse engineered into an object-oriented implementation by creating

appropriate data, functional models and behavioral models. Sub-systems

and class hierarchical and object models should be created as well. Some

classes must be engineered from scratch and redesigned to fit the new

object-oriented architecture.

1.4 Design Patterns

The concept of patterns was introduced into the field of architecture by

Christopher Alexander who documented reusable architectural proposals for

producing high-quality designs [10].

In software engineering, a pattern is a recurring solution to a standard

problem in a context. In 1995, the idea of patterns was adopted by the so-

called Gang of Four (Gamma, Helm, Johnson and Vlissides) [11] -henceforth

GoF. The GoF cataloged 23 design patterns. Each design pattern describes

a problem that occurs over and over again in an attempt to describe the core

solution to that problem. This solution can be re-used a million times over

without doing it the same way twice. In fact, design patterns vary in their

levels of abstraction. Each design pattern solves a specific design problem

by connecting together a number of classes (participant classes) using

different relationships. According to the GoF’s catalog, each design pattern

involves both structural and behavioral aspects. Structural aspects describe

the static arrangement of classes and their relationships. On the other hand,

behavioral aspects describe dynamic interactions between pattern

participant classes.

Design patterns at the source code level reflect the earliest set of

design decisions taken by the development team. In addition, the majority of

current software systems involve instances of design patterns in their source

codes. Design patterns can improve software documentation, speed up the

11

development process and enable large-scale reuse of software

architectures. The template of design patterns presented by the GoF

involves several sections, such as participants, structure and collaboration

sections. These sections describe the design fingerprint (motif) [11]. Each

occurrence of a design pattern in the source code is called a design pattern

instance. A design instance should reflect the required pattern structure and

behavior presented by the GoF. However, design pattern instances could be

partially implemented in the source code (i.e. one or more of the instance’s

participant classes are not implemented). A participant class is a class that

plays a certain role in design pattern instance.

Many approaches and tools were introduced in the literature to

recover GoF design instances from object-oriented programs. Most of these

approaches recover a few patterns and they lack accuracy. This thesis tries

to recover all GoF design patterns with a reasonable detection accuracy by

presenting a structural rule-based approach. The presented approach

covers the structural and dynamic aspects of GoF design patterns.

Although GoF design patterns become standard designs for software

development, they are not only the available design templates. For example,

other design templates use architectural patterns such as model view

controller, idiom patterns and gaming patterns. This thesis focuses on GoF

design patterns. This does not suggest that GoF patterns are better than

other design patterns, but all primary studies deal with GoF design patterns.

In addition to design patterns recovery, the quality of software

systems is another key aspect related to design patterns. The quality of

software systems could be affected positively, negatively, or not affected at

all, when certain design patterns are implemented. In this thesis, a metrics-

based approach has been developed to address the impact of design pattern

instances on certain quality attributes. This approach uses the detected

design pattern instances that have been recovered by the structural rule-

based approach.

12

1.5 Software Quality Attributes

Measurement plays an important role in evaluating the quality of software

applications. Quality is "the conformance to the functional and non-functional

requirements, development standards and expected software

characteristics" [12].

A number of quality models have been developed to assess and

characterize the quality of software systems. Each model has its own

elements, characteristics and attributes and most of these quality models

quantitatively measure the internal aspects of software applications.

Followings are the most widely used quality models.

1.5.1 McCall’s Quality Model

Factors that affect the quality can be measured directly or indirectly (e.g.

usability). McCall et al., henceforth McCall’s quality model, introduced a

number of useful factors that affect the quality of software applications.

These factors focus on the product’s operational characteristics, the ability

to accept changes and the flexibility to work in new environments [12].

McCall’s quality model is considered a predecessor of today’s quality

models. It tries to bridge the gap between users and developers by

introducing quality factors that reflect their views. More specifically, McCall’s

quality model involves 11 quality factors to describe the user’s view (external

view), 23 quality criteria to describe the developer’s view (internal view) and

metrics, which provide a method for measurement. The metrics were

achieved by answering a set of yes-and-no questions. Consequently, the

quality is subjectively measured based on the person(s) who answer the

questions. McCall's quality model is presented in Figure 1.5.

1.5.2 Boehm’s Quality Model

Boehm’s quality model qualitatively defines software quality using a set of

metrics and attributes [13]. Boehm’s model involves three characteristic

levels: high, intermediate and primitive.

13

Figure 1.5: McCall’s quality model

The high-level characteristics handle the as-is utility, portability and

maintainability aspects. On the other hand, the intermediate-level

characteristics involve seven quality factors that represent the expected

qualities from the application (i.e. portability, reliability, efficiency, usability,

testability, understandability and flexibility). Boehm’s quality model appears

in Figure 1.6.

Figure 1.6: Boehm’s quality model

1.5.3 ISO Quality Model

ISO stands for International Organization for Standardization. The ISO 9001

family is the most widely spread and widely used family. The ISO 9001

management system handles the internal and external aspects of the

organization by managing the quality of the delivered products. In addition,

ISO 9001 provides design, implementation, support and documenting

14

activities for quality and resource management processes, market and

regularity research processes, product protection processes, customer

needs, communication processes and training processes [17]. Based on

McCall’s quality model and Boehm’s quality model, the ISO has released the

ISO/IEC 9126 version to identify the internal and external quality

characteristics. The identified characteristics are:

• Functionality: the degree to which the software works as intended.

• Usability: how easy it is for a user to accomplish a desired task.

• Reliability: the degree to which the software delivers its services when

needed.

• Efficiency: the degree to which the software uses system resources in

an optimal way.

• Portability: the software application is portable when extracted from its

development environment and transported easily to another

environment.

• Maintainability: the degree to which the software is easy to repair.

Figure 1.7 shows the ISO/IEC 9126 quality attributes and their sub-attributes:

Figure 1.7: ISO/IEC 9126 quality attributes

15

In addition, ISO has released the 15504 version to address all

processes involved in supporting, supplying, maintaining, operating,

developing and delivering software activities. This thesis relies on the

ISO/IEC 9126 as a reference model when describing and/or using any of the

quality attributes. ISO/IEC 9126 is a widely accepted and used quality model

in the software engineering community.

1.5.4 Other Quality Models

Other quality models were presented to characterize the quality of software

systems. The FURPS model has been developed by Robert Grady [15] and

extended by Rational Software Company [16] to FURPS+ to include design,

implementations and interface requirements. FURPS stands for

Functionality, Usability, Reliability, Performance and Supportability.

Furthermore, the quality model developed by Dromey [17] attempts to handle

the problem of evaluation differences between software products. Dromey’s

model has been applied to different systems and involves three basic

elements: software product, product properties and quality attributes. In

addition, Dromey’s quality model attempts to link the properties of a software

product to software quality attributes. This can be achieved by selecting high-

level quality attributes, listing system components/modules, investigating the

effects of each property on the quality attributes and evaluating the model.

1.6 Motivation

This section presents the key motivations for building a new detection

approach to recover design pattern instances from object-oriented programs.

In addition, the general motivations behind the development of a metrics-

based approach to address the impact of design pattern instances on

software quality attributes are presented.

Recovering design pattern information from a source code helps to

document the systems, enable large-scale reuse of software architectures

and speed up the software development process. However, current design

pattern detection approaches lack accuracy and recover a few design

16

patterns. Only three approaches recover ALL GoF design patterns.

Moreover, most detection approaches focus on the structural features of

design patterns. Specifically, these approaches focus on four relationships

that may occur between classes and interfaces inside any object-oriented

program (inheritance, aggregation, association and dependency). Hence,

most current detection approaches fail to recover all the possible structures

similar to that of ALL GoF design patterns since these approaches search

for a maximum of four relationships and their matching techniques are not

able to accurately match the recovered structures to that of GoF (e.g.

matrices matching using similarity scoring and exact matching, sub-graph

discovery, machine learning and software metrics, data flow analysis,

constraints over variables, class diagram analysis and semantic rules). This

introduces the necessity of a new recovery approach that can recover all the

possible structures similar to that of ALL GoF design patterns.

In addition, current recovery approaches ignore the role of method

signatures of GoF design patterns during the recovery process. These

approaches face difficulties in creating a suitable representation of the

method signatures and match them to that of GoF. Hence, these approaches

only recover a few patterns and their accuracy is not reasonable.

Consequently, a new recovery approach should be developed to accurately

recover ALL GoF design patterns.

The new recovery methodology should cover both the structural and

behavioral aspects of GoF design patterns. The structural aspects should

reflect the required structure (arrangement of classes) presented by GoF,

whereas the behavioral aspects should reflect the required interactions

between pattern participant classes.

This thesis presents a rule-based approach to handle the problem of

representing the required method signatures of GoF design patterns. More

specifically, a rules template has been created to reflect the required method

signatures of the candidate design pattern instances. The main motivation of

using a rule-based approach is its ability to represent the method signatures

of the candidate design instances as an independent piece of knowledge,

17

which can be transformed into a set of rules. In addition, the method

signatures of GoF design patterns have a uniform structure which facilitates

their representation as a set of rules.

In fact, the motivation of the work in this thesis is to explore the effects

of representing the method signatures of GoF design patterns using a rule-

based system on the process of design patterns recovery which relies on

relationships matching. As a result, a novel methodology for design patterns

recovery is proposed. This methodology combines both structural and

behavioral features of GoF design patterns.

Furthermore, this thesis tries to address the impact of GoF design

patterns on software maintainability and understandability since they are the

most commonly investigated quality attributes in the available literature. The

impact of GoF design patterns on software quality attributes provides a

support for decision-making during software design and refactoring. Most

previous studies in the literature used experiment, case studies, conceptual

analysis and survey to assess the impact of design patterns on software

quality attributes. We believe that these methods lead to controversial results

since most of them are based on human intervention and lack accuracy.

Consequently, there is a necessity to introduce a new approach to address

the impact of GoF design patterns on the quality of software systems. This

thesis presents a metrics-based approach to assess the impact of GoF

design patterns. The main motivation behind the use of software metrics to

quantify the subject system is their ability to provide a static and stable

representation of the subject system. Moreover, since our proposed

recovering methodology relies on a class-level representation of the subject

system and the recovered design instances have been validated based on

the all publicly available results in the literature, a list of classes playing roles

in design patterns was generated for all subject systems. This will facilitate

the use of class-level metrics to quantify each class in the subject system.

Hence, software metrics can be calculated for classes playing roles in design

patterns and can be compared with classes that don’t play roles in design

patterns.

18

1.7 Aims and Objectives

This thesis mainly aims:

• To recover ALL GoF design patterns with reasonable detection

accuracy based on hybrid structural and behavioral characteristics.

Hence, a structural search model which relies on the principle of

relationships matching has been developed to reflect the required structural

aspects. In addition, the method signatures of GoF design patterns have

been represented using a rule-based approach to reflect the required

behavioral aspects.

The structural search model will recover the instances of GoF design

patterns based on the relationships matching between classes and

interfaces. Furthermore, the rule-based approach will be applied to the

recovery process. This leads to the second aim of this thesis:

• To explore the effects of applying a rule-based approach to the process

of design patterns recovery which relies on the relationships matching.

Finally, this thesis aims:

• To address the impact of GoF design patterns on software

maintainability and understandability.

1.8 Research Questions

The main research questions formulated in this thesis can be stated as

follows:

• Is the Structural Search Model (SSM), which relies on the relationships

matching, able to recover instances of design patterns with a

reasonable detection accuracy?

The structural characteristics of GoF design patterns will be recovered

using the developed Structural Search Model. This model relies on the

relationships matching between classes and interfaces and builds the

19

structure of ALL GoF design patterns incrementally. In addition, the SSM will

try all the possible combinations between classes and interfaces to recover

all the possible structures similar to that of GoF.

• Is the use of a rule-based system to match the method signatures of

the candidate design instances to that of a subject system able to

reduce the number of false positive candidate instances (i.e. enhancing

the detection accuracy of design patterns which relies on relationships

matching)?

The behavioral characteristics of GoF design patterns will be

represented using a rule-based approach. A rule template has been created

to represent the required method signatures of GoF design patterns. The

rule-based approach will be applied to filter the candidate design instances

recovered by the SSM.

• Do classes playing roles in design patterns have better software metrics

than other classes in the system (i.e. do design pattern instances

enhance software maintainability and understandability)?

The third research question tries to address the impact of design

pattern instances on certain quality attributes. More specifically, we tried to

address the impact of design instances on software maintainability and

understandability since they are the most commonly investigated quality

attributes. All subject system classes will be classified into two groups:

classes that are playing roles in design patterns and classes that are not. In

addition, software metrics, with their correlations to quality attributes, will be

used in attempts to reach a safe conclusion.

1.9 Contribution to Knowledge

The main contribution of this thesis is the addition to the body of software

engineering of real evidence on the effects of applying a rule-based

approach to the process of design pattern detection, which relies on

relationships matching.

20

A Structural Search Model (SSM) has been developed to recover the

instances of GoF design patterns based on the connecting relationships

between classes and interfaces. This model builds the structure of each

design pattern incrementally, tries all the possible combinations between

classes and interfaces inside a subject system and relies on the five key

relationships that may occur between these classes and interfaces

(Inheritance, Realization, Aggregation, Association and Dependency). On

the other hand, A rule-based approach to filter the candidate design

instances recovered using the SSM has been developed. This rule-based

approach matches the method signatures of GoF to that of the subject

system. Moreover, this thesis proposes a rules template to reflect the

required method signatures of GoF design patterns.

Consequently, the hybrid structural rule-based approach tries to

achieve reasonable detection accuracy in terms of recall and precision. This

approach combines both structural and behavioral characteristics of GoF

design patterns.

Furthermore, the second contribution of this thesis is to address the

impact of GoF design patterns on software maintainability and

understandability. A metrics-based approach has been developed in an

attempt to reach a safe conclusion.

1.10 Thesis Organization

This thesis is organized as follows: Chapter Two highlights and compares

most of the detection approaches presented in the literature In addition,

Chapter two presents the reported impact of GoF design patterns on

software maintainability and understandability. The general methodology

and the structural search model to recover design pattern instances are

discussed in Chapter Three. Chapter Four presents the experimental results

of applying the structural search model to eight subject systems. The rule-

based system and its effect on detection accuracy are presented in Chapters

Five and Six respectively. Chapter Seven addresses the impact of design

21

patterns on software understandability and maintainability. Finally, thesis

conclusions, future research directions and limitations of the presented work

are presented in Chapter Eight.

1.11 Summary

This chapter presented an abstracted overview of areas and aspects related

to this thesis. These aspects are software development models, software

architecture, design patterns and quality attributes. Moreover, the key

motivations for writing this thesis and these research questions, aims and

contribution to knowledge were presented.

22

hapter Two
Literature Review
Since the introduction of design patterns in 1995, many tools

and approaches have been presented in the literature to

recover their instances from object-oriented programs. This chapter provides

the current state of the art in design pattern detection. In addition, the

reported impact of design patterns has been presented. The selected

approaches cover the whole spectrum of the research in design pattern

detection. We noticed diverse accuracy values recovered by different

detection approaches and the lessons learned are listed at the end of this

chapter. These can be used for future research directions and guidelines in

the area of design pattern detection.

2.1 Introduction

Many tools and approaches have been developed in the last two decades to

recover design pattern instances from object-oriented programs. The main

objective of these approaches is to recover accurately the instances of

design patterns. However, detection approaches differ in their input,

extraction methodology, case studies, recovered patterns, system

representation, accuracy and validation method.

The field of design pattern detection still faces a number of key

challenges, such as the fact that the current detection approaches are

working independently from each other and there are no standard

benchmarks or references to validate the recovered instances and the

possible variants of the design pattern. In addition, the evaluation of design

pattern detection approaches is somehow difficult since most current

detection tools are not publicly available. Some detection approaches

applied their experiments on small-size programs using a few patterns and

these achieved high precision and recall rates. However, most detection

approaches rely on code level for patterns detection, using the source code

as input and representing it in one of the parsing formats, Abstract Syntax

C

23

Tree (AST) or Abstract Syntax Graph (ASG). Moreover, the current design

pattern detection tools are built to implement a certain methodology and

each tool works independently without the ability to integrate it with other

existing tools.

The accuracy of design pattern detection tools is affected by a number

of factors, such as pattern variants, instance definition, type of matching,

system size and parsing and modeling techniques. In fact, most detection

approaches recover only one category of design patterns or only certain

patterns.

On the other hand, the implementation of design patterns can vary

across studies and these variants could be responsible for any differences

observed in the reported results of the effects of design patterns on quality

attributes.

An empirical review and evaluation of current existing detection

approaches is important to guide the researcher through the weaknesses of

these approaches. This chapter presents the current state of design pattern

detection approaches. Specifically, we have presented a comparative study

on design pattern detection approaches in terms of detection methodology,

analysis style, system representation, subject systems, recovered design

patterns and evaluation criteria. Furthermore, this chapter presents the

reported impact of design patterns on software quality attributes.

2.2 Overview of Detection Approaches

Design pattern detection approaches could be classified based on different

criteria and aspects. This chapter has categorized detection approaches

based on their detection methodology and on their analysis style.

Most detection approaches use similar key steps which aim to match

the source code representation to that of GoF. The detection methodologies

could be categorized, based on their key recovery steps, into four main

groups: database-query approaches, metrics-based approaches, UML

24

structure, graph and matrix-based approaches and miscellaneous

approaches.

2.2.1 Database-Query Approaches

Database-query approaches transform the source code into an intermediate

representation, such as AST, ASG, UML structures, XMI etc. SQL queries

are used to recover pattern information from the generated representation.

The database in use affects the performance of the queries. Unfortunately,

database-query approaches are not able to recover instances of behavioral

design patterns.

2.2.1.1 Rasool et al. Approach

The approach presented by Rasool et al. [18] used annotations, regular

expressions and database queries to recover instances of design patterns.

The varying features of patterns are defined and rules are applied to match

these features to source code elements. Time and search space are reduced

by using appropriate semantics from large legacy systems. Rasool et al.’s

approach only recovers certain patterns and its accuracy and efficiency are

not reported.

2.2.1.2 Stencel and Wegrzynowicz Approach

Stencel and Wegrzynowicz [19] present a pattern recognition method to

detect non-standard implementations of design patterns as well as standard

implementations. The Detection of Diverse Design Pattern Variants tool (D3)

has been developed to implement the detection methodology. In addition, a

simple program meta-model has been generated to store the program’s core

elements, such as attributes, operations and instances. D3 detected the

creational instances of design patterns from the Java source code using

static analysis and SQL queries. The execution time is reported only where

D3 spent 36 seconds to recover the creational instances from JHotDraw.

25

2.2.1.3 Marek Vokac Approach

Marek Vokac constructed a tool to recover certain design patterns from the

C++ source code [20]. The tool relies on descriptions of structural signatures

associated with the chosen design patterns. The UNDERSTAND FOR C++

parser [21] has been used to generate a file that stores entities’ and

references’ data which will be transferred into an SQL database. The SQL

table involves links to certain files and metrics. The recognition of design

patterns is done by a series of SQL statements designed to look for a given

structure. The experiments were conducted only on a Customer Relationship

Management system.

2.2.1.4 SPOOL

SPOOL (Spreading Desirable Properties into the Design of Object-Oriented,

Large-Scale Software Systems) is a joint research project between the

University of Montreal and Bell Canada. The SPOOL environment comprises

functionality for design composition, change effect analysis and detection of

design patterns [22]. The SPOOL reverse engineering environment involves

a three-tier architecture. The top tiers involve source code capturing,

analysis and visualization. On the other hand, the design repository resides

on the bottom tier. The SPOOL environment appears in Figure 2.1.

Figure 2.1: The SPOOL environment

26

SPOOL reads C++ files as input and uses a Datrix parser to parse

them. Datrix represents the C++ source code in the form of an ASCII-based

representation (Datrix/TA intermediate format). SPOOL converts Datrix TA

files into XML syntax (Datrix/TA-XML). Moreover, SPOOL uses an XML

parser (xml4j) to read the content of Datrix/TA-XML files.

SPOOL recovered different source code information, such as classes,

structures, attributes, parameters, return types, call actions, object

instantiations and friendship relations. The design pattern recovery process

aims to structure parts of the class diagrams so that they resemble pattern

diagrams. SPOOL supports manual and automatic design pattern recovery.

Furthermore, SPOOL introduces the concept of a reference class (the class

that most reflects the class behavior).

The SPOOL environment has been applied on three industrial

systems. For confidentiality reasons, System A and System B were used to

represent the first and second systems. The third system is ET++ v3.0.

SPOOL recovered 43 instances of the Template Method pattern in system A

(these instances of the Template Method design pattern were recovered by

traversing all source code classes using the implementation of Template

Method query, searching for local operations calls and verifying whether the

“primitiveOperation” is polymorphic). Furthermore, SPOOL detected 46

bridge design instances in ET++ and the “Abstraction” participant class was

selected as a reference class. Bridge query searches for classes with an

instance variable of type “Implementor”. In addition, it verifies whether the

receiver of an operation call is of type “Implementor” and whether it is

overridden by at least one subclass of “Implementor” (fingerprinting a bridge

instance). The efficiency and accuracy of SPOOL were not reported.

2.2.2 Metrics-Based Approaches

Metrics-based approaches compute program related metrics, such as

aggregations, associations and dependencies, from different source code

representations. Different techniques are applied to compare pattern metric

27

values to that of the source code. Metrics-based approaches reduce the

search space through filtration.

2.2.2.1 MAISA

MAISA (Metrics for Analysis and Improvement of Software Architecture) is a

research tool developed at the University of Helsinki [23]. MAISA represents

design pattern detection as a constraint satisfaction problem (CSP) where

problems are represented as a set of constraints over variables in a particular

domain. A CSP involves a set V of variables, a domain Di for each variable i

∈ V and a set of constraints P. The target is to find an assignment S to the

variables in such a way that the assignment satisfies all the constraints: S =

{i: = x | p1 ∧ p2 ∧ … ∧ pn ∧ p1j ∧ p2j ∧ … ∧ pmj ∀ pk ∈ Pi ∀pkj ∈ Pij ∀i, j ∈ V,

x ∈ Di}.

MAISA represented CSP as a graph in which variables and their

domains are represented as nodes. On the other hand, constraints are

represented as arcs. An arc-consistency algorithm (AC-3) is used to delete

the values that cannot satisfy certain constraints from the node domains.

Values deletion is performed until a solution is found. Metric prediction

attributes are stored in a library. A user can select the pattern that he wants

to search for. MAISA will search for the selected pattern and provide each

match as a potential candidate.

MAISA was implemented in Java. In addition, Prolog was used for the

structural coding of software architecture and architectural patterns.

Architecture and patterns are described as UML diagrams which will be

translated later on to Prolog format. Pattern relationships and architecture

components are expressed using Prolog facts. MAISA uses software metrics

to measure software architecture and to estimate the final system. The

architectural measurements comprise size and complexity metrics, such as

the number of messages, the depth of the inheritance tree and the number

of classes.

MAISA involves the following components: UML editor, pattern library,

pattern miner, metric analyzer and reporting tool. MAISA have been applied

to Nokia’s DX200 switching system and two instances of Abstract Factory

28

design pattern were recovered. The efficiency and accuracy of MAISA were

not reported.

2.2.2.2 FUJABA

FUJABA (From UML to Java and Back Again) is a design pattern detection

tool in which design patterns are defined as sub-patterns [24]. The source

code is represented as an Abstract Syntax Graph (ASG). Later, during the

detection process, ASG is enriched with annotations that indicate the

presence of sub-patterns in the source code.

FUJAPA applied transformation rules to capture the structural and

behavioral aspects of design patterns. Transformation rules are organized

into multiple levels of hierarchies. For example, level one of the hierarchy

holds the source code information. FUJABA used a combined bottom up and

top down strategy to apply the transformation rules. FUJAPA‘s detection

algorithm uses assigned level numbers, which are associated with the

transformation rules, to establish the orders of applying the rules on ASG. In

addition, FUJABA uses fuzzy values to accept or reject the detected pattern

elements (sub-patterns). The use of sub-patterns makes the detection

process incremental. Hence, relevant information can be achieved in a short

time. For example, FUJABA represented the Composite design pattern as

three sub-patterns (Generalization, Association and Delegation).

Generalization is recovered during level one, whereas Association and

Delegation are recovered during level two.

FUJABA relies on class diagrams, activity diagrams and state chart

representations of design patterns. Class diagrams describe design pattern

structure, whereas activity diagrams and state chart diagrams describe the

behavioral aspects of design patterns. One of the interesting features of

FUJABA is its ability to generate codes from collaboration diagrams. The

FUJABA environment has been applied to an automatic material

transportation system. FUJABA is a semi-automatic tool which needs the

intervention of a software engineer. FUJABA did not report any evaluation

results to assess its effectiveness or efficiency.

29

2.2.2.3 Antoniol et al. Approach

The approach presented by Antoniol et al. [25] generates an Abstract Object

Language (AOL) representation for both source code and subject system

design. Class-level metrics, such as the number of aggregations,

associations and inheritances, are computed as well. Specifically, a brute-

force approach to identify all possible pattern candidates was adopted. To

identify all pattern candidates in a design containing N classes, all possible

arrangements of the classes and their relationships are computed.

The experiments have been performed on a public domain code and

an industrial code in order to assess the approach effectiveness. The

reported precision was 55%.

2.2.2.4 Detten and Becker Approach

The approach in [26] combines both clustering-based and pattern-based

reverse engineering approaches. This approach shows that the occurrences

of bad smells in the software system code can falsify the results of a metric-

based clustering. Moreover, the approach applies pattern detection to an

initial decomposition of the system to detect bad smells, thereby preventing

the clustering algorithm performing a further decomposition.

2.2.2.5 Uchiyama Technique

The technique presented by Uchiyama et al. (hereafter, Uchiyama

technique) uses source code metrics and machine learning to detect design

patterns [27]. By using the goal question metric method (GQM), some source

code metrics are selected to judge roles. Pattern specialists define a set of

questions to be evaluated and select some metrics to help to answer these

questions. Moreover, Uchiyama technique uses a hierarchical neural

network simulator in which the input is metric measurements of each role

and the output is the expected role. Figure 2.2 shows the technique

presented by Uchiyama et al. [27].

30

Figure 2.2: Uchiyama technique

The hierarchy number is set to three, the number of inputs is set to

the number of decided metrics and the number of outputs is set to the

number of roles. The sigmoid function has been used as a transfer function

in the neural network. In addition, a back-propagation has been used to

calculate the error margin between output Y and correct answer T. The

Uchiyama technique detected five design patterns: Singleton, Adapter,

Template method, State and Strategy.

The detection was done by matching the candidate roles, produced

by the machine learning simulator, to the pattern structure definitions.

Searching is looking for all possible combinations of candidate roles that are

in agreement with pattern structures. The Uchiyama technique recovered

inheritance, interface implementation and aggregation relationships. Pattern

agreement values were calculated based on the role and relation agreement

values. The Uchiyama technique has been applied to small-scale programs

as well as to large-scale programs (Java library v1.6.0, JUnit v4.5 and Spring

framework v2.5 RC2). A total of 40 pattern instances in the small-scale

programs and 126 pattern instances in the large-scale programs were used

as learning data. The Uchiyama technique has distinguished between the

Strategy and State design patterns and is able to detect pattern variations.

However, the validity of the parameters, expressions, agreement values and

thresholds is not proved. The Uchiyama technique was evaluated in terms

31

of recall and precision. The reported precision and recall rates were 63% and

76% respectively.

2.2.3 UML Structure, Graph and Matrix-Based Approaches

These approaches represent the structural and behavioral information of the

subject system as UML structure, graph or matrix. Most of these approaches

have good precision and recall rates but they are not capable of handling the

implementation variants of design patterns.

2.2.3.1 Seemann and Gudenberg Approach

Seemann and Gudenberg, in their work, showed how to recover design

information from the Java source code [28]. A compiler collects the

relationships information, method calls and inheritance hierarchies and the

result of the compile phase is a graph. A filtering was made to the graph to

detect design patterns. Seemann and Gruenberg’s approach detects only

Strategy, Bridge and Composite design patterns.

2.2.3.2 DEPAIC++

DEPAIC++ (DEsign PAtterns Identification of C++ programs) is a design

patterns detection tool developed by Espinoza et al. in 2002 [29]. DEPAIC++

is a canonical model formulated to analyze the structure of C++ classes. In

addition, DEPAIC++ verifies whether or not the code being analyzed is using

design patterns. DEPAIC++ is composed of two modules that first transform

the C++ code into a canonical form and then recognize design patterns.

However, DEPAIC++ did not analyze the behavior of the source program. It

detects design patterns starting from a structural analysis of the source code,

whereas some design patterns implement different behaviors in their

solutions.

2.2.3.3 Columbus

Columbus is a reverse engineering framework developed at the University

of Szeged to analyze C++ projects [30]. The recovered information is

presented as Columbus schema for C++. The schema represents C++

32

elements at different levels of abstraction. The schema description is

represented using a UML class diagram. Moreover, physical representations

were created from a schema instance (Abstract Syntax Graph). The

operation of Columbus is performed using three plug-ins:

• Extraction plug-in which analyzes the C++ source file and creates a file

to store the recovered information. Columbus reads the input files and

passes them to an extractor which will generate the appropriate internal

representation. The extractor parses the input source file by invoking a

separate program called CAN (C++ ANalyzer).

• Linker plug-in which builds a complete internal representation of the

project. Columbus applied different filtering methods, such as filtering

using C++ elements categories, filtering by input source files and

filtering by scopes.

• Exporter plug-in which exports the internal representation to a given

output format such as HTML, Graphic Exchange Language (GXL) and

MAISA.

Columbus recovery capabilities were applied on three C++ projects:

IBM Jikes Complier, Leda Graph Library and Star Office Writer. Columbus

presented different statistics for the subject systems, such as number of

classes, number of functions, memory consumption and CPU times. The

accuracy of Columbus was not reported.

2.2.3.4 Similarity Scoring Approach

Design pattern detection using Similarity Scoring Approach (SSA) is a

research prototype developed in Java at the University of Macedonia to

handle the problem of multiple variants of design patterns [31]. SSA

describes design patterns to be detected, as well as the subject system, as

graphs. SSA represents all system static information as a set of matrices.

SSA uses a graph similarity algorithm to detect design patterns by

calculating the similarity of vertices in the pattern and the subject system. To

handle the system-size problem, SSA divides the system into a number of

sub-systems and the similarity algorithm is applied to the sub-systems

33

instead of the whole system. SSA was applied to three open source systems:

JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7. Results were validated

against the documentation of the systems.

Moreover, SSA uses matrices to represent the relationships between

classes, which are directed graphs that can be mapped into a square matrix.

To preserve the validity of the results, SSA similarity scores were bound

within the range [0, 1]. SSA shows that the use of a similarity algorithm

produces more accurate results than the use of exact/inexact graph

matching.

SSA Methodology

Since design patterns involve class hierarchies, SSA locates these

hierarchies and applies the similarity algorithm to them. The methodology

presented by SSA can be summarized as follows:

• Each characteristic of the subject system (associations, generalization,

abstract classes, object creations, abstract method invocations) is

represented as a N×N adjacency matrix where N is the total number of

classes in the subject system.

• Inheritance hierarchies are detected. Classes that do not participate in

any hierarchy are listed in a separate group of classes.

• Building sub-system matrices. The whole system is partitioned into a

number of sub-systems to improve detection efficiency. The

experimental results show that the time required to apply the similarity

algorithm to sub-systems is less than that for the whole system. Sub-

systems are formed by merging all system hierarchies, two at a time.

• Appling the similarity algorithm between design pattern matrices and

sub-system matrices by calculating normalized similarity scores.

• Recovering design patterns in each sub-system. A list is created for

each pattern role. Sub-system similarity scores are sorted in

descending order. Sub-system classes that have scores equal to the

highest score of each role are inserted into the list. Exact matching, for

34

a pattern role, occurs when scores are equal to one. On the other hand,

scores for modified pattern versions result in scores that are less than

one.

To improve the accuracy of the detection process, SSA minimized the

number of roles by considering only the important roles of each design

pattern. In some cases, in which the sub-system does not involve the

required pattern attributes, the detection process is terminated and the sub-

system is excluded.

SSA Results Evaluation

SSA has been evaluated in terms of efficiency and accuracy. The validation

of results was done manually by inspecting the source code and referring to

the documentation of the subject systems.

In terms of accuracy, SSA obtained false positives for two patterns:

Factory Method and State design patterns. SSA achieved a precision of

100% for all the examined design patterns and a recall ranging from 66.7%

to 100%.

SSA detected the following design patterns: Adapter, Command,

Composite, Decorator, Factory Method, Observer, Prototype, Singleton,

State, Strategy, Template Method and Visitor.

SSA efficiency was determined by measuring the CPU times and

memory consumption during the detection process. SSA shows that the

similarity algorithm is the most intensive task. Furthermore, storing the

adjacency matrices is the main consumer of resources.

SSA has a number of limitations. For example, it assumes that no

more than one characteristic for a given design pattern instance is modified.

To distinguish true positives from false positives, SSA uses a threshold

value. For the pattern roles that have two characteristics (association and

generalization), a threshold value of 0.5 is assigned. Moreover, SSA cannot

detect the characteristics that are external to sub-system boundary, such as

chains of delegations. Finally, SSA does not employ any dynamic

information.

35

2.2.3.5 DP-Miner

Design Patterns Discovery Matrix (DP-Miner) was developed at the

University of Texas as a research prototype to detect design pattern

instances [32]. DP-Miner represents system structure (all classes of the

system) as a matrix of columns and rows. Each cell in the matrix represents

a certain relationship between classes. On the other hand, the relationships

between pattern participant classes are represented in another matrix. The

detection of design patterns is performed by matching the two matrices. The

architecture of DP-Miner appears in Figure 2.3.

Figure 2.3: DP-Miner architecture

DP-Miner used an IBM plugin called “UniSys” to transform UML class

diagrams into XMI format. DP-Miner involves three analysis phases:

structural, behavioral and semantic. In the structural analysis phase, DP-

Miner takes the advantage of prime numbers where any given number can

be broken into a unique list of prime numbers. A unique prime number is

assigned to each structural element. “One” is excluded since it is used as an

identity for multiplication. DP-Miner calculates the weight of each class

according to the following formula:

Total class weight = Wa × Wm × Was × Wg × Wd × Wag

Where: Wa: 2 number of attributes in the class, Wm: 3 number of methods in the class,

Was: 5 number of association relationships in the class, Wg: 7 number of generalisation relationships in the

class, Wd: 11 number of dependency relationships in the class and Wag: 13 number of aggregation

relationships in the class

36

For example, if a class weight is calculated as 5670, then it can be

broken into 21 × 34 × 51 × 71, which indicates that this class has one

attribute, one association and one generalization. Optimization has been

applied to handle the overflow problem which may occur because of the

large numbers of methods and attributes. DP-Miner encoded the system

design into n × n matrix (where n is the total number of classes in the

system). On the other hand, design pattern relationships are encoded into m

× m matrix (where m is the total number of participant classes). Design

pattern detection is done by matching the system design matrix to the design

pattern matrix. Each cell in the system design matrix is initialized by 1.

For each cell in the system design matrix, if the relationship between

class I and class J is:

• Association: then cell value is multiplied by 5.

• Generalization: then cell value is multiplied by 7.

• Dependency: then cell value is multiplied by 11.

DP-Miner excluded the aggregation relationships from the structural

analysis phase since it is difficult to extract them from an XMI file. On the

other hand, DP-Miner checks class types such as abstract, concrete, or

interface. The behavioral analysis phase focuses on finding dependency

relationships and method delegations. To handle the problem of

implementation variants, DP-Miner constructs a Control Flow Graph (CFG).

However, it is not clear how the behavioral aspects are recovered by DP-

Miner. How is the XMI file parsed?

Furthermore, DP-Miner uses semantic analysis to get clues from

named conventions of classes. However, not all classes in the system may

be named with pattern-related information (i.e. some implementations may

be developed without any pattern knowledge).

DP-Miner Results Optimization

DP-Miner was applied to the Java AWT package (Abstract Windowing

Toolkit). The AWT package involves 346 files which contain 485 classes and

37

111 interfaces. When DP-Miner is applied to a large number of attributes and

methods, an overflow is noticed in practice. To handle this, DP-Miner

optimized the weight calculations and the matrix construction.

Depending on the observation of GoF pattern characteristics, DP-

Miner concluded that there was no more than one attribute in each pattern

participant class. In addition, the number of operations in any pattern

participant class is less than five. Based on the observation that there is only

one instance of each relationship, the maximum weight for a given class is

25 × 35 × 5 × 7 × 13 = 31352832. Hence, DP-Miner changes the way of

scanning the XMI file so the matrix can be built in one iteration. The matrix

construction time of JavaAWT is reduced to 15 seconds.

DP-Miner Detection Methodology

DP-Miner recovery relies mainly on calculating class weights and on the

construction of a relationship matrix. The weight of each class provides an

indication of the number of attributes and operations inside each class and

its relationship with other classes. It must be noted that DP-Miner did not

distinguish between the inheritance and realization relationships (i.e. DP-

Miner considers that the relationships of class A extend class B and that

class A implements class B as an inheritance relationship). Moreover, DP-

Miner did not recover the aggregation and dependency relationships.

DP-Miner recovered Adapter, Bridge, Strategy and Composite design

patterns from the Java AWT package. To explain how DP-Miner works, an

example of the recovery of the Adapter design pattern from JavaAWT is

presented. DP-Miner calculates a weight for each Adapter participant class.

The calculated weights are: Target class = 3 (one method), Adapter = 105

(one method, one association and one generalization) and Adaptee class =

3 (one method). The relationship matrix is also constructed to describe the

relationships among Adapter participant classes. Table 2.1 shows the

relationship matrix of the Adapter design pattern.

38

Table 2.1: DP-Miner’s Adapter pattern matrix

Candidate instances of the Adapter design pattern are identified

during the structural analysis phase. False positives are reduced later during

the behavioral analysis phase. The semantic analysis phase is not applied

since there are no ambiguity issues between the Adapter instances. DP-

Miner searches for weights of a group of classes in Java AWT that are

integral multiples of the Adapter participant classes. The Adapter matrix may

not have the exact sub-matrix of the JavaAWT matrix. Each candidate

instance in the Adapter matrix must satisfy the following rules:

• Target class should be abstract or interface and its weight should be a

multiple of 3.

• Adapter class should be concrete and its weight should be a multiple of

105.

• Adaptee class should be concrete and its weight should be a multiple

of 3.

During the behavioral analysis, DP-Miner will check whether there is

any method that plays the role of the request method (the request method is

defined in the Target class and re-implemented in the Adapter class). If an

instance satisfies the first condition, then the tool will check if the request

method in the Adapter class invokes the request method in the Adaptee

class.

DP-Miner detected 21 Adapter instances within 2.44 seconds and 3,

76 and 65 instances of Composite, Strategy and Bridge respectively. Result

validations were performed based on the manual tracing of the Java AWT

package and on the documentation provided by Java AWT. The detection

accuracy was not reported.

Class Target Adapter Adaptee

Target 1 1 1

Adapter 7 1 5

Adaptee 1 1 1

39

2.2.3.6 Sub-Patterns Approach

The approach presented by Dongjin et al. involves a sub-pattern

representation for the 23 GoF design patterns, henceforth the sub-patterns

approach [33]. The source code and predefined GoF design patterns are

transformed into graphs with classes as nodes and relationships as edges.

The instances of sub-patterns are identified by means of sub-graph

discovery. The Joint classes have been used to merge the sub-pattern

instances. Moreover, the behavioral characteristics of method invocations

are compared with a predefined method signature template of GoF patterns

to obtain final instances.

The sub-patterns approach introduces a structural feature model to

represent GoF design patterns. The structural feature model recovered four

main relationships: inheritance, aggregation, association and dependency.

In fact, the sub-patterns approach defined 15 sub-patterns to represent GoF

design patterns. A class-relationship directed graph has been used to

represent the classes and their relationships.

In addition, the sub-patterns approach uses a class-relationship

directed graph to represent system classes and the relationships among

them. The directed graph has been defined as follows:

V = {V0, V1….Vn} is the set of vertices that represents system classes.

E = {e (vi, vj) С V × V is the set of directed edges that represents the

relationships.

W = E WE is the function that assigns weights to edges.

The prime numbers 2, 3, 5 and 7 were used to represent the weights

of the association, inheritance, aggregation and dependency respectively. If

two classes have more than one relationship; the corresponding prime

numbers are multiplied.

The sub-patterns approach works in four main steps:

40

• Modelling the source codes into a class-relationship directed graph in

which the vertices represent the classes and the edges, while their

weights represent the relationships among classes.

• Detecting the instances of sub-patterns by matching the sub-graphs of

the class-relationship directed graph to that of the predefined sub-

patterns.

• Merging the sub-pattern instances based on the joint classes and

comparing them to the Structural Feature Model to produce the

candidate instances.

• Analyzing method signatures to obtain final instances.

The sub-patterns approach used Enterprise Architect, a visual

platform for modelling software systems, to parse the source codes and to

produce class diagrams and XMI files.

The searching algorithm will search for the candidate vertices in the

class-relationship directed graph of the subject system (GCDRs). For each

vertex (vi) in the class-relationship directed graph of the sub-pattern

(GCDRm), the vertices in GCDRs are selected if their outbound composite

weights and inbound composite weights can be divided, with no remainder,

by those of vi in GCDRm. The candidate vertices are combined to generate

k-sub graphs. Further details on how to calculate the outbound composite

weights and inbound composite weights are presented in [33].

The sub-patterns approach has been applied to nine open source

systems and a Design Pattern Instances Detection tool has been developed

to implement the methodology. Precision, recall and F-measure metrics were

used to assess the detection accuracy. Moreover, the execution time for the

instances recovery, structural analysis and behavioral analysis was

calculated. As it was reported by the authors, the sub-patterns approach

spent a longer time on method signatures analysis than on structural

analysis. The validation of the results is performed manually and the

repository of Perceron [34] has been used as a reference benchmark. The

41

sub-pattern approach achieved precision which ranges from 68% to 100%

and recall with ranges from 73% to 100%.

We noticed contradictions in the results presented by the sub-pattern

approach. For example, the authors stated that Perceron was used as the

main reference to validate the recovered instances, but Perceron did not

involve JHotDraw and JavaAWT in its list of open source projects.

Furthermore, the reported results for the Factory Method recovery in JUnit

was not accurate where the sub-pattern approach reported two instances

and Perceron reported only one instance. The calculated precision and recall

for the Factory method pattern were both 100%. Another example is the

detection of the Proxy design pattern in Hodouk. Perceron reported zero

instances, while the sub-pattern approach recovered 13 instances. The

recall was calculated as 100%.

2.2.4 Miscellaneous Approaches

These approaches do not fit under any of the previous categories. The

following is a brief description of each approach in this category.

2.2.4.1 Kraemer and Prechelt Approach

One of the first approaches to detect design patterns was presented by

Kraemer and Prechelt in 1996 [35]. They tried to improve software

maintainability through the detection of design patterns directly from the C++

source code. Design patterns are represented as Prolog rules which are

used to query a repository of C++ codes.

The detection process focused on five structural design patterns:

Adapter, Bridge, Composite, Decorator and Proxy. The Kraemer and

Prechelt approach was applied to four projects: NME, ACD, LEDA and zApp

class library. The reported precision was 14-50%.

2.2.4.2 PTIDEJ

PTIDEJ (Pattern Traces Identification, Detection and Enhancement in Java)

was developed at the University of Montreal using Java under the Eclipse

42

platform and, since then, PTIDEJ has evolved into a complete reverse

engineering tool. PTIDEJ comprises several identification algorithms for

design patterns, micro patterns and idiom patterns [36][37].

The core of the PTIDEJ tool is the PADL Meta-model (Pattern and

Abstract Level Description Language). PADL involves a parser to generate

a model of the subject system and to build an Application Object Library

(AOL). PTIDEJ comprises four key tools:

• Software Architectural Defects (SAD) which can automatically detect

the architectural defects and correct them by applying refactoring

techniques at the design level.

• Efficient Patterns Identification (EPI) which is used to detect design

pattern occurrences in the source code. EPI uses constraint-based

programming to find exact and approximate occurrences of design

patterns.

• Dynamic Relational Adjacency Matrix (DRAM) which is mainly used to

visualize the dynamic relationships between classes.

• ASPECTS which computes certain metrics based on the generated

aspect-oriented abstraction.

The architecture of PTIDEJ appears in Figure 2.4

Figure 2.4: PTIDEJ architecture

Design solutions provided by design patterns are described in PTIDEJ

using design motifs which are prototypical micro architectures. PTIDEJ

recovered design patterns by finding all micro architectures that are similar

43

to design motifs (i.e. finding all classes and interfaces that have structures

similar to design motifs). Candidate design motifs are assessed qualitatively

using quantitative signatures. In addition, the metric values of classes, which

are playing roles in design motifs, are computed and sent to a rule learner

algorithm.

Classes that are playing roles in design motif are evaluated using

external class characteristics, such as size, filiation, cohesion and coupling.

Since two or more classes may have identical external attributes and roles,

fingerprinting cannot be used to detect design motifs. However, it can be

used to reduce the search space for the candidate classes.

PTIDEJ considers design pattern detection as a constraint

satisfaction problem (CSP) in which decisions were made during the variable

assignment phase. Specifically, the explanation was used to explain the

differences between the expected and the observed behavior for a given

problem. In addition, the explanation was used to determine the constraint

effects on the domain of variables. In the context of design pattern

identification, explanation-based constraints can explain why no solution is

found for a given problem. Moreover, relaxing a constraint allows the

discovery of new solutions. The PTIDEJ detection process can be

summarized as follows:

• Modelling design patterns as a constraint satisfaction problem (CSP).

Design pattern participant classes are modelled as a set of constraints.

An integer variable is associated with each participant class.

Relationships between classes are represented as constraints over

variables.

• Modelling the source code. Only the information needed to apply the

constraints is kept, such as class names and relationships between

classes.

• Finding the distorted solutions. When all real solutions of CSP are

found, the user can guide the search process dynamically to find the

distorted solutions. PTIDEJ has built a library of constraints to express

the relationships between classes. The constraints library stores:

44

• Strict inheritance relationship. An inheritance relationship is

expressed by “Strict Inheritance Constraint”. If B inherits from A,

then the constraint is expressed as A<B.

• Knowledge (if a method in class A invokes a method in class B). The

knowledge is expressed by the constraint

“RelatedClassesConstraint”, expressed as A →B.

• Non-Knowledge (class A must know about class B). This relation is

expressed by the constraint “UnRelatedClassesConstraint”.

• Composition relationship (class A defines one or more fields of class

B). This relation is expressed by the constraint “composition”,

expressed as A Ↄ B.

• Field type (to ensure that a field f of class A is of type B). This relation

is expressed by the constraint “PropertyTypeConstraint”, expressed

by as A.f=B.

For example, PTIDEJ modelled the Composite design pattern by

associating each participant class with a variable. Variable values are

constructed based on the relationships between classes. Specifically,

composite < component, leaf < component and composite Ↄ component.

PTIDEJ used the explanation-based constraint solver, PALM, to extract a

similar set of classes from the source code.

PTIDEJ has been applied on two packages of the Java class libraries:

Java AWT and Java.NET. As reported by PTIDEJ, all Composite and

Façade design instances were identified correctly. However, the accuracy of

PTIDEJ is not reported.

2.2.4.3 CrocoPat

CrocoPat is a tool for design pattern detection developed at the Technical

University of Cottbus [38]. It represents the software metamodel in terms of

relations. Design patterns are described by relational expressions. The main

motivation for building CrocoPat is to handle the performance problem of the

previous detection tools. The metamodel presented by CrocoPat divides the

object-oriented program into packages, classes, methods and attributes.

45

CrocoPat automatically analyzes the object-oriented program and the

user is able to define new patterns. Moreover, CrocoPat is able to analyze

large, object-oriented programs in an acceptable time. In terms of graph

theory, CrocoPat does sub-graph search. In terms of relational algebra,

CrocoPat searches for tuples fulfilling a given predictive expression.

CrocoPat represented all system relationships using a Binary Decision

Diagram (BDD).

CrocoPat Detection Methodology

 CrocoPat recovers design pattern instances using three main steps:

• Recovering source code data using a program analysis tool (sotograp).

The recovered data will be stored in a relation file.

• Creation of pattern definitions using pattern specification language. The

CrocoPat’s language uses relational algebra expressions to express

the pattern definitions. The syntax and semantics of the expressions

are also defined. Specifically, CrocoPat defines U (Universe) as a set

of all values and X as a finite set of all attributes. A tuple t of X is a total

function t: X U. Val (X) is the set of all tuples of X.

• Recovering of the call, inherit and contain relationships.

CrocoPat Evaluation

CrocoPat has been applied on three open source systems: Mozilla, JWAM,

and wxWindows. For example, to describe the Composite design pattern,

CrocoPat used the expression Call Λ Inherits [x/y] Λ contains [x/z] Λ (inherits

[x/L] Λ ʳ (contains [x/L]) where x is the client class, y is the component class,

z is the composite class and L is the leaf class. Moreover, CrocoPat

recovered some design analysis structures, such as classes in circles (class

x is used by other classes including itself) and the role of identity (two classes

use the same classes).

CrocoPat is only evaluated in terms of performance. The reported

results only show the detection of the Composite and Mediator instances in

Mozilla, JWAM and wxWindows. The recovery performance for the detection

46

of all Composite instances in the three subject systems was 23 seconds for

Mozilla, 3.1 seconds for JWAM and 1.0 seconds for wxWindows.

2.2.4.4 SPQR

System for Pattern Query and Recognition (SPQR) is a tool-set for elemental

design pattern detection in C++ source code, developed at the University of

Carolina [39]. SPQR uses a logical inference system to encode rules, which

will be combined later to form patterns using reliance operators, and to

encode the structural/behavioral relationships between classes and objects

using rho-calculus. SPQR components are presented in Figure 2.5.

Figure 2.5: SPQR components

SPQR analyses C++ source code for a particular syntactic structure

which matches the P-calculus concepts. SPQR uses a “gcc” tool to generate

an abstract syntax tree representation of the source code. A “gcctree2oml”

tool has been developed by SPQR to read the abstract syntax tree and to

generate an XML representation of the object structure. Furthermore, the

“oml2otter” tool reads the object’s XML file and produces a feature rule file

(otter input) which will be used by the automated theorem prover (OTTER)

to find design pattern instances. Finally, a “proof2pattern” tool analyses the

OTTER proof and produces a final pattern report.

SPQR is only applied to Killer Widget Application and the Decorator

design pattern is recovered. SPQR results were only validated in terms of

efficiency (CPU times and memory consumption).

47

2.2.4.5 PINOT

Pattern Inference and Recovery Tool (PINOT) reclassifies the catalog of

design patterns by intent [40]. PINOT was built from Jikes, an open source

Java compiler, and focuses on the detection of common design patterns

used in practice. To capture program intent, PINOT used static program

analysis techniques to recover design pattern instances from four open

source projects: Java AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and

Apache Ant v1.6. PINOT reclassifies GoF design patterns, based on their

structural and behavioral similarities, into five groups: Language-provided

patterns, Structural driven patterns, Behavioral driven patterns, Domain-

specific patterns and Generic concepts.

Language-driven patterns concern the patterns already implemented

by programming languages, such as the Iterator and the Prototype design

patterns, where they are implemented in Java using the libraries

Java.util.Iterator and Java.lang.Object respectively. Structural driven

patterns describe the inter-class relationships (generalization, association

and delegation). These patterns are Bridge, Composite, Adapter, Façade,

Proxy, Template method and Visitor. Behavioral driven patterns encode all

pattern behaviors inside their method bodies. These patterns are Singleton,

Abstract Factory, Factory method, Flyweight, Chain of responsibility,

Decorator, Strategy, State, Observer and Mediator. Interpreter and

Command design patterns are classified as Domain-specific patterns.

PINOT claims that the Interpreter design pattern uses the structure of the

Composite design pattern and the behavior of the Visitor design pattern.

Generic concept patterns involve Memento and Builder design patterns

since they have a lack of structural and behavioral aspects. PINOT focuses

on the detection of structural and behavioral patterns. Language provided,

Domain-specific and Generic concepts patterns are excluded from the

detection process.

Structural driven patterns are detected based on the relationships

between classes. In addition, the virtual delegations, call dependencies,

context interfaces, associations, aggregations, Factory interfaces and

48

Singleton class structures are identified. PINOT used data flow analysis on

Abstract Syntax Trees (ASTs), in terms of blocks, to detect the behavioral

driven patterns. Method bodies are represented as a Control Flow Graph

(CFG) which is scanned later to determine method behaviors. Figure 2.6

shows the CFG used by PINOT to represent the “getInstance” method, used

to determine whether a class has only one instance (the intent of Singleton

design pattern) [40].

Figure 2.6: CFG of getInstance

PINOT was tested against the demo pattern source codes from the

applied Java patterns. PINOT defined a pattern instance as a set of pattern

participants’ classes. PINOT successfully detected the following patterns:

Abstract Factory, Factory Method, Singleton, Adapter, Bridge, Composite,

Decorator, Façade, Flyweight, Proxy, Chain of Responsibility, Mediator,

Observer, State, Strategy, Template Method and Visitor.

PINOT has been run on a Linux machine using a 3GHz Intel

processor with 1 G RAM. PINOT reported only the CPU times required to

detect the structural and behavioral driven patterns in four open source

projects (ANT, AWT, JHotDraw and Swing). CPU times for each subject

system are presented in Table 2.1. PINOT results were validated against an

authoritative discussion board and a developer documentation and also

manually.

49

Table 2.2: CPU times of PINOT’s subject systems

2.2.4.6 DeMIMA

DeMIMA (Design Motif Identification: Multilayered Approach) is a semi-

automatic tool, developed at the University of Montreal, that identifies micro

architectures similar to design motifs in the source code [41]. DeMIMA

involves three layers: two layers to generate the source code abstract model

and class relationships and one layer to recognize design patterns from the

generated abstract model.

 DeMIMA uses the term “design motif identification” to describe the

detection process. In addition, it defines microarchitecture as a set of

classes, methods and relationships having a structure similar to one or more

design motifs (patterns).

The DeMIMA detection process can be summarized as follows:

• Identifying micro architecture (mA) similar to a set of pattern motifs.

Source code (S) will be analyzed to search for a set of design motifs.

• Contextualizing microarchitecture. This is done by storing design

pattern motifs using external data.

• Understanding source code by representing it as a class diagram to

describe design motifs.

DeMIMA provides an automation tool to implement the first task.

Since the second and third task rely on human experience and system

domain, they are not implemented. DeMIMA uses three layers to identify

design motifs in source code: source code model, idiom level model and

design level model. The traceability link between layers from source code up

Subject system CPU Times (seconds)

Ant 12.52

AWT 10.68

JHotDraw 8.98

Swing 66.79

50

to the identified micro architecture appears in Figure 2.7. Moreover, DeMIMA

defines a Meta-model, PADL (Pattern and Abstract Level Description

Language), to express the characteristics of the class diagram.

Figure 2.7: DeMIMA tractability link between layers

DeMIMA First Layer (Source Code Model)

DeMIMA first layer uses a parser to model the subject source code. The first

layer includes all information found directly in Java source code, such as

classes, methods and relationships. DeMIMA provides a Meta-model to

describe the source code in terms of two parts:

• A class entity which describes the system as a set of classes.

• The class element which describes the methods inside each class.

A UML-like diagram is used to describe the source code model. A

code example and its UML representation, as presented by DeMIMA,

appears in Figure 2.8 [41]:

Figure 2.8: DeMIMA source code model example

51

DeMIMA Second Layer (Idiom Level Model)

DeMIMA second layer provides a high-level abstraction view of the subject

source code. Idioms specify the binary relationships between classes.

DeMIMA focuses on the use, association, aggregation and composition of

unidirectional class relationships. Four language-independent properties

were used to define each relationship:

• Exclusivity property (EX): An instance of class B involved at a given

time with an instance of class A may also participate in other

relationships at the same time.

• Type of Receiver (RT): class A instances involved in a relationship send

a message to class B instances. Message receivers can be fields,

parameters, or local variables.

• Lifetime property (LT) which constrains the lifetime for all class B

instances with respect to the lifetime of class A instances. LT relates

the time of destruction between two instances of class A and class B.

In object-oriented programming, garbage collection is used to control

instances’ lifetime.

• Multiplicity property (MU) which is the number of instances of class B

allowed in a relationship.

Based on the above properties, DeMIMA formalizes the aggregation,

composition and association relationships. Exclusivity and receiver type are

considered static properties. In contrast, lifetime and multiplicity are

considered dynamic properties. DeMIMA recovered the following

relationships from the source code of Figure 2.8: Association (c1, c2) =

False, Aggregation (c1, c2) = True and Composition (c1, c2) = False.

DeMIMA Third Layer (Design Level Model)

DeMIMA layer three models the design motifs as a set of participant classes.

For example, Figure 2.9 shows a UML-like diagram representation of the

source code of Figure 2.8.

52

Figure 2.9: DeMIMA design motif of the source code example

DeMIMA uses explanation-based constraint programming to handle

the constraint satisfaction problem. DeMIMA identifies micro-architectures

similar to the design motifs by transforming them into constraints that reflect

the relationships between the pattern’s participant classes. The used

constraints are inheritance constraint, strict transitive inheritance constraint,

transitive inheritance constraint, use constraint, ignorance constraint and

creation constraint. For each constraint, a weight is assigned, which is an

integer value ranging from 1 to 100, to reflect the importance of the

constraint. DeMIMA uses constraint relaxation to replace the constraints that

lead to conflicts with semantically weaker constraints.

DeMIMA Implementation

DeMIMA was implemented using Java programming language on the top of

the PTIDEJ framework [36][37]. DeMIMA uses the following PTIDEJ

components:

• PADL (Pattern and Abstraction Level Description Language) to

describe the models of source code, idiom and design.

• PADL class file creator to parse the Java source code files.

• Relationship static analyzer, used to compute the receiver type values

and multiplicity values.

• CAFFINE, used to perform the dynamic analysis of the subject system

by calculating lifetime and exclusivity.

53

• PTIDEJ user interface, used to visualize the model.

• PTIDEJ solver, used to produce microarchitectures.

Furthermore, DeMIMA detected twelve design motifs: Adapter,

Command, Composite, Decorator, Factory Method, Observer, Prototype,

Singleton, State, Strategy, Template Method and Visitor.

Recall and precision were used to assess the effectiveness of

DeMIMA. The experiments have been applied on JHotDraw v5.1, JRefactory

v2.6.34, JUnit v3.7, MapperXML v1.9.7, QuickUML v2001 and 33

components. DeMIMA observed precision of 34% for the 12 design motifs

considered and achieved 100% recall for the five open source systems. Due

to confidentiality reasons, precision and recall were not reported for the

industrial components.

2.2.4.7 DPRE

Design Patterns Recovery Environment (DPRE) is a design pattern recovery

prototype developed at the University of Salerno [42]. DPRE uses a two-

phase approach to recover structural design patterns from object-oriented

code. Figure 2.10 shows the DPRE recovery process. DPRE phase one

provides a coarse-grained level where design pattern candidates are

identified by analyzing class diagram information recovered during the

preliminary analysis. Class diagram information, such as name, type,

inheritance relationships and association relationships, are parsed using a

visual language technique. All information is stored in a repository for later

use during the structural analysis phase. Method invocations and

declarations are also stored.

54

Figure 2.10: DPRE recovery process

In the second phase, codes of classes that participate in design

pattern identification were examined to check their compliance with the

corresponding GoF patterns’ source code. The DPRE visual parser analyses

the attribute-based representation of the pattern’s class diagram, which is

represented as a textual sentence to describe its classes and their

relationships. DPRE representation of the Adapter design pattern appears in

Figure 2.11 [42]. The generated textual representation of the Adapter design

pattern is [CLASS Link1,2 inheritance Link 1,1 CLASS’ Link 1,1 Association

Link 2,1class"].

Figure 2.11: DPRE representation of the Adapter design pattern

DPRE examined six open source Java projects: JHotDraw v5.1,

Apache Ant v1.6.2, JHotDraw v6.0b1, QuickUML 2001, Swing and Eclipse

JDT components (Core v3.3.3 and User Interface v3.3.2). The effectiveness

of DPRE is characterized by precision ranging from 62% to 97%. However,

disparity in the results for the detected pattern instances is noticed.

55

2.2.4.8 MARPLE

Zanoni introduced an Eclipse plug-in called MARPLE (Metrics and

Architecture Reconstruction Plug-in for Eclipse) which supports the detection

of both design pattern instances and software architecture reconstruction

activities [43]. MARPLE tries to handle the variant problems of design pattern

detection through the detection of sub-components called “basic elements”.

The architecture of MARPLE involves five main modules that interact with

each other through XML data transfer. These modules are:

• The Information Detector Engine module which uses the AST

representation of the subject system to collect basic class elements and

metrics.

• The Joiner module which recovers all design pattern candidates.

Furthermore, it also represents the subject system as an Attributed

Relational Graph (ARG). ARG has a set of vertices that correspond to

a set of types and a set of edges that correspond to a set of basic

elements which connects the types with each other.

• The classifier which tries to detect the possible false positives identified

by the Joiner.

• The Software Architecture Reconstruction module which obtains

abstractions from the subject system based on the metrics and the

basic elements recovered by the Information Detector Engine.

• The Output Generation module which views the system analysis

results.

The Information Detector Engine tries to extract architectures that

match the target structure defined in terms of Joiner rules. The basic

elements were recovered by visitors that parse the AST representation of

the subject system source code. The instances of the basic elements that

have been found inside a subject system are stored in an XML file. MARPLE

constructs all the possible valid mappings, {(R1, C1), (R2, C2)… (Rn, Cn)},

for each pattern instance (Ci is a class that is supposed to play a role Ri

inside the pattern).

56

2.2.4.9 Sempatrec

The approach presented by Alnusair et al [44] - henceforth Sempatrec - uses

ontology formalism to represent the conceptual knowledge of the source

code and semantic rules to capture the structure and behavior of design

patterns.

A tool named Sempatrec (SEMantic PATtern RECovery) has been

developed as a plug-in for the Eclipse IDE to implement the approach.

Sempatrec processes the Java bytecode of the subject system, generates

an RDF (Resource Description Framework) ontology and stores the ontology

locally in a pool.

Specifically, Sempatrec generates a Source Code Representation

Ontology (SCRO) to provide an explicit representation of the conceptual

knowledge structure found in the source code. In addition, the developed

SCRO serves as a basis for design pattern recovery where a design pattern

ontology sub-model will be created. This sub-model extends the SCRO’s

vocabularies and involves an upper design pattern ontology that is further

extended with a specific ontology for each design pattern.

Sempatrec utilized the Web Ontology Language (OWL), Resource

Description Framework (RDF), Semantic Web Rule Language (SWRL),

SPARQL protocol and a query language. OWL-DL is a sub-language of OWL

which is based on the Description Logic (DL). More specifically, Sempatrec

used OWL-DL and RDF to obtain a precise formal representation of various

source code artifacts.

The Sempatrec recovery process focuses on four main relationships:

aggregation, use, inheritance and realization. The object property "hasPart"

and its inverse "isPartof" were used to represent the aggregation

relationship. The "hasPart" property, which is a sub-property of the use

object property, describes the “use” relationship.

 Furthermore, Sempatrec has developed a knowledge generator sub-

system that automatically extracts knowledge from Java bytecode. The

proposed sub-system performs a comprehensive parsing of the Java class

57

files and captures every SCRO element. In addition, the sub-system

generates a set of instances for all ontological properties defined in SCRO.

The semantic instances, generated by the knowledge generator sub-

system, are serialized using RDF and linked to SCRO or any other OWL

ontology via OWL re-use mechanisms. In addition, the knowledge generator

parses the subject system and extracts its structural descriptions. These

descriptions are used to generate a separate RDF ontology which is

represented using the Notation3 (N3).

To detect design patterns, Sempatrec defines a set of SCRO and

SWRL rules to describe the pattern’s structure and behavior. Moreover, an

OWL-DL reasoner computes the entailments from a set of facts and SWRL

rules defined in the ontologies. The detection process relies on a logical

inference engine which requires a rule-based reasoner capable of

processing the SWRL rules. After processing the rules, the reasoner will

recover pattern instances by matching semantic constraints, specified in the

rules, to the source code descriptions found in the knowledge base that

represents the subject system.

 SWRL rules have been written for 11 design patterns: Singleton,

Factory Method, Abstract Factory, Composite, Adapter, Decorator, Template

Method, Observer, Visitor and State/Strategy. Sempatrec automatically

loads the required ontologies, calls the reasoner, executes the rules and runs

built-in SPARQL queries to capture and display the recovered pattern

instances.

Sempatrec has been applied to three open source systems:

JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7. Precision and recall were

used to assess the accuracy of Sempatrec which achieved an average of

82% and 90% for precision and recall respectively for the detection of

Singleton, Factory Method, Abstract Factory, Composite, Adapter and

Decorator design patterns. For the detection of the behavioral patterns,

Template Method, Observer, Visitor and State/Strategy, Sempatrec

achieved an average precision of 61% and an average recall of 88%.

58

Moreover, Sempatrec spent three seconds, four seconds, and 13.5

seconds parsing the framework, processing the ontologies and preparing the

knowledge base from JUnit, JHotDraw and JRefactory respectively. On the

other hand, the runtime that the reasoner spent executing the SWRL rules

for all patterns was 28 seconds for JUnit, 3.6 minutes for JHotDraw, and 11.3

minutes for JRefactory.

In fact, it is not clear how Sempatrec formed the design pattern

instances, although some instances are formed based on a certain role in

the pattern. For example, a decorator instance only represents the decorator

class and the roles of "Component", "ConcreteComponent" and

"ConcreteDecorator" are ignored. Other disadvantages of Sempatrec can be

noticed, such as its inability to establish the scalability of the reasoner’s

performance and the possible variations of the SWRL rules which may affect

the precision and recall and the runtime performance. In addition, the built-

in rules can only be edited using a specialized ontology editor. The main

advantage of Sempatrec is the use of a pure ontology-based knowledge

representation mechanism which ensures a consistent and formal functional

representation of design patterns. Sempatrec is precise, practical and

extensible.

Table 2.3 summarizes the whole spectrum of design pattern detection

approaches. Some of the miscellaneous approaches are listed in the table

and do not appear in this section (Pat [35], KT [45], DP++ [46], Kim and

Boldyreff [47], Heuzeroth et al. [48], Philippow et al. [49], HEDGEHOG [50],

and Kaczor et al. [51]). However, ALL table approaches are involved in the

statistical analysis of this section. In addition, Table 2.3 presents the analysis

style conducted by each detection approach where pattern detection

approaches are classified into structural analysis approaches, behavioral

analysis approaches and semantic analysis approaches.

Structural analysis approaches detect the instances of design

patterns based on the static parts of the subject system. They explore inter-

class relationships, method invocations and data types.

59

Behavioral analysis approaches consider the execution behavior of

the program. The behavioral aspects of a program are recovered using static

and dynamic analysis techniques. Behavioral analysis is useful since the

structure of design patterns is not enough to provide a fingerprint inside the

source code. For example, State and Strategy patterns have similar

structures. Similarly, Chain of Responsibility, Proxy and Decorator patterns

have identical structures. However, the possible variants of the same

implemented behavior can increase the number of false positive instances.

Semantic analysis complements the structural and behavioral

aspects to reduce the number of false positive instances. Naming

conventions and annotations were used to retrieve the role information.

Semantic information is important to distinguish between design patterns

that have identical structural and behavioral aspects, such as State, Strategy

and Bridge.

60

Table 2.3: Summary of detection approaches based on their detection
methodology and analysis style

Detection
Methodology

Tool/ Author Year Analysis Style R

Database Query
Approaches

Rasool et al. 2010 ST, SE [18]

D3 2008 ST, BE [19]

Marek Vokac 2006 ST [20]

SPOOL 1999 ST [22]

Metrics-Based
Approaches

MAISA 2000 ST [23]

FUJAPA 2002 ST,BE [24]

Antoniol et al. 1998 ST,BE [25]

Detten and Becker 2011 ST [26]

Uchiyama et al. 2014 ST,BE [27]

UML Structure,
Graph and

Matrix Based
Approaches

Seemann and Gudenberg 1998 ST,SE [28]

DEPAIC++ 2002 ST [29]

Columbus 2002 ST [30]

SSA 2006 ST [31]

DP-Miner 2007 ST,BE,SE [32]

Dongjin et al. 2015 ST,BE [33]

Miscellaneous
Approaches

Pat 1996 ST [35]

PTIDEJ 2001
2004

ST [36][37]

CrocoPat 2003 ST [38]

SPQR 2003 ST [39]

PINOT 2006 ST,BE [40]

DeMIMA 2008 ST [41]

DPRE 2009 ST [42]

MARPLE 2012 ST,BE [43]

Sempatrec 2014 ST,SE [44]

KT 1996 ST [45]

 DP++ 1998 ST [46]

Kim and Boldyreff 2000 ST [47]

Heuzeroth et al. 2003 ST,BE [48]

Philippow et al. 2005 ST [49]

HEDGEHOG 2005 ST,BE,SE [50]

Kaczor et al. 2006 ST [51]

Note: ST: Structural Analysis BE: Behavioral Analysis
 SE: Semantic Analysis R: Reference

61

.2 3 Analysis and Discussion

Design patterns are flexible design templates that may have several

implementations. However, design patterns are described informally, which

may cause misunderstanding. With the trend of applying new technologies,

new approaches and tools are continuously being proposed. This section

aims to provide a comprehensive comparison between all design pattern

detection approaches in terms of subject system representation, subject

systems, recovered design patterns and evaluation criteria.

2.3.1 Intermediate Representation of the Source Code

To the best of our knowledge, all detection approaches in the literature are

targeting the source code of the subject system and avoiding targeting the

system’s design model to extract the instances of design patterns. The

design model does not provide any runtime data necessary for the design

patterns’ recovery (for example, the association relationships). Usually, the

design documents are inconsistent with the source code. Furthermore, most

of the design models are not publicly available. All these reasons made the

source code a better choice than the design model for recovering the

instances of design patterns.

Most design pattern detection approaches use Abstract Syntax Tree

(AST) representation to generate a source code model. The source code

model should hold all the required information to recover design pattern

instances. Table 2.4 lists the intermediate representation used by different

detection approaches.

Some approaches used their own defined representation, such as

[36], [41] and [51]. These approaches defined PADL, Pattern and Abstract

Level Description Language to recover the source code information. Two

approaches did not generate an intermediate representation of the source

code, [43] and [47]. Rather, these approaches used software metrics to

gather source code information. However, each detection approach may use

a certain representation in a different format. For example, DPRE [42] uses

62

AST representation to generate a graph to represent class diagrams of a

subject system. On the other hand, Heuzeroth et al. [48] use AST

representation to define the static aspects of the patterns and the Temporal

Logic Actions (TLA) to represent their dynamic aspects.

Table 2.4: The intermediate representation used by existing approaches

2.3.2 Subject Systems

The majority of detection approaches targeted open source codes that have

been programmed using Java or C++. Two approaches, MAISA [23] and DP-

Miner [32], targeted UML and XML open source systems. KT [45] applied its

detection methodology to Smalltalk programs. Only one approach, CrocoPat

[38], conducted its experiments on both Java and C++ open source systems.

Figure 2.12 shows the programming languages used to program the subject

systems. In fact, most of the detection approaches that have been introduced

after 2008 applied their experiments to Java open source programs.

System
Representation

Author(s)/Tool

AST (Abstract
Syntax Tree)

Antoniol et al. [25], Detten and Becker [26],
PINOT [40], DPRE [42], MARPLE [43], KT [45],
Heuzeroth et al. [48], HEDGEHOG [50]

ASG (Abstract
Syntax Graph)

FUJABA [24]
Columbus [30]

UML, Graph SPOOL [22], Seemann and Gudenberg [28],
Dongjin et al. [33], DP++ [46], Philippow et al.
[49].

Matrix SSA [31]
DP-Miner [32]

Prolog MAISA [23]
Pat [35]

PADL PTIDEJ [36][37], DeMIMA [41], Kaczor et al. [51]
Metadata D3 [19]

Marek Vokac [20]
Other
representations

Canonical form (DEPAIC++ [29])
Annotations (Rasool et al. [18])
BDDs (CrocoPat [38])
OTTER (SPQR [39])
SCRO (Sempatrec [44])

No representation Uchiyama et al. [27], Kim and Boldyreff [47]

63

Figure 2.12: Programming languages used to program the subject systems

Furthermore, the detection approaches used different open source

systems to evaluate their methodologies. The most commonly used open

source systems are JHotDraw v5.1, JRefactory v2.6.24, JUnit v3.7 and

QuickUML 2001. The selection of these approaches was made because:

• They used some well-known design patterns.

• The authors and the relevant literature indicate explicitly the

implemented design patterns in the documentation.

• They are open source and their codes are publicly available.

• They vary in size.

Table 2.5 lists the subject systems used by different detection

approaches to evaluate their detection methodology. It is clear that there is

no common agreement in the literature on the appropriate subject systems

for evaluating any new detection approach. In addition, the number of

required subject systems is not clear. For example, some approaches apply

their experiments to more than five subject systems while other approaches

only apply their experiments to two subject systems. DeMIMA [41] applied

its methodology to 33 industrial components, but there is no information

about them.

0 5 10 15 20

Java

C++

Java and C++

Smalltalk, UML, or XML

Number of Approaches

64

Table 2.5: Summary of the subject systems used by detection approaches

Tool/ Author Subject systems
Rasool et al. [18] JHotDraw v6.1.2 and Apache Ant v1.6.2

D3 [19] Applied Java Patterns and JHotDraw v6.0.b1

Marek Vokac [20] Customer Relationship Management system

SPOOL [22] ET++ and two telecommunication systems

MAISA [23] Nokia DX200 switching system

FUJAPA [24] Java AWT
Antoniol et al. [25] LEDA, Libg++, Galib, Mec, Socket and 8 small-size industrial

systems

Detten and Becker [26] Common Component Modelling Example

Uchiyama et al. [27] Java library v1.6.0, JUnit v4.5 and Spring v2.5

Seemann and
Gudenberg [28],
DEPAIC++ [29]

Not mentioned

Columbus [30] IBM Jikes compiler, LEDA graph library and Star office writer

SSA [31] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7

DP-Miner [32] Java AWT

Dongjin et al. [33] Java AWT v5.0, JHotDraw v5.1, JUnit v3.8, Dom4J v1.6.1,
Lizzy v1.1.1, Hodoku v2.1.1, Barcode4j v2.1.0, RstpProxy v3.0
and Teamcenter

Pat [35] NME, LEDA and zApp

PTIDEJ [36][37] Java AWT, Java.net packages, JHotDraw v5.1, JRefactory
v2.6.24, JUnit v3.7, Lexi v0.0.1α, Netbeans v1.0.x and
QuickUML 2001

CrocoPat [38] Mozilla, JWAM and wxWindows

SPQR [39] Killer Widget Application

PINOT [40] Java AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and Apache
Ant v1.6

DeMIMA [41] JHotDraw v5.1, JRefactory v2.6.34, JUnit v3.7, MapperXML
v1.9.7, QuickUML 2001 and 33 industrial components

DPRE [42] JHotDraw v5.1, Apache Ant v1.6.2, JHotDraw v6.0b1,
QuickUML 2001, Swing and Eclipse JDT components (Core
v3.3.3 and User Interface v3.3.2)

MARPLE [43] 30 open source projects

Sempatrec [44] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7

KT [45] KT and three Smalltalk programs

DP++ [46] DTK library
Kim and Boldyreff [47] Three systems (no information about them)

Heuzeroth et al. [48] Java swing
Philippow et al. [49] Students’ projects

HEDGEHOG [50] AJP code example, pattern box and Java language (v1.1 and
v1.2)

Kaczor et al. [51] JHotDraw v5.1, QuickUML 2001 and Juzzle

65

2.3.3 Recovered Design Patterns

Figure 2.13 shows a summary of the recovered design patterns detected by

different detection approaches. Most approaches successfully detect the

Composite design pattern because its structure is easy to detect. On the

other hand, the Memento and Interpreter design patterns are only detected

by three approaches, since they require dynamic analysis capabilities to

detect them. However, most detection approaches focused on a specific set

of design patterns.

Moreover, as Figure 2.13 illustrates, only three approaches

successfully detect all GoF design patterns. Specifically, Kim and Boldyreff

[47] recovered all GoF design patterns from three systems, programmed

using C++. Unfortunately, there is no information on these systems. In

addition, Philippow et al. [49] recovered all GoF design patterns from student

projects, also programmed using C++. The main disadvantage of the

previous two approaches is their results validation in the sense that the

authors did not report how the detected design instances were validated.

The third approach that recovers all GoF design patterns is presented by

Dongjin et al. [33]. This approach recovers design patterns from Java open

source projects using sub-patterns and method signatures. The Dongjin et

al. approach used the repository of Perceron [34] as a reference benchmark

to validate the detected instances. However, contradictions in the

experimental results were noticed.

66

Figure 2.13: Summary of design patterns recovered by detection

approaches

2.3.4 Evaluation Criteria

Precision and recall metrics have been used by most detection approaches

to evaluate their accuracy. A few approaches reported the F-measure which

provides the harmonic means of recall and precision. Accuracy varies from

one approach to another since some approaches recovered a few patterns

and achieved high precision. The validation method, pattern definitions and

pattern variants could also affect the detection accuracy. The precision,

recall and F-measure have been calculated as follows [52]:

Precision = [True Positives / (True Positives + False Positives)] %

Recall = [True Positives / (True Positives + False Negatives)] %

F-measure = 2 × [(Precision × Recall) / (Precision + Recall)] %

67

Where:

True positives: the number of instances which are correctly detected.

False positives: the number of instances which are incorrectly detected.

False negatives: the number of instances which are incorrectly rejected.

The reported accuracy for the majority of detection approaches in the

literature is presented in Table 2.6.

As Table 2.6 illustrates, the reported accuracy for most of the

detection approaches is not balanced (i.e. high precision and low recall or

vice-versa). The main reason for this would be the large differences between

the number of correctly detected instances and the number of rejected

instances. Specifically, the unbalanced accuracy suggests that there are no

trade-offs between the number of correctly detected instances and the

number of rejected instances (missed instances).

Some approaches only reported the number of true positives and true

negatives, such as D3 [19], Marek Vokac [20] and Heuzeroth et al. [48]. On

the other hand, some approaches used CPU times, such as Rasool et al.

[18], DP-Miner [32], CrocoPat [38], SPQR [39] and PINOT [40], to evaluate

their detection efficiency. For example, PINOT spent 66.79 seconds, 8.98

seconds, 10.68 seconds and 12.58 seconds detecting design pattern

instances from Swing, JHotDraw, Java AWT and Ant respectively.

Furthermore, some detection approaches validated their results

based on manual tracing of the source code and these achieved high

accuracy. On the other hand, only two approaches, Dongjin et al. [33] and

Sempatrec [44], validated their results based on design pattern repositories,

such as the repository of Perceron [34]. Consequently, different accuracy

values were achieved by different approaches since there is no standard

benchmark to validate the recovered design pattern instances.

68

Table 2.6: Summary of reported accuracy by detection approaches

2.4 Reported Impact of Design Patterns

Many factors influence the quality of software systems. One of these factors

is the implementation of design patterns. However, since their introduction

in 1995, design patterns’ impact on software quality is not well investigated.

Some studies claim that the implementation of certain design patterns has a

positive impact on the quality of software systems. In contrast, other studies

claim that the implementation of the same design patterns has a negative

impact on software quality.

Tool/ Author Precision % Recall %

Rasool et al. [18] 94 92

Antoniol et al. [25] 30 Not
Mentioned

Uchiyama et al. [27] 63 76

SSA [31] 100 66.7-100

Dongjin et al. [33] 68-100 73-100

Pat [35] 14-50 Not
Mentioned

DeMIMA [41] 34 100

DPRE [42] 62-67 Not
Mentioned

MARPLE [43] 76 63

Sempatrec [44] 61-82 88-90

Kim and Boldyreff [47] 43 Not
Mentioned

HEDGEHOG [50] 100 85

D3 [19], Marek Vokac [20], SPOOL [22],
MAISA [23], FUJAPA [24], Detten and
Becker [26], Seemann and Gudenberg [28],
DEPAIC++ [29], Columbus [30], DP-Miner
[32], PTIDEJ [36][37], CrocoPat [38],
SPQR [39], PINOT [40], KT [45], DP++
[46], Heuzeroth et al. [48], Philippow et al.
[49], Kaczor et al. [51]

Not
Mentioned

Not
Mentioned

69

One of the first studies to investigate the impacts of design patterns

on software quality was conducted by Lange and Nakamura [53]. They

concluded that design patterns enhance program understandability since

they can serve as a guide in program exploration and thus make the process

of understanding more efficient. Lange and Nakamura showed that design

patterns can help in two different ways: recognized at a certain point in the

process of understandability, they can fill in the blanks and they can act as

starting points for exploring a given system. Lange and Nakamura's study

was limited to a single quality attribute and to a few patterns. The study

concluded that the informal and semantically rich nature of design patterns

prohibits the creation of the exact description required for automation.

The study presented by Wendorff [54] reports on a large commercial

project where the uncontrolled use of design patterns has contributed to

maintenance problems. By using qualitative arguments, Wendorff’s study

showed that design patterns affect different quality attributes and that the

application of design patterns may, for example, result in a desirable

increase of flexibility at the cost of an undesirable increase in complexity.

Wendorff suggests that a design pattern will usually add to a particular

aspect of flexibility, but cannot provide universal flexibility. If a pattern is

applied to enhance the flexibility of a software design, careful judgment is

required to ensure that the pattern promotes the desired aspect of flexibility.

Hence, it can make economic sense to remove an inappropriate design

pattern from a source code. Wendorff found two categories of inappropriately

applied design patterns in the subject system. The first category involves

patterns misused by software developers who did not understand the

rationale behind the patterns. The second category is the patterns that do

not fall into the first category, but which do not match the system’s

requirements. Wendorff presented a procedure of seven steps to identify,

assess and remove design patterns. This procedure has led to more

objective, well-documented and economically decisions during

reengineering activities.

Wydaeghe et al. [55] presented a study of the development of OMT

editor using Observer, Visitor, Module-View-Controller, Iterator, Facade,

70

Bridge and Chain of Responsibility patterns. They discussed the impact of

these patterns on modularity, reusability, flexibility and understandability.

The impact was reported as either positive or negative or as having no

impact. Wydaeghe and the research team concluded that not all design

patterns had a positive impact on quality attributes. For example, the

Wydaeghe study claims that structural design patterns make the OMT editor

more modular, while behavioral design patterns do not affect this property.

Concerning understandability, structural design patterns increase the

understandability of the OMT editor, while behavioral design patterns make

the application less understandable. Furthermore, all the implemented

design patterns increase the flexibility of the OMT editor. However, the

Wydaeghe et al. study can hardly be generalized to another context of

development.

McNatt and Bieman examine the notation of patterns coupling to

classify how design patterns may include coupled patterns [56]. They

classified the set of connected patterns in terms of loose and tight coupling.

In addition, McNatt and Bieman classified three types of patterns interaction:

intersection, composite and embedded. They showed that, when patterns

are loosely coupled and abstracted, maintainability, factorability and

reusability are well supported by the patterns. The study concluded that there

was a need for more studies to investigate the effects of software design

patterns on quality.

The study presented by Ellis et al. [57] shows that creating objects

from factories used in Application Programming Interfaces (APIs) is

significantly more time-consuming than creating objects from constructors,

regardless of the context or the level of experience of the programmer using

the API. The key goal of the Ellis et al. study is to provide quantitative

measurements of the differences in usability between factories and

constructors. The results are collected after asking a number of participants

to perform certain tasks. The study concluded that the Factory pattern

erodes the usability of APIs in which it is used.

71

The experiment presented by Hannemann and Kiczales develops and

compares Java and AspectJ implementations for the 23 GoF design patterns

[58]. AspectJ is a seamless, aspect-oriented extension to Java, which means

that programming in AspectJ is effectively programming in Java plus

aspects. The results show that using AspectJ improves the implementation

of many GoF design patterns. For each of the 23 GoF design patterns,

Hannemann and Kiczales created a small example that makes use of the

pattern and then implemented the example in both Java and AspectJ. For a

number of patterns, the AspectJ implementations show several closely

related modularity benefits, such as locality, reusability, dependency

inversion, transparent composability and unplugability. The AspectJ

implementations of 17 of the 23 GoF design patterns were localized. The

improvement in the AspectJ implementations are due to the inverting

dependencies, so that the pattern code depends on the participants.

Specifically, in AspectJ implementation, all codes related to a particular

pattern instance are contained in a single module. Reusable pattern

implementations have been developed by generalizing the roles, pattern

code, communication protocols and relevant conceptual operations in

abstract reusable aspects. The experiment concluded that the improvement

using AspectJ in pattern implementations is directly correlated to the

presence of cross-cutting structures in the patterns. This cross-cutting

structure arises in patterns that superimpose behavior on their participants

(superimposed roles are often interfaces that define behavior and

responsibilities).

The study presented by Jeanmart and Guéhéneuc aims to determine

whether the use of the Visitor design pattern is useful for maintenance

through comprehension and modification tasks [59]. The study compared the

developer’s efforts in the presence or not of the Visitor design pattern when

performing comprehension and modification tasks and when using different

layouts of the Visitor design pattern. The experiments have been conducted

to collect data with which to compare the developers’ efforts when

performing comprehension and modification tasks using different

semantically equivalent UML class diagrams. Effort function was defined as

72

the amount of attention that developers must spend to perform the tasks:

less attention and less time means less effort. Jeanmart and Guéhéneuc

captured the developers’ attention using the data collected with an eye-

tracker to decide whether a class diagram decreased their efforts with

respect to the others. Data were collected for JHotDraw, JRefactory, PADL

and 24 developers. For comprehension tasks, the results show that no

significant difference exists between class diagrams with or without the

Visitor design pattern and with a modified representation of the Visitor design

pattern. For modification tasks, the results found that developers performed

with significantly less effort on diagrams where the Visitor is represented in

its standard structural format presented by GoF [11].

In [60], the use of two design patterns, Visitor and Decorator, to

automate the validation of class invariants in C++ applications is described.

An invariant on class C is a set of Boolean conditions that every instance of

C will satisfy after instantiation and before and after every method invocation

by another object. Class variants, expressed in Object Constraint Language

(OCL), were used to ensure that the operations performed on instances of

the class maintained the integrity constraints of that class. These constraints

were described in terms of the member functions and data attributes of the

class. A case study is presented of invariant validation in Keystone which is

a parser and front-end for C++. Quantitative results are presented to

measure the impact of these approaches on the case study. The results

show that the use of Visitor and Decorator design patterns provide flexibility

in terms of the frequency and level of granularity of validation of the class

invariants.

Ampatzoglou and Chatzigeorgiou [61] performed a qualitative and

quantitative evaluation of two open source projects to evaluate the use of

design patterns in game development. For the quantitative evaluation, the

projects are being analyzed by reverse engineering techniques and software

metrics such as Lines of Code (LOC), Number Of Classes (NOC), Attribute

Complexity (AC), Weighted Methods per Class (WMPC), Coupling Factor

(CF) and Lack of Cohesion Of Methods (LCOM). The results indicate that

design patterns can be beneficial with respect to maintainability. The game

73

version that includes the subject pattern has reduced complexity and

coupling compared with a version without the pattern. Furthermore, the

implementation of design patterns tends to increase the cohesion of the

software. In contrast, the size of the subject system has increased in the

pattern version.

Aversano et al. [62] report and discuss results from an empirical study

aimed at analyzing how design patterns change during a software system’s

lifetime and to what extent such changes cause modifications to other

classes that are not part of the design pattern. The study has been performed

on three Java open source systems, JHotDraw, ArgoUML and Eclipse-JDT.

Design pattern instances have been detected from the three systems using

SSA [31]. Then, changes from Concurrent Versioning System (CVS) have

been mined to identify when a pattern changed, what kind of change was

performed, which classes co-changed with the pattern, whether these

classes had a dependency to or from the pattern and what the relationship

was between the type of change made and the resulting co-change. Results

indicate that the pattern change frequency and the amount of co-change do

not depend on the pattern type, but rather on the role played by the pattern

to support the application features.

Bieman et al. [63] studied five systems, three proprietary systems and

two open source systems, to identify the observable effects of the use of

design patterns on changes that occurred as the system evolved. In

particular, the study was aimed at determining whether software with design

patterns tended to be adapted by creating new concrete classes that were

extensions of existing pattern classes, interfaces, or abstract classes, or by

modifying existing pattern classes. Furthermore, the study looked at the

relationship between design structure and software changes. The design

structure was characterized by class-size and class participation in

inheritance relationships and design patterns. Changes were measured in

terms of a count of the number of times that a class was modified over a

period of time. Bieman et al. quantified the design structure of an early

version of each system and studied the relationship between design

attributes of this version and future system changes. The results showed that

74

classes playing certain roles in some design patterns were more change

prone than other classes in the subject system. An informal analysis

suggests that pattern- participant classes provide a key functionality to the

system, which may explain why these classes tend to be modified relatively

often.

An empirical study presented by Di Penta et al. [64] aims to

understand whether there are design pattern roles that are more change-

prone than others and whether there are changes that are more likely to

occur to certain roles. The investigated changes are changes to method

implementation, method addition/removal, attribute addition/removal and

extension by sub-classing. The results on three open source systems,

JHotDraw, Xerces-J and Eclipse-JDT, show that classes playing certain

roles in design patterns are more change prone than are other classes. For

example, in the Adapter design pattern, classes playing the role of Adapter

are more change prone than other Adapter participant classes. In addition,

the obtained results suggest to carefully design roles that are more subjects

to changes, since their change proneness can make other parts of the

system less robust to changes.

In a replication of the Bieman et al. study [63], Gatrell et al. [65]

examined a commercial C# consisting of 7439 classes. This system had

been subject to 19054 changes over a two-year period and these changes

were caused by both enhancements and fault fixing. The pattern

participation characteristics were compared with the change history of the

classes to determine any relationships. Each modification in the version-

control system, whether for a fault-fix or an enhancement, resulted in a new

version of the class and each version was counted as a single change.

Results were found to support the earlier study: classes participating in

design patterns were found to have changed more frequently than other

classes in the system. In addition, the study went further to show that the

Adapter, Template method, Proxy, Singleton, State, Strategy and Visitor

patterns caused the highest rate of change. On the other hand, classes

participating in the Command and Creator design patterns had a relatively

lower rate of change.

75

The study presented by Baudry et al. [66] explains how the use of

design patterns can provide a way to limit the complexity of testing for

conflicts, and to limit design pattern effects to the classes involved in the

pattern. The study focused on testing problems that appeared at system

level as a result of interactions among classes and also of polymorphism.

The study suggests that the pattern-refined design is more testable than the

“classical” design since the complex hierarchical control structure of the

classical design has been removed.

The contribution of the Baudry et al. study in [67] concerns both a

given metric and the practical way to apply it in the usual object-oriented

design process. The study aims to show how to integrate testability

improvements into the usual design process. In addition, the study

addresses two configurations of object-oriented anti-patterns that can

weaken its testability. It shows how testing risks might be avoided using two

risk mitigation techniques: a guideline on the risk for applying a pattern,

called the testability grid, and also design refinement constraining.

Elish in [68] discusses with examples the impact of four structural

design patterns (Adapter, Bridge, Composite and Façade) on the stability of

class diagrams; its resistance to the propagation of changes. The examples

used were adapted from examples provided by Design Patterns in Java:

Reference and Example Site [69]. Modifications made to one class can have

ripple effects on other classes in the diagram. A good class diagram, from

standpoint of stability, should localize changes as much as possible,

confining them to those classes where changes are made. The examples

presented show that the Adapter design pattern has a positive impact on the

stability of class diagrams as it enables the client and the adaptee participant

classes to be completely decoupled from each other. Changes will be

localized to the adapter class and will not propagate to other classes in the

diagram. Furthermore, the examples presented show that the Bridge design

pattern enhances the stability of class diagrams, since the abstraction and

implementor hierarchies can be extended independently, and also shows

that modifying an implementation class does not require the recompiling of

the abstraction class. Concerning the Composite design pattern, the client

76

participant class uses composite and leaf classes uniformly, which permits

the adding of new kinds of composite and leaf classes to the hierarchy

without affecting the client participant class. The client does not need to be

changed for new composite and leaf classes. Finally, the Façade design

pattern supports the stability of software since changes made to one of the

sub-system classes cannot be propagated beyond the Façade class. Hence,

changes are localized within the sub-system. The study concluded that

Adapter, Bridge, Composite and Façade have a positive impact on the

stability of class diagrams. However, an empirical evaluation is still needed

to confirm the achieved results.

Khomh and Guéhéneuc [70] studied the impact of design patterns on

quality attributes in the context of software maintenance and evolution. An

empirical study using a questionnaire was conducted. The quality attributes

addressed were Expandability, Simplicity, Reusability, Learnability,

Understandability, Modularity, Generality, Modularity at runtime, Scalability

and Robustness. Each quality attribute was evaluated using a six-point Likert

scale: A - Very Positive, B - Positive, C - Not Significant, D - Negative, E -

Very Negative and F - Not Applicable. The questionnaires of 20 software

engineers were selected for evaluation since they had verifiable experience

in the use of design patterns in software development and maintenance. The

respondents considered that, although design patterns were useful for

solving design problems, they did not always improve the quality of systems

in which they were applied. Most respondents considered that design

patterns decreased simplicity, learnability and understandability. In addition,

the study showed that design patterns negatively affected several quality

attributes. It concluded that design patterns should be used with caution

during the development process since they impeded maintenance and

evolution.

The experiments of Prechelt et al. [71] investigated software

maintenance scenarios that employed various design patterns and

compared them with other, simpler designs. Professional software engineers

were used as subjects. The design patterns addressed were Visitor,

Observer, Abstract Factory and Decorator. The maintenance tasks were

77

applied on Stock Ticker, Boolean Formulas, Communication Channels and

Graphics Library. In most of the nine maintenance tasks tested, design

patterns had a positive impact.

Research by Vokac et al. [72] investigates when, and how, using

design patterns is beneficial and whether some design patterns are more

difficult to use than others. The experiments were conducted to test whether

design pattern P does, or does not, improve the performance of subjects

doing maintenance-work task X on program A (containing P) when

compared with subjects doing the same task X on an alternative program A’

(not containing P). The design patterns addressed are Visitor, Decorator,

Observer and Abstract Factory. The study concluded that design patterns

were not universally good or bad, but must be used in a way that matched

the problem. The Observer and Decorator design patterns were understood

by subjects with little or no previous pattern knowledge.

Kouskouras et al. [73] investigated the behavior of an object-oriented

software application at a specific extension scenario, following three

implementation alternatives with regard to a certain design problem relevant

to the extension. These implementations were a simplistic implementation,

a design pattern implementation and Aspect-Oriented implementation. The

study identified the additional design implementations needed to perform the

extension and evaluated the effect of the extension on several quality

attributes. Each implementation was assessed by exploring qualitative

aspects, supported by observations of the design implications, and also

quantitative aspects, supported by specific metrics values before and after

extension. The metrics were calculated at both class level and package level.

An emulator was developed to allow the user to configure it with commands

and to perform simple traffic cases. The design pattern implementation

showed that the coupling metrics on the class level for the relevant classes

were increased. In contrast, these couplings did not have any significant

effect on the inter-package dependencies

In [74], a concurrent design pattern framework has been presented to

unify program design for modularity with program design for concurrency.

78

The concurrent design pattern framework provided enhanced versions of

GoF patterns for Java programs. The study addressed all 23 GoF design

patterns and found that, for 18 patterns, synergy between modularity goals

and concurrency goals was achievable. The presented framework relied on

Java’s existing type system and libraries to enforce concurrency and

synchronization discipline. The study concluded with an understanding that

a sophisticated runtime system as a back-end would be necessary to

abstract completely from the concurrency concern. In addition, performance

evaluation of several design patterns suggested the need to support load-

balancing in the developed framework.

Most previous studies in the literature used experiment [57], [58], [59]

and [60], case studies [56], [60], [61], [62] and [63], conceptual analysis [64],

[65] and [66] and survey [70] to assess the impact of design patterns on

software quality attributes. We believe that these methods lead to

controversial results since most are based on human intervention and lack

accuracy. Table 2.7 summarizes the reported impact, to the best of our

knowledge, of GoF design patterns on software understandability and

maintainability.

As Table 2.7 demonstrates, 18 out of 23 design patterns have been

reported to have a positive impact on software maintainability. More

specifically, creational and structural design patterns positively affect

software maintainability, while the impact of behavioral patterns is

controversial. Concerning understandability, the results are controversial for

all pattern categories.

79

Table 2.7: Reported impact of design patterns on understandability and

maintainability

2.5 Lessons Learned

This chapter presented a comprehensive comparison between different

design pattern detection approaches and the reported impact of design

patterns. The lessons learned can be summarized as follows:

• Design patterns are described from different perspectives by different

approaches, such as structural aspects, behavioral aspects, and

semantic aspects.

• Current detection approaches use different tools to get the intermediate

representation of the subject source code. This will directly affect the

recovery process.

 Patterns/Quality
Attributes

Understandability Maintainability

C
re

at
io

na
l Singleton +[53],+[56], +[70] -[70],-[72]

Prototype +[53], +[56], +[70] +[70],+[74]
AbstractFactory +[53], +[56], -[57], -[70],-[72] +[70],+[74]
Factory method +[53], +[56], -[70] +[70],+[74]
Builder +[53], +[56], +[70] +[70],+[74]

St
ru

ct
ur

al

Adapter +[53], +[56], -[70] +[70],+[74]
Bridge +[53], +[56], +[70] +[61],+[70],-[74]
Composite +[53], +[56], +[70],+[72] +[70],+[74]
Decorator +[53], +[56], -[55],

-[70],+[71], +[72]
+[70],+[54],+[71],+[55],+[72]

Façade +[53], +[56], +[70] +[70],+[74]
Flyweight +[53], +[56], -[70] -[70],-[74]
Proxy +[53], +[54], +[56],-[70] -[54], -[70],+[73],+[74]

B
eh

av
io

ur
al

CoR +[53], +[56], +[70] +[70]
Command +[53], +[56], -[70] +[70],+[74]
Interpreter +[53], +[56], +[70] +[70], +[74]
Iterator +[53], +[56], +[70] +[70],+[74]
Mediator +[53], +[56], +[70] +[70],+[74]
Memento +[53], +[56], -[70] -[70],-[74]
Observer +[53], +[56], -[70],-[71],+[72] +[70], +[74]
State/Strategy +[53], +[56], +[70] +[61], +[70],-[74]
Visitor ,[48],-[51],+[53], +[56], +[70],

-[72]
+[59], +[70],+[54], +[71],+[74],
-[48],-[51],-[72]

Template Method +[53], +[56], -[70] +[70],+[74]
 +[RX]: Reference X claims that the pattern positively affects the corresponding

quality
-[RX]: Reference X claims that the pattern negatively affects the corresponding
quality

80

• The discovery tool of each approach only supports the discovery of

specific patterns. Only a few approaches successfully detected all GoF

design patterns.

• Different approaches conduct experiments on different open source

systems.

• Recall and precision were used to evaluate the accuracy of the

detection process. Only a few approaches reported F-measure, such

as Dongjin et al. [33] and Sempatrec [44]. In addition, some approaches

measured the CPU times and memory consumptions to evaluate their

detection efficiency.

• There is no standard benchmark to validate the recovered design

pattern instances. The available benchmarks, to the best of our

knowledge, are the repository of Perceron [34], the Design Pattern

Detection tools benchmark platform [75], P-MARt [76] and BEFRIEND

[77].

• Design patterns’ impact on software quality is not well investigated.

Most previous studies in the literature used experiment, case studies,

conceptual analysis and survey to assess the impact of design patterns

on software quality attributes.

2.6 Summary

This chapter presented the current state of the art of design pattern detection

approaches and the current reported impact of design patterns. Specifically,

we presented a comparative study on design pattern detection approaches

in terms of detection methodology, analysis style, system representation,

subject systems, recovered design patterns and evaluation criteria. The key

contribution of this chapter is the necessity to address all detection

approaches and tools. This will guide future researchers in developing more

accurate detection tools. In addition, this chapter will facilitate the

comparison between different detection approaches and any new detection

81

approach, since there is no trusted benchmark to evaluate the recovered

design pattern instances. Most design pattern detection approaches target

open source systems that do not have proper documentation. It could be

worthwhile to conduct the experiments on industrial and commercial

applications. In addition, disparity among the results is noticed. The main

reason could be the missing roles and the implementation variants of design

patterns. Precision and recall were used to evaluate the accuracy of the

detection process. However, the reported accuracy is not balanced (i.e. high

precision and low recall or vice versa). One possible solution is to use the

common formalized definition of GoF patterns. All detection approaches are

working independently without any ability to integrate them together. The

research community should make efforts to build new approaches which

may be integrated with other existing approaches.

Finally, some studies claim that the implementation of certain design

patterns has a positive impact on the quality. In contrast, other studies claim

that the implementation of the same design patterns has a negative impact.

Hence, the current reported impact of design patterns is controversial.

82

hapter Three
Methodological Approach
The detection of design patterns is a reverse

engineering activity where design patterns are

recovered depending on certain criteria. This chapter presents a

Multiple Levels Detection Approach (MLDA) to recover the

instances of GoF design patterns from the Java source code. MLDA

aims to recover design pattern instances with reasonable detection

accuracy. Moreover, MLDA introduces a rule-based approach to

filter the candidate design instances by matching the method

signatures of the candidate design instances to that of the subject

system.

3.1 Introduction

Design patterns provide template solutions for certain design problems. The

occurrence of design pattern instances in the source code reflects the

earliest set of design decisions. Each design pattern has its own structural

and behavioral aspects. The structural aspects concern the static

arrangement of classes and interfaces. On the other hand, the behavioral

aspects are concerned with the dynamic interactions between classes and

interfaces.

Recovering design pattern instances from the source code requires

representing it in one of the parsing formats, searching for all possible pattern

structures and trying to fingerprint each structure with a certain behavior. The

possible variants of a design pattern can complicate the detection process.

These variants, non-standard implementations of design patterns, are

difficult to capture since there is no reference benchmark to decide whether

the recovered variant is a correct instance or not.

C

83

Design pattern information helps the system analyst, software

engineer and software architect to capture design and code information and

enhance the program understanding. In addition, design pattern information

improves software documentations, captures expert knowledge and design

trade-offs and helps in re-structuring the systems.

Current design pattern detection approaches only recover a specific

pattern, or a few sets of patterns. Only three approaches, [33], [47] and [49],

recovered all GoF design patterns. Furthermore, only one approach, the sub-

patterns approach [33], uses the method signatures of the candidate design

instances to detect design patterns. The sub-pattern approach did not

explain how the matching of the method signatures of the candidate instance

to that of the subject system is performed.

This chapter presents a Multiple Levels Detection Approach (MLDA)

to recover the instances of design patterns from the Java source code. MLDA

involves three levels: a parsing level, a searching level and a method

signatures matching level. Each level performs certain tasks to collect the

required information to recover GoF design pattern instances. This

information consists of:

• Pattern participant classes

• Relationships between participant classes

• Methods inside each participant class

• Method calls between participant classes

More specifically, MLDA uses static analysis capabilities to recover

instances of GoF design patterns using structural and method signature

features. MLDA’s static analysis capabilities can record objects’ creation by

recovering association and aggregation relationships. Dynamic and

semantic analysis both require more sophisticated implementation of certain

packages and record message interactions between classes during runtime.

MLDA will recover instances of design patterns by building the structure of

84

each design pattern and then matching the method signatures of the

candidate instances to that of the subject system.

3.2 Research Methodology

The research methodology adopted in this thesis consists of three main

steps. We followed these step to come up with our proposed methodology.

These steps are representing the subject system and GoF design patterns,

matching criteria and filtering criteria. Each step is described below.

The first step to recover the instances of design patterns is to

represent the subject system and GoF design patterns in one of the parsing

formats (such as abstract syntax graph or abstract syntax tree). These

formats should store the structural aspects of the subject systems and GoF

design patterns. Different structural aspects can be recovered such as the

connecting relationships between classes and interfaces, abstract classes,

concrete classes, attributes and methods. Hence, the recovering

methodology should recover all or some of these structural aspects to

recover the structures that are similar to that of GoF design patterns.

As a result, we modified a Javaparser in such way it can recover the

five key relationships (Realization, Inheritance, Aggregation, Association

and Dependency) that may occur between classes and interfaces inside any

object-oriented program.

The second step to recover the instances of design patterns is to

adopt a matching criteria between the representation of GoF design patterns

and the representation of the subject system. The matching criteria should

search for all the possible structures that are similar to that of GoF (i.e.

searching for all possible arrangements of classes and interfaces that are

similar to that of GoF). Consequently, the proposed methodology in this

thesis introduces a Structural Search Model (SSM) which is able to recover

the instances of design patterns based on the generated class level

representation of the Java source code. Moreover, the SSM builds the

structure of each design pattern incrementally. The SSM recovers the

85

instances of design patterns based on the five key relationships that may

occur between classes and interfaces inside any object-oriented program:

Aggregation, Association, Dependency, Inheritance and Realization.

Finally, the recovering methodology should match the behavioral

aspects of GoF design patterns to that of the subject system. These

behavioral aspects consist of the required interactions between pattern

participant classes (such as messages between participant classes and

method signatures). This thesis focuses on the method signatures of GoF

design patterns to reflect the required behavioral aspects of GoF Design

patterns. The proposed methodology in this thesis introduces a rule-based

approach to filter the candidate design pattern instances detected by the

SSM. The rule-based approach matches the method signatures of the

candidate design instances to that of the subject system.

3.3 The Catalog of Design Patterns

The catalog of design patterns presented by GoF involves 23 design

patterns. Each design pattern has its own intent, structure and participant

classes (roles) and provides a solution to a specific design problem. Pattern

participant classes may implement one or more methods and may call on

other methods implemented in other participant classes.

3.3.1 Design Pattern Elements

GoF suggested four essential elements for a design pattern:

• Pattern name, selected in such way that it provides a real indication of

the intent and the goal of the pattern.

• The problem, describing a specific design problem and when to apply

the pattern. This part may also suggest certain conditions that must be

met before applying the pattern.

• The solution, describing the participant classes that build up a design

pattern.

86

• The consequences, presenting the results and the trade-offs that come

from applying the pattern. The consequences of applying a design

pattern often concern time trade-offs and implementation issues and

pattern’s effect on the system’s quality attributes.

3.3.2 Design Patterns Classification

Based on the intent behind the use of design patterns, GoF have classified

them into three groups: creational patterns which concern the initialization of

classes and objects; structural patterns which concern the composition of

classes and objects; and behavioral patterns which concern the dynamic

interaction between classes and objects. Another classification of design

patterns is also presented by GoF, based on the scope of the pattern where

design patterns have been classified into class patterns and object patterns.

Furthermore, each design pattern has been represented using a UML

class diagram. Table 3.1 presents the catalog of GoF design patterns and

their intents [11]. UML class diagrams for all GoF design patterns are

presented in Appendix A.

The catalog of GoF design patterns presents a unique intent for each

pattern. The intent can be achieved by implementing the required static

arrangement of pattern participant classes. In addition, the behavior of the

pattern participant classes should be implemented. Most GoF design

patterns require method interactions between their participant classes. Each

participant class must implement specific method(s) with certain signatures.

An instance of a design pattern is said to be a complete instance if it

implements all the required participant classes in addition to all methods.

This thesis focuses on the detection of a complete structure of design

patterns presented by GoF (standard implementation of design patterns).

The level of abstractions varies between design patterns. Some

design patterns require three levels of class hierarchies, such as the

Composite design pattern, to achieve its intent. In contrast, other design

patterns require two levels of class hierarchies, such as the Template

method, to achieve their intent. However, GoF’s catalog does not suggest

87

that design patterns are finished designs. More specifically, design patterns

should be implemented as an integral part of the whole system design.

 Table 3.1: The catalog of GoF design patterns

3.4 MLDA Architecture

Java programming language is the fundamental backbone of MLDA. The

selection of Java was made because:

• Java provides many libraries and packages that are easy to import and

modify. Importing Java packages and libraries provides quick solutions

to common programming problems

• Java is a platform-independent language

• Java is a robust, secure, portable and high-performance language

Type Pattern Name Intent
C

re
at

io
na

l
Pa

tte
rn

s
Singleton Ensuring that each class has one instance
Factory Method Method in a derived class creates associates
Abstract Factory Factory for building related objects
Builder Building complex objects incrementally
Prototype Cloning new instances from a prototype

St
ru

ct
ur

al

Pa
tte

rn
s

Adapter Translator that adapts a server interface for a client
Bridge Abstraction for binding one of many implementations
Composite Structure for building recursive aggregations
Decorator Extending an object transparently
Façade Simplifies the interface for a subsystem
Flyweight Many fine-grained objects shared efficiently
Proxy One object approximates another

B
eh

av
io

ra
l

Pa
tte

rn
s

Chain of
Responsibility

Request delegated to the responsible service provider

Command Request or Action is a first-class object, hence re-storable
Iterator Aggregate and access elements sequentially
Interpreter Language interpreter for a small grammar
Mediator Coordinating interactions between its associates
Memento Snapshot that captures and restores object states privately
Observer Dependents update automatically when the subject changes
State An object whose behavior depends on its state
Strategy Abstraction for selecting one of many algorithms
Template
Method

Algorithm with some steps supplied by a derived class

Visitor Operations applied to elements of a heterogeneous object
structure

88

Moreover, most of the detection approaches in the literature have

been implemented in Java. Hence, the selection of Java to implement MLDA

will facilitate the comparison with other existing approaches. However,

implementing MLDA using other object-oriented programming languages

may show a few differences in terms of accuracy and efficiency, since most

object-oriented programming languages share similar properties. For

example, the inheritance, association and aggregation relationships have

the same intent in Java, C sharp and C++. Recovering design patterns

requires a subject system representation, a design patterns library and

matching criteria between the GoF catalog and the subject system’s

representation. MLDA uses the standard structural codes of design patterns

presented by GoF to build a library representation for each design pattern.

In addition, MLDA targeted the source code of the subject system since the

design model does not provide any runtime data and most of the design

models are not publically available. MLDA involves three levels: a parsing

level, a searching level and a method signatures matching level. These

levels work in a consistent and dependent manner. Figure 3.1 shows the

architecture of MLDA.

Figure 3.1: The architecture of the proposed MLDA

MLDA aims to recover all GoF design patterns with reasonable

detection accuracy in terms of precision and recall. Moreover, MLDA uses a

89

rule-based approach to filter the candidate design instances by matching

their method signatures to that of the subject system. MLDA recovers design

pattern information from the source code of the subject system. This

information concerns relationships between classes and their method

signatures.

The parsing level aims to recover source code information and to

generate a source code model. Specifically, the MLDA parser aims to

recover the five key relationships that may occur between classes and

objects inside any object-oriented program. These relationships are

inheritance, aggregation, association, dependency and realization. In fact,

MLDA provides a clear distinction between the aggregation relationship and

the association relationship. In the aggregation relationship, the creation of

the objects will occur during the compile time, while in the association

relationship the creation of the objects will occur during the runtime.

According to the GoF’s catalog, the inheritance relationship is the main

building unit of the structural design patterns. On the other hand, the

association and aggregation relationships are the main building unit of the

behavioral and creational design patterns. The searching level of MLDA aims

to examine the source code model that has been generated during the

parsing level and tries to match it with the GoF’s catalog. Specifically, MLDA

introduces a Structural Search Model (SSM) which involves a searching

algorithm for each design pattern. MLDA works on the principle of building

the pattern structure incrementally based on the connecting relationships.

The third level of MLDA is the method signatures matching level. The method

signatures of the subject system are represented as a set of facts. On the

other hand, the required method signatures of the candidate design

instances are represented as a set of rules. CLIPS (C Language Integrated

Production System) [78], an expert system tool, has been used to match the

generated facts and rules.

3.4.1 Parsing Level

Parsing is "the process of analyzing a string of symbols, either in natural

language or in computer languages, conforming to the rules of a formal

90

grammar" [79]. MLDA’s parsing level relies on the packages of the

Javaparser version 1.0.11 which has been developed by Júlio Vilmar Gesser

and is available online [80]. The Javaparser is an open source project and

can be used under the terms of the LGPL licence. In fact, the Javaparser

involves a number of useful packages, such as Japa.parser, Japa.parser.ast,

Japa.parser.ast.expr and Japa.parser.ast.visitor. The motivation of importing

the packages of Javaparser is their ability to generate an Abstract Syntax

Tree (AST) that can record the source code structure. AST is a tree that

represents the syntactic behavior of the source code, where its elements are

mapped into tree nodes. The parsing level of MLDA aims to recover all the

possible relationships between classes in the Java source code. Table 3.2

presents the relationships syntax which MLDA relies on to parse the source

code of the subject system. The syntax of the relationships has been written

based on the syntax presented in [81-86].

91

Table 3.2: The relationships and their common syntax

Relationships between
class Cs and class Cd

Common Java Syntax

R (Cs, Cd) = {Inheritance}

public class Cs {
...
} // end Cs
…..
public class Cd extends Cs {

} //end Cd

R (Cs, Cd) = {Dependency}

public class Cs {
...
public void doSomething (Cd b) { }
…

} // end Cs

R (Cs, Cd) = {Aggregation}

public class Cs {
…
private Cd _b;
public void setB(Cd b) { _b = b; }
…
 }// class Cs

R (Cs, Cd) = {Association}

public class Cs {
…
private Cd _b = new Cd ();

…
}//end Cs

public class Cs {
…
private Cd _b;
public void doSomethingUniqueToCd()
{
if (null == _b) { _b = new Cd (); }
return _b.doSomething();
 } // doSomethingUniqueToCd()
…
 }// class Cs

public class Cs {
…
private Cd _b;
public Cs () {
_b = new Cd ();
} // default constructor
 } //end Cs

R (Cs, Cd) = {Realization}

public interface Cs {
...
} // interface Cs
public class Cd implements Cs {

} // end interface Cd

92

The output of the parsing level is a model of the source code and a

library of design patterns. The source code of the subject system is modelled

in the form: source class, destination class and relationship type. The same

structure is also applied to represent the catalog of GoF. The source code

model generated by MLDA’s parsing level is presented in Figure 3.2. This

model will be exported into an SQL table which will be examined by the SSM

in order to recover the candidate instances of design patterns. The library

stores a representation of each design pattern. This representation is similar

in its structure to that of the source code model (i.e. the representation of

each design pattern in the library involves three columns: source class,

destination class and relationship type).

Figure 3.2: The source code model generated by MLDA

To explain how MLDA represents each design pattern in the library,

the Command design pattern representation is presented in Figure 3.3.

MLDA has successfully recovered two aggregation relationships and one

inheritance relationship. One aggregation relationship is connecting the

"Invoker" class to the "Command" class and the other is connecting the

"ConcreteCommand" class to the "Receiver" class. Furthermore, the

inheritance relationship between the "Command" class and the

"ConcreteCommand" class is also recovered. However, MLDA has excluded

the role of the "Client" class since it represents the role of the main program

93

inside the source code. This will not affect how the Command participant

classes are connected, or how they communicate together.

Figure 3.3: The representation of the Command design pattern in the
library

3.4.2 Searching Level

The searching level of MLDA aims to build the design pattern structure

incrementally from the source code model based on its representation in the

library. In addition, the searching level of MLDA introduces what is called the

SSM which involves a searching algorithm for each GoF design pattern.

Each part of the SSM involves two participant classes (i.e. source and

destination classes). Specifically, the searching algorithm tries to build the

pattern structure from the source code model by checking the relationship

connecting the source class to the destination class. If the search process

finds one of the required relationships of the pattern, it will continue

searching for the remaining relationships until it can form a complete pattern

structure similar to the pattern representation in the library. When the pattern

structure has been found in the source code model, all pattern participant

classes are exported from the source code model to an SQL table. MySQL

Workbench version 6.3 CE was used to create the tables. Since MLDA is

able to distinguish between the aggregation and association relationships

and records all the object creations and the dynamic interactions between

classes, it is expected to recover all behavioral design patterns.

94

To explain how the searching level works, the searching algorithms of

the Builder, Proxy and Command design patterns are presented. Figure 3.4

shows the SSM of the Builder design pattern.

Figure 3.4: The structural search model of the Builder design pattern

MLDA will examine the source code model of the subject system and

start the searching process by trying to find source and destination classes

that are connected together by an association relationship (building the first

part of the Builder design pattern). If the first part is successfully formed,

MLDA will continue searching for the second part which needs a realization

relationship between its participant classes. When a realization relationship

is encountered, MLDA will try to combine the first and second parts together.

The Builder class is acting as a connecting class (i.e. the first and second

parts are combined together when the destination class of the first part is the

same destination of the second part).

MLDA will continue searching for the remaining relationships.

However, if MLDA is unable to combine the two parts together, the search

process will terminate and MLDA moves to the next record in the table to

start a new searching attempt. Finally, to form the Builder design pattern,

MLDA will search for two participant classes that connect together via an

association relationship and which differ from the participant classes of the

95

first part. MLDA will combine the merged parts and the third part together if

they have the same source classes. Each record of the source code model

will be visited more than once as MLDA tries to build the parts incrementally.

Figure 3.5 shows the SSM of the Proxy design pattern. The recovery

of Proxy instances is based on its representation in the library. MLDA will

search for two participant classes that have a realization relationship. The

retrieved classes are stored temporally for later use. Then MLDA will

continue searching in the table, which represents the source code model, for

another two classes that are also connected together by a realization

relationship. MLDA will combine the two recovered parts together if they

have the same superclass (root) and different subclasses.

If MLDA has successfully combined the two recovered parts, the

process will continue searching for another two classes that are connected

together using an association relationship. All classes form an instance of

the Proxy design pattern if the role of the third part’s source class is similar

to that of the merged part’s source class. In addition, the role of the

destination class of the third part must be similar to the role of the source

class of the first part. These conditions have been checked by SSM using

nested IF-THEN statements. All the recovered instances and their participant

classes will be exported to the SQL table.

Figure 3.6 presents the searching attempts to recover the instances

of the Command design pattern. The Command design pattern involves four

main roles: Invoker, Command, ConcreteCommand and Receiver. MLDA

will start searching for two classes that are connected using an aggregation

relationship (searching attempt one). The next searching attempt aims to

recover another two classes connected together using an inheritance

relationship (searching attempt two). MLDA will combine the parts of

searching attempt one and searching attempt two together if they have the

same destination class, consequently forming the "Merged A" part. Finally,

MLDA will search for another two participant classes connected using an

aggregation relationship and which differ from the classes recovered during

the third searching attempt. If the second and third searching attempts have

96

the same source class, then all classes together form an instance of the

Command design pattern. The design pattern library generated by MLDA

and the structural search model and its pseudocode for all GoF design

patterns are presented in Appendices A, B and C respectively.

Figure 3.5: The structural search model of the Proxy design pattern

Figure 3.6: The structural search model of the Command design pattern

97

3.4.3 Method Signatures Matching Level

The candidate design pattern instances that have been detected by SSM will

be filtered by applying a rule-based approach which aims to remove the false

positive instances by matching the method signatures of the candidate

design instances to that of the subject system. The MLDA parser will parse

the subject system and recover all method signatures from each

class/interface. The recovered signatures are access modifier, is_static,

returntype and call_to. On the other hand, a rules template for GoF method

signatures has been created to reflect the required method signatures for

each design pattern. The created rules template relies on the standard

structural definitions of design patterns presented by GoF [11].

In addition, the so-called MLDA rules/facts generator is developed,

which is a simple Java program able to write a set of rules and facts based

on the method signatures representation of the candidate design instances

and subject system. Specifically, the MLDA rules/facts generator will

generate a list of rules to reflect the required method signatures and method

calls between candidate instance participant classes. On the other hand, the

MLDA rules/facts generator will generate a list of facts to represent

interactions between methods inside the subject system.

A rule based-system contains IF-THEN rules, facts and an inference

engine that controls the application of the rules. Our main motivation behind

the use of a rule-based approach is the ability to represent the method

signatures of the candidate design instances as an independent piece of

knowledge, which can be transformed into a set of rules. In addition, the

method signatures of GoF design patterns have a uniform structure which

facilitates their representation as a set of rules. In addition, the comparison

process performed by the inference engine allows an effective match

between the set of rules and the facts. MLDA uses CLIPS v6.3, an expert

system tool, to process the generated facts and rules and to remove the false

positive instances. Further details on MLDA’s level three are presented in

Chapter 5 and Chapter 6.

98

3.5 Summary
This chapter presented a Multiple Levels Detection Approach (MLDA) to

recover design pattern instances from the Java source code.

MLDA works on three levels to recover the instances of GoF design

patterns: a parsing level, a searching level and a method signatures

matching level. The parsing level aims to generate a source code model

which records all objects, classes and methods interaction of the subject

system. Furthermore, the parsing level generates a library of design patterns

that has the form of source class, destination class and relation type for all

GoF design patterns. On the other hand, the searching level introduces the

so-called structural search model (SSM) which involves a searching

algorithm for each design pattern. The searching algorithm tries to build the

pattern structure incrementally, based on the generated source code model.

The third level of MLDA uses a CLIPS inference engine to match the method

signatures of the candidate design instances to that of the subject system.

Level four introduces a metrics-based approach to assess the impact of

design patterns on software maintainability and understandability. This

approach relies on software metrics and design pattern occurrences.

99

hapter Four
Structural Search Model Evaluation

To evaluate the effectiveness of MLDA in recovering the

instances of design patterns, it has been applied to eight open

source software systems that are widely used as benchmarks

for design pattern recovery. This chapter presents the experimental results

of recovering instances of design patterns using the structural search model.

4.1 Introduction

Each design pattern has its own structure which requires a certain

arrangement of classes. Each arrangement is connected using two or more

relationships. This level of structural information can be used as a starting

point to recover instances of design patterns. More specifically, recovering

instances of design patterns should search for all possible structures similar

to that of GoF. Existing recovery approaches, as presented in Chapter Two,

use different searching techniques and library representations to recover

instances of design patterns. However, the recovery process should try all

the possible structures that are similar to that of GoF design patterns.

This chapter presents the experimental results of applying the

structural search model (SSM). The SSM tries to build the structure of each

design pattern incrementally, based on the class-level representation of a

subject system. The MLDA parser will generate the required class-level

representation and store it in an SQL table. The SSM involves a searching

algorithm for each design pattern, which tries all the possible combinations

between classes until a pattern structure has been found. The classes’

combination process relies on the five key relationships. All classes that

participate and play a role in the matched structure will be exported into an

SQL table. The SSM and its Pseudocode are presented in Appendix B and

Appendix C respectively.

C

100

The experiments in this chapter aim to address whether the SSM is

able to recover instances of design patterns with reasonable detection

accuracy. The accuracy in terms of precision and recall and the efficiency in

terms of searching time will be used to evaluate the SSM.

4.2 Experiments Setup

MLDA was implemented in Java using NetBeans Integrated Development

Environment version 8.1. The recovered instances of design patterns are

stored in tables, constructed using MySQL Workbench version 6.3 CE.

These systems are open source and implement design patterns in their

source codes. Moreover, the selection of these systems was made to

facilitate comparison with other existing approaches. All the experiments

have been run on Windows 7 with Intel Core i5-2400 CPU.

4.2.1 Subject Systems

MLDA has been applied on JHotDraw, JRefactory, JUnit, QuickUML, Lexi,

MapperXML, Nutch and PMD. The selection of these subject systems was

made based on their results which are detailed enough to compare. The

recovered design pattern instances will be validated based on all publicly

published results in the available literature.

JHotDraw is a Java GUI framework for technical and structured

graphics. It has been developed as a "design exercise". The design of

JHotDraw relies heavily on some well-known design patterns. JHotDraw is a

well-designed and flexible framework [87].

JRefactory is a software tool that allows the user to perform different

refactoring activities, such as move class between packages, remove empty

class, move method and rename parameter. JRefactory tool has the

powerful feature of being able to insert the appropriate “Javadoc” comments

so that the “Javadoc” program does not generate error messages for missing

fields [88].

101

JUnit is a unit testing framework for the Java programming language.

JUnit plays a key role in the development of test-driven development. JUnit

is linked as a "JAR" file at compile-time. It resides under the

package “junit.framework” for JUnit 3.8 and earlier and under the

package “org.junit” for JUnit 4 and later [89].

QuickUML is a UML design tool that supports a highly integrated core

set of UML models. It contains advanced features for multiple language

projects, design namespaces, UML stereotype extensions, flexible color

support, custom detail fields and automated generation of class models from

the dictionary [90].

Lexi is a Java-based word processor. It currently edits plain text and

RTF files, with HTML and Open Document Format support planned [91].

MapperXML is a presentation framework for web applications. Its

framework uses components to build applications. The components follow

the Model-View-Controller pattern. MapperXML is extensible for other

presentation applications (reporting, data exchange etc) by extending and

implementing appropriate containers, components and sub-components

[92].

Nutch is a ready web crawler. It enables fine-grained configuration,

relying on “Apache Hadoop” data structures which are used for batch

processing. In addition, Nutch provides extensible interfaces, such as Parse,

Index and Scoring Filters, for custom implementations. Nutch is scalable and

robust and can run on a cluster of up to 100 machines. It allows developers

to create plug-ins for media-type parsing, data retrieval, querying and

clustering [93].

PMD is a source code analyzer. It finds common programming flaws,

such as unused variables, empty catch blocks, duplicate code and

unnecessary object creation. PMD includes a set of built-in rules and

supports the ability to write custom rules [94].

The characteristics of the eight subject systems appear in Table 4.1.

https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/JAR_(file_format)

102

Table 4.1: The characteristics of the systems used in the experiments

4.2.2 Effectiveness Evaluation

The effectiveness of MLDA has been evaluated in terms of accuracy and

searching time. To evaluate the accuracy, two well-known metrics are used,

namely precision and recall. The F-measure, which represents the harmonic

mean of recall and precision, is calculated as well. The previous metrics can

be calculated as follows [52]:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 %

𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 %

𝐹𝐹 −𝑚𝑚𝑃𝑃𝐹𝐹𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

 %

Where:

True Positives are the number of instances correctly detected by

MLDA;

False Positives are the number of instances incorrectly detected by

MLDA;

Project Category Version Files Size (MB)

JHotDraw Graphics User
Interface 5.1 155 2.98

JRefactory Graphics User
Interface 2.6.24 549 4.0

JUnit Unit Testing 3.7 71 2.66

QuickUML Design Tool 2001 150 1.76

Lexi Text
Processing 0.1.1 alpha 24 0.84

MapperXML Presentation
Framework 1.9.7 217 2.5

Nutch Web Crawler 0.4 165 3.0

PMD Code Analyzer 1.8 446 7.0

103

False Negatives are the number of instances incorrectly rejected by

MLDA (missed instances).

4.2.3 Results Validation

To validate the number of true positives, false positives and false negatives,

we refer to all publicly published results in the available literature. In fact, we

investigated the results of [31], [33], [37], [41], [42] and [43]. In addition, we

used the repository of Perceron [34], the design pattern detection tools

benchmark platform [75] and P-MARt [76] as the main benchmarks to

validate our results. In doing this, more accurate validation will be conducted.

Consequently, after the recovery of all design pattern instances and

comparing them with all public results in the available literature, all classes

that are playing roles and participating in GoF design patterns can be

identified. Moreover, a reference benchmark for all design pattern instances

in the investigated subject systems can be generated.

4.3 Recovering Design Pattern Instances

The subject systems have been parsed by the MLDA parser and the SSM

model is applied to the generated source code model in attempts to recover

the candidate instances of design patterns.

4.3.1 Parsing and Source Code Model Generation

The results of the parsing of the subject systems are presented in Table 4.2.

MLDA recovered, in total, 2406 classes and 176 interfaces from the subject

systems. The parsing level of MLDA represents each subject system as a

set of classes and interfaces and the relationships between them. The MLDA

parser exports the generated source code model into an SQL table which

has three columns: source class, destination class and relationship type.

This SQL table will be examined by SSM to recover instances of design

patterns. All relationships have been recovered based on the syntax

presented in Table 3.2.

104

MLDA made a distinction between the inheritance relationship and

the realization relationship, in which the realization relationship is an

inheritance relationship that has an interface super class. Moreover, MLDA

records the object creations inside each class/interface, henceforth class, by

distinguishing between the aggregation relationship and the association

relationship. Hence, the static analysis conducted by MLDA is acting as a

dynamic analysis, since all objects created at the compile time and runtime

were recorded.

Table 4.2: The results of the parsing of the subject systems using MLDA

As Table 4.2 illustrates, MLDA recovered all the possible relationships

that may occur between any two classes inside the Java source code. MLDA

is quite fast in parsing the subject systems, taking 497 seconds to parse

1777 files. However, MLDA spent most of the time parsing PMD since it is

the largest subject system. This parsing time depends on the size of the

subject system and the number of implemented classes. The dependency

relationship is the main building relationship for all subject systems. In

contrast, the realization relationship is the least implemented relationship.

The number of association and aggregation relationships gives an

indication of whether the behavioral design patterns are implemented or are

not inside the subject system. MLDA will try to make all the possible

Recovered
features/
Subject
Systems C

la
ss

es

In
te

rf
ac

es

R
ea

liz
at

io
ns

In
he

rit
an

ce
s

D
ep

en
de

nc
ie

s

A
gg

re
ga

tio
ns

A
ss

oc
ia

tio
ns

Pa
rs

in
g

Ti
m

e
(s

ec
on

ds
)

JHotDraw 183 18 25 97 110 96 40 39
JRefactory 577 35 89 535 782 439 54 135

JUnit 104 8 13 50 110 31 25 17
QuickUML 126 19 33 105 157 99 118 40

Lexi 151 19 45 64 80 62 43 21
MapperXML 346 28 44 220 175 227 171 55

Nutch 374 24 70 266 455 449 191 40
PMD 545 25 75 464 436 343 155 150

Total 2406 176 394 1801 2305 1746 797 497

105

arrangements between classes and interfaces to form a pattern structure

consistent with the GoF structure presented in the generated library. To

explain how MLDA represents the subject systems, a screenshot of the

generated source code model of JHotDraw is presented in Figure 4.1.

Figure 4.1: A screenshot for the source code model of JHotDraw

generated by MLDA

The generated source code model reflects the static behavior of the

subject system. Other information can be recovered from the source code,

such as abstract classes, concretes classes and fields. However, since SSM

relies on the classes arrangements, only the classes and their relationships

were recovered.

 The SSM will examine each record of the source code model, try to

find the required relationships for each pattern and try to form a complete

pattern structure.

All the searching algorithms are working in the same manner. The ad-

hoc nature of GoF design patterns makes SSM suitable enough for

recovering their instances (i.e. the structure and behavior of GoF design

patterns has not changed since their introduction in 1995). The SSM was

106

constructed using a series of IF-THEN and FOR statements in such a way

that all the possible arrangements of classes and interfaces could be

checked. Once a pattern structure is encountered, all pattern participant

classes are exported into the corresponding design instances table. The

export process is done using an SQL INSERT statement. The inserting

process is quite fast, MLDA spending a few seconds inserting the participant

classes into the corresponding tables. Each design pattern instances are

stored in a separate tables to ease the validation process.

The search time spent by SSM depends on the number of classes

involved and on the structure of each design pattern. SSM will search for a

complete pattern structure inside the source code model of the subject

system. However, some design patterns may be partially implemented in the

subject system and considered as a complete design pattern instance.

These instances increase the number of false negative instances and are

considered as missed instances. One possible solution to allow SSM to

recover the instances partially implemented is the exporting of pattern

participant classes when a certain number of required relationships is

encountered. However, there is no common agreement in the literature on

the required number of relationships to recover the partially implemented

instances. This motivates us to focus on the standard complete structure of

design patterns presented by GoF.

The Pseudocode of the SSM for the Proxy design pattern is presented

in Figure 4.2 which shows that all the possible arrangements of classes will

be checked until a complete Proxy structure can be formed.

MLDA will try all possible combinations of classes and interfaces until

a complete Proxy structure can be formed. The order in which the search

attempts are performed is not important since this will not affect the detection

accuracy.

107

Figure 4.2: The Pseudocode of the SSM for the Proxy design pattern

4.3.2 Recovering Accuracy

Tables 4.3 and 4.4 present the detailed experimental results of recovering

23 GoF design patterns from the subject systems. An instance of a design

pattern is said to be a candidate instance if it has a structure similar to that

of GoF. As the experimental results illustrate, the SSM is performing quite

well, recovering 2994 candidate instances within 551 seconds. However,

SSM spent a longer time recovering the instances of the Memento and

Abstract Factory design patterns since they have more complicated

structures than do other design patterns.

In terms of accuracy, SSM detected most of the instances that are

consistent with standard structural definitions presented by GoF. However,

some instances have a structure similar to that of the GoF design patterns

yet are not design patterns. These instances increase the number of false

positive instances and affect SSM’s accuracy. As the number of required

relationships for each instance increases, the chances of that instance being

a true positive instance increases.

SSM missed only those instances that are partially implemented in

the source code. For example, it rejected one Visitor instance since the roles

of "ObjectStructure", "Element" and "ConcreteVisitor" were not implemented

in the source code of JRefactory. The partly implemented instances affect

108

the recall rate of SSM which is unable to distinguish between the State and

Strategy design patterns since both have a similar structure and require

dynamic analysis capabilities to distinguish between their instances.

The most commonly implemented design patterns are Singleton and

Façade which are implemented in all subject systems. In general, most

software systems rely heavily on Singleton and Façade design patterns

since their intents help these systems to fulfill their functionality. In contrast,

the Interpreter design pattern is not implemented in any of the subject

systems.

As the experimental results show, the relationships matching is not

enough to detect GoF design patterns. Although all five major relationships

are recovered from the subject systems, the structure of the candidate

instances results in too many false positive instances. However, SSM

detects all the Singleton instances correctly and only two instances are

missed in PMD. Furthermore, SSM is unable to detect instances of the

Template design pattern since its structure relies only on the inheritance

relationship (SSM will search for two participant classes, Abstract and

Concrete, that are connected together using an inheritance relationship).

Hence, too many false positive instances will be detected.

In some cases, where the number of implemented design pattern

instances in a subject system is zero, the corresponding precision cannot be

calculated and its value is set to NA (Not Applicable). In addition, the recall

is set to NA when there is no benchmark reports the correct instances in a

subject system. Hence, the number of missed instances cannot be

determined. However, this case only happened when we tried to validate

JRefactory instances.

109

Su
bj

ec
t

Sy
st

em
s/

De

si
gn

Pa

tte
rn

s

JH
ot

Dr
aw

JR

ef
ac

to
ry

JU

ni
t

Q
ui

ck
UM

L
CI

TP

FP

FN

P%

R%

T

CI

TP

FP

FN

P%

R%

T
CI

TP

FP

FN

P%

R%

T

CI

TP

FP

FN

P%

R%

T

Si
ng

le
to

n
2

2
0

0
10

0
10

0
0

10

10

0
2

10
0

83

2
0

0
0

0
N

A
N

A
0

1
1

0
0

10
0

10
0

1
Pr

ot
ot

yp
e

2
2

0
0

10
0

10
0

0
0

0
0

0
N

A
N

A
0

0
0

0
0

N
A

N
A

1
0

0
0

0
N

A
N

A
3

Ab
st

ra
ct

Fa

ct
or

y
0

0
0

0
N

A
N

A
1

0
0

0
0

N
A

N
A

20

0
0

0
0

N
A

N
A

0
0

0
0

1
N

A
0

1
Fa

ct
or

y
M

et
ho

d
0

0
0

2
N

A
0

0
10

1
79

22

8

78

91

21

2
2

0
0

10
0

10
0

1
12

12

0

6
10

0
67

4

Bu
ild

er

0
0

0
0

N
A

N
A

0
0

0
0

2
N

A
0

0
0

0
0

0
N

A
N

A
0

0
0

0
1

N
A

0
0

Ad
ap

te
r

31

11

20

0
35

10

0
1

17

15

2
1

88

94

1
7

5
2

6
71

45

1

26

25

1
4

96

86

1
Br

id
ge

7

4
3

0
10

0
10

0
0

0
0

0
0

N
A

N
A

0
0

0
0

0
N

A
N

A
0

0
0

0
1

N
A

0
2

C
om

po
si

te

1
1

0
0

10
0

10
0

0
0

0
0

0
N

A
N

A
0

0
0

0
1

N
A

0
1

1
1

0
0

10
0

10
0

1
D

ec
or

at
or

1

1
0

2
33

33

0

1
1

0
0

10
0

10
0

0
1

1
0

0
10

0
10

0
0

2
2

0
1

10
0

67

0
Fa

ça
de

1

1
0

0
10

0
10

0
0

2
2

0
N

A
10

0
N

A
1

0
0

0
0

N
A

N
A

0
1

1
0

0
10

0
10

0
0

Fl
yw

ei
gh

t
1

1
0

0
10

0
10

0
0

0
0

0
N

A
N

A
N

A
0

0
0

0
0

N
A

N
A

0
1

1
0

0
10

0
10

0
0

Pr
ox

y
0

0
0

0
N

A
N

A
0

0
0

0
0

N
A

N
A

0
0

0
0

0
N

A
N

A
0

1
1

0
1

10
0

50

0
C

oR

0
0

0
0

N
A

N
A

0
0

0
0

N
A

N
A

N
A

0
0

0
0

0
N

A
N

A
0

0
0

0
0

N
A

N
A

0
C

om
m

an
d

17

8
9

1
47

89

2

45

22

23

3
49

88

15

0

0
0

0
N

A
N

A
0

17

17

0
1

10
0

94

1
In

te
rp

re
te

r
0

0
0

0
N

A
N

A
0

0
0

0
N

A
N

A
N

A
0

0
0

0
0

N
A

N
A

0
0

0
0

0
N

A
N

A
0

Ite
ra

to
r

0
0

0
0

N
A

N
A

0
0

0
0

0
N

A
N

A
2

0
0

0
1

N
A

0
0

0
0

0
0

N
A

N
A

0
M

ed
ia

to
r

2
0

2
0

0
N

A
0

0
0

0
N

A
N

A
N

A
18

0

0
0

0
N

A
N

A
0

0
0

0
0

N
A

N
A

0
M

em
en

to

1
0

1
0

0
N

A
8

0
0

0
N

A
N

A
N

A
9

0
0

0
0

N
A

N
A

3
6

0
6

0
0

N
A

4
O

bs
er

ve
r

0
0

0
2

N
A

0
0

0
0

0
0

N
A

N
A

2
0

0
0

1
N

A
0

0
1

1
0

0
10

0
10

0
1

St
at

e/
St

ra
te

gy

33

6
27

0

18

10
0

3
11

8

3
3

73

73

4
8

3
5

0
38

10

0
1

11

10

1
0

91

10
0

0
Vi

si
to

r
1

1
0

1
10

0
50

1

1
1

0
1

10
0

50

0
0

0
0

0
N

A
N

A
0

0
0

0
0

N
A

N
A

0
Te

m
pl

at
e

M
et

ho
d

95

4
91

0

4
10

0
4

53
5

4
53

1
0

1
10

0
13

50

1

49

0
2

10
0

3
10

5
3

10
2

0
3

10
0

5

To
ta

l/A
ve

ra
ge

19

5
42

15

3
8

22
%

84

%

20

72
3

14
2

58
1

20

0.
2%

88

%

10
8

68

12

56

9
18

%

57
%

11

18

5
75

11

0
16

41

%

82
%

24

 No

te
:

CI

: C
an

di
da

te
 In

st
an

ce
s

af
te

r a
pp

lyi
ng

 S
tru

ct
ur

al
 S

ea
rc

h
M

od
el

 (l
ev

el
 tw

o)

P:
 P

re
ci

si
on

%

 R
: R

ec
al

l%

NA

: N
ot

 A
pp

lic
ab

le

TP
: T

ru
e

Po
si

tiv
es

 F

P:
 F

al
se

 P
os

iti
ve

s

 F
N:

 F
al

se
 N

eg
at

iv
es

T:

 s
ea

rc
hi

ng
 ti

m
e

(s
ec

on
ds

)

Ta
bl

e
4.

3:
 T

he
 e

xp
er

im
en

ta
l r

es
ul

ts
 o

f r
ec

ov
er

in
g

23
 G

oF
 d

es
ig

n
pa

tte
rn

s
fro

m
 th

e
su

bj
ec

t s
ys

te
m

s-
pa

rt
1

110

Ta
bl

e
4.

4:
 T

he
 e

xp
er

im
en

ta
l r

es
ul

ts
 o

f r
ec

ov
er

in
g

23
 G

oF
 d

es
ig

n
pa

tte
rn

s
fro

m
 th

e
su

bj
ec

t s
ys

te
m

s-
pa

rt
2

Su
bj

ec
t

Sy
st

em
s/

De
sig

n
Pa

tte
rn

s

Le
xi

Ma
pp

er
XM

L
Nu

tc
h

PM
D

CI

TP

FP

FN

P%

R%

T
CI

TP

FP

FN

P

R
T

CI

TP

FP

FN

P%

R%

T
CI

TP

FP

FN

P%

R%

T

Si
ng

let
on

2

2
0

0
10

0
10

0
0.6

3

3
0

0
10

0
10

0
0.4

2

2
0

0
10

0
10

0
0.4

2

2
0

2
10

0
50

0.4

Pr

oto
typ

e
1

1
0

0
10

0
10

0
0.4

0

0
0

0
NA

NA

0.3

0

0
0

0
NA

NA

0.4

1

1
0

0
10

0
10

0
0.5

Ab

str
ac

t F
ac

tor
y

0
0

0
0

NA

NA

0.8

0
0

0
2

NA

0
3.1

0

0
0

0
NA

NA

48

.4

0
0

0
2

NA

0
18

.2

Fa
cto

ry
M

eth
od

26

0

26

0
NA

NA

1.7

0

0
0

22

NA

0
2.6

8

5
3

0
63

10

0
11

.0

7
7

0
25

10

0
22

15

.0

Bu
ild

er

13

0
13

0

NA

NA

1.0

2
1

1
0

50

10
0

0.5

0
0

0
0

NA

NA

0.4

16

16

0
0

10
0

10
0

1.3

Ad
ap

ter

44

9
35

21

20

30

2.1

17

5

12

36

29

12

1.3

63

44

19

0
70

10

0
4.0

53

42

11

45

79

48

2.5

Br

idg
e

0
0

0
0

NA

NA

0.3

0
0

0
0

NA

NA

0.4

0
0

0
0

NA

NA

0.6

1
1

0
0

10
0

10
0

0.6

Co
m

po
sit

e
3

3
0

0
10

0
10

0
0.5

0

0
0

1
NA

0

0.3

0
0

0
0

NA

NA

0.4

0
0

0
0

NA

NA

0.4

De
co

ra
tor

0

0
0

0
NA

NA

0.3

0

0
0

0
NA

NA

0.4

0

0
0

4
NA

0

0.5

0
0

0
0

NA

NA

0.5

Fa
ça

de

1
0

1
0

NA

NA

0.4

1
1

0
0

10
0

10
0

0.7

1
1

0
0

10
0

10
0

1.6

1
1

0
0

10
0

10
0

0.9

Fl
yw

eig
ht

1

1
0

0
10

0
10

0
0.4

1

1
0

0
10

0
10

0
0.5

1

1
0

0
10

0
10

0
0.6

0

0
0

0
NA

NA

0.5

Pr

ox
y

0
0

0
0

NA

NA

0.3

0
0

0
0

NA

NA

0.4

4
4

0
0

10
0

10
0

0.9

3
3

0
1

10
0

75

0.8

Co
R

0
0

0
0

NA

NA

0.3

0
0

0
0

NA

NA

0.3

0
0

0
0

NA

NA

0.3

1
1

0
0

10
0

10
0

0.4

Co
m

m
an

d
15

6

9
0

40

10
0

0.9

52

26

26

0
50

10

0
13

.3

23

23

0
2

10
0

92

22
.0

3

3
0

0
10

0
10

0
13

.9

Int
er

pr
et

er

0
0

0
0

NA

NA

0.3

0
0

0
0

NA

NA

0.4

0
0

0
0

NA

NA

0.5

0
0

0
0

NA

NA

0.5

Ite
ra

tor

36

0
36

0

NA

NA

4.6

0
0

0
0

NA

NA

0.6

0
0

0
1

NA

0
1.8

0

0
0

0
NA

NA

2.1

Me

dia
tor

0

0
0

0
NA

NA

0.7

0

0
0

0
NA

NA

2.2

0

0
0

0
NA

NA

8.4

0

0
0

0
NA

NA

14

.4

Me
m

en
to

10

0

10

0
NA

NA

1.0

12

12

0

0
10

0
10

0
9.9

1

1
0

0
10

0
10

0
37

.8

1
1

0
0

10
0

10
0

24
.3

Ob

se
rve

r
0

0
0

0
NA

NA

0.7

0

0
0

3
NA

0

2.2

0
0

0
0

NA

NA

7.3

0
0

0
1

NA

0
12

.7

St
at

e/S
tra

teg
y

0
0

0
1

NA

0
0.3

11

11

0

0
10

0
10

0
0.8

12

4
11

3
11

0

91

10
0

6.0

24
8

21

22
7

0
8

10
0

10
.3

Vi

sit
or

0

0
0

0
NA

NA

0.4

0

0
0

0
NA

NA

0.8

0

0
0

0
NA

NA

8.8

0

0
0

1
NA

0

0.5

Te
m

pla
te

Me
th

od

64

0
64

0

NA

NA

2.7

22
0

56

16
4

0
79

10

0
9.1

26

0
7

25
3

0
3

10
0

13
.3

46

4
10

8
35

6
0

23

10
0

20
.5

To
ta

l/A
ve

ra
ge

19

4
22

19

4
22

10

%

50
%

21

31

9
11

6
20

3
64

36

%

64
%

51

48

7
20

1
28

6
7

41
%

97

%

17
5

80
1

20
7

59
4

77

26
%

73

%

14
1

 No
te

:

CI
: C

an
did

at
e I

ns
ta

nc
es

 af
ter

 a
pp

lyi
ng

 S
tru

ctu
ra

l S
ea

rc
h M

od
el

(le
ve

l tw
o)

P:

 P
re

cis
ion

%

 R
: R

ec
all

%

 N
A:

 N
ot

Ap
pli

ca
ble

TP

: T
ru

e P
os

itiv
es

 F

P:
 F

als
e

Po
sit

ive
s

 F
N:

 F
als

e N
eg

at
ive

s

T:
 se

ar
ch

ing
 T

im
e (

se
co

nd
s)

111

Table 4.5 presents the average precision, recall and F-measure of

SSM for recovering all GoF design patterns and for recovering all GoF design

patterns excluding the Template Method design pattern.

Table 4.5: The average accuracy of SSM

The accuracy of SSM increased when excluding the Template

Method design pattern from the pattern detection list. However, the accuracy

is still not reasonable since too many false positive instances are recovered.

SSM achieved its highest precision when recovering instances of QuickUML.

In contrast, SSM shows the lowest accuracy when recovering instances of

JRefactory. This is mainly due to the instances’ nature inside these systems.

Most JRefactory instances are partly implemented and have a structure

similar to that of GoF, yet they are not GoF. SSM achieved an average recall

of 79% for all GoF design patterns, which indicates the ability of SSM to

recover most of the instances that have a complete GoF structure.

The structure of a design pattern is not enough to detect its instances

from the source code. To enhance the detection process, which relies on the

relationships matching, the third level of MLDA has been developed. The

new level is aimed at reducing the number of false positive instances (i.e.

All GoF design patterns

 All GoF design patterns
except Template Method
design pattern

Subject Systems
CI TP FP FN

CI TP FP FN

JHotDraw 195 42 153 8 100 38 62 8
JRefactory 723 142 581 20 188 138 50 20
JUnit 68 12 56 9 18 11 7 9
QuickUML 185 75 110 16 80 72 8 16
Lexi 216 22 194 22 152 22 130 22
MapperXML 319 116 203 64 99 60 39 64
Nutch 487 201 286 7 227 194 33 7
PMD 801 207 594 77 337 99 238 77
Total 2994 817 2177 223 1201 634 567 223

Average precision 27% 53%
Average recall 79% 74%
Average F-measure 41% 62%

Note:
CI: Candidate Instances after applying Structural Search Model (level two)
TP: True Positives FP: False Positives FN: False Negatives

112

the instances that have a structure similar to that of GoF, but are not design

patterns).

Design patterns are not only about the structure and the specific

arrangement of classes. GoF illustrates that a design pattern should

implement certain method signatures, such as whether a method is static or

not, method return type and method access modifier. Furthermore, some

pattern participant classes should implement one or more methods that call

a method, implemented in another participant class. The third level of MLDA

tries to match the required method signatures of the candidate design pattern

instances to that of the subject system to reduce the number of false positive

instances. In the next two chapters, a rule-based approach will be presented

and evaluated to match the method signatures of the candidate design

instances generated by SSM.

4.4 Results Comparison

The accuracy of the Structural Search Model (SSM) has been compared to

four approaches, as presented in Tables 4.6 and 4.7. The selection of these

approaches was made based on their results which were detailed enough to

compare and were applied to the same subject systems (JHotDraw version

5.1 and JUnit version 3.7). However, the comparison among design pattern

detection approaches is challenging. This is due to the fact that there is no

standard benchmark to validate the results of each approach. In fact, each

approach has its limitations, patterns representation, subject systems and

validation method. Tables 4.6 and 4.7 show the results of the design

patterns recovery of SSM, Sempatrec [44], DeMIMA [41], Sub-patterns [33]

and SSA [31] for JHotDraw and JUnit respectively. However, SSM missed

the instances partly implemented in the source code, since SSM relies on

the standard definition of GoF. On the other hand, the lack of dynamic and

runtime information explains the existence of false positives. It must be noted

that we only compare the results that DeMIMA, SSA, Sempatrec, and Sub-

patterns revealed.

113

Table 4.6: Comparison of the results of SSM and that of other approaches

for JHotDraw

Table 4.7: Comparison of the results of SSM and that of other approaches

for JUnit

4.5 Threats to Validity

Threats to internal validity concern factors that could affect the results. In this

dissertation, this is mainly due to the variants of design patterns. Design

pattern instances are recovered based on the standard structural format

presented by GoF [11]. Moreover, the way in which the results are validated

could affect precision and recall. To validate the number of true positives,

DPs SS
SSM DeMIMA SSA Sempatrec Sub-patterns

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

AD JD 35 100 52 4 100 8 44 100 61 45 100 NA NA

DE JD 100 33 50 8 100 15 33 33 33 50 33 40 100 NA NA

CO JD 100 100 100 33 100 50 100 100 100 100 100 100 100 NA NA

FM JD NA 0 NA 2 100 4 100 67 80 100 100 100 100 NA NA

SI JD 100 100 100 100 100 100 100 100 100 100 100 100 100 NA NA

OB JD NA 0 NA 25 100 40 50 40 44 50 40 44 100 NA NA

TM JD 4 100 8 7 100 13 20 100 33 50 100 67 100 NA NA

VI JD 100 50 67 100 100 100 100 100 NA NA

Average % 73 60 63 26 100 33 68 80 69 71 79 75 100 NA NA
Note:
AD: Adapter DE: Decorator CO: Command FM: Factory Method SI: Singleton OB: Observer TM: Template Method
VI: Visitor SS: Subject Systems JD: JHotDraw JU: JUnit P:Prescion R: Recall F: F-measure
Blank: Not revealed NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances

DPs SS
SSM DeMIMA SSA Sempatrec Sub-patterns

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

AD JU 71 45 55 0 17 100 29 100 100 100 100 100 100

DE JU 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

CO JU NA 0 NA 100 100 100 100 100 100 100 100 100 100 100 100

FM JU 100 100 100 100 100 100 100

SI JU NA NA NA 100 100 100

OB JU NA 0 NA 25 100 40 100 100 100 100 100 100 100 50 67

TM JU 2 100 4 0 100 100 100 100 100 100 100 100 100

VI JU NA NA NA 100 100 100

Average % 68 58 65 45 100 80 83 100 86 100 100 100 100 94 96
Note:
AD: Adapter DE: Decorator CO: Command FM: Factory Method SI: Singleton OB: Observer TM: Template Method
VI: Visitor SS: Subject Systems JD: JHotDraw JU: JUnit P:Prescion R: Recall F: F-measure
Blank: Not Revealed NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances

114

false positives and false negatives, we refer to all publicly published results

in the available literature. In fact, we investigated the results of [31], [33],

[37], [41], [42] and [43]. In addition, we used the repository of Perceron [34],

the design pattern detection tools benchmark platform [75] and P-MARt [76]

as the main benchmarks for validating our results. In doing this, a more

accurate validation is performed. In total, we validated 2994 candidate

instances based on all public results presented by other approaches.

Threats to external validity concern the generalization of the results.

In fact, this thesis focuses on Java programming language. It could be

worthwhile to conduct the evaluation on other projects having different

languages.

4.6 Summary

This chapter presented the experimental results of recovering design pattern

instances from eight subject systems using the structural search model.

Specifically, the parsing level and the searching levels of MLDA are applied

on JHotDraw, JRefactory, JUnit, QuickUML, Lexi, MapperXML, Nutch and

PMD.

The Parsing level recovered the five key relationships that may occur

between all classes and interfaces inside any object-oriented program. The

MLDA parser is quite fast, recovering 2582 classes and interfaces within 497

seconds. The output of the parsing level is a source code model that has the

form of source class, destination class and relationship type.

SSM has been applied to the generated source code model to recover

the design pattern instances that have a complete GoF structure. SSM

cannot recover instances that are partly implemented in the source code.

As the experimental results illustrate, the relationship matching is not

enough to recover the instances of GoF design patterns. SSM produces too

many false positive instances since too many instances have a structure

similar to that of GoF design patterns, but they are not design patterns.

115

However, SSM achieved an average recall of 79% since it only missed the

partially implemented instances.

116

hapter Five
Method Signatures Matching
The Structural Search Model (SSM) of MLDA detected the

instances of design patterns based on the connecting

relationships between pattern participant classes. However, the structure of

each design pattern is not enough to detect all the instances correctly and

produces too many false positives. This chapter presents the third level of

MLDA, which applies a rule-based approach to enhance the detection

accuracy achieved by SSM.

MLDA applies a rule-based system to filter the candidate design

pattern instances detected by SSM. The rule-based system tries to match

the method signatures of the candidate design pattern instances to that of

the subject system. A rules template for the method signatures of GoF design

patterns has been created. Specifically, the method signatures of the

candidate design pattern instances were represented as a list of rules. Based

on the rules template, the MLDA rules/facts generator will generate a list of

rules to reflect the required method signatures and method calls between

participant classes of the candidate instances. On the other hand, the MLDA

rules/facts generator will generate a list of facts to represent the interactions

between methods inside the subject system. MLDA uses CLIPS, an expert

system tool, to process the generated facts and rules and to remove the false

positive instances. The generated rules are consistent with the required

method signatures presented by GoF [11].

5.1 Rule-Based Systems

Rule-based systems use expert knowledge to solve real-world problems that

would normally require human intelligence. A rule-based system contains IF-

THEN rules, facts and an inference engine that controls the application of

the rules. Specifically, rule-based systems represent knowledge in terms of

C

117

a bunch of rules that inform the knowledge engineer what to conclude in

different situations. The term “rule” can be defined as an IF-THEN structure

that relates given facts in the IF part to some action in the THEN part. An

important advantage of rule-based systems is that, within the domain of the

knowledge base, a different problem can be solved using the same program

without reprogramming efforts. Rules can represent relations,

recommendations, directives, strategies and heuristics. When the condition

part of a rule is satisfied, the rule is said to fire and the action part is executed.

A typical rule-based system consists of the following components [95]:

• A knowledge base which contains the rules that represent expert

knowledge about the problem domain. Knowledge acquisition is a key

element in the development of expert systems. Knowledge could be

obtained by learning and experience.

• The database, a working memory, which contains the set of known facts

about the problem used to match against the IF (condition) parts of rules

stored in the knowledge base.

• An inference engine which links (compares) rules stored in the

knowledge base with known facts provided in the database to reach a

conclusion. The matching of the rule IF parts to the facts produces

inference chains. The inference chain indicates how the expert system

applies the rules to reach a conclusion.

• Explanation facilities which provide information to the user about the

reasoning steps.

• A user interface which allows interactions between the user and the

system.

The architecture of a rule-based system appears in Figure 5.1:

118

Figure 5.1: The basic architecture of a rule-based system

Rule-based systems have high-quality performance, employ symbolic

reasoning when solving a problem and apply a heuristic to guide the

reasoning. Thus, the search area for a solution is reduced. There are two

kinds of inference engines used in rule-based systems: forward chaining and

backward chaining.

In forward chaining systems, the initial facts are processed first and

rules are used to draw new conclusions given those facts. Forward chaining

is useful when no specific goal is being explored. It is appropriate in

situations where data are expensive to collect, but few in quantity.

Furthermore, forward chaining is data-driven in that each time only the

topmost rule is executed. Any rule can be executed only once. The match-

fire cycle stops when no further rules can be fired. However, forward chaining

would not be efficient when the goal is to infer only one particular fact (if the

system needs to gather some information and then tries to infer from them

whatever can be inferred, forward chaining is the best choice).

In backward chaining systems, the hypothesis (goal, solution) is

processed first and keeps looking for the rules that would allow a conclusion

to the hypothesis. It is goal-driven reasoning. Backward chaining is useful in

situations where the quantity of data is potentially very large and where some

specific characteristics of the system under consideration are of interest. If

119

the system begins with a hypothetical solution and then attempts to find facts

to prove it, backward chaining is the appropriate choice. The same set of

rules can be used for both forward and backward chaining.

One of the key concepts in rule-based systems is conflict resolution.

Conflict resolution can be defined as the method of choosing a rule to fire

when more than one rule can be fired in a given cycle. Some approaches

are used to handle conflict resolution, such as:

• Firing the rule with the highest priority. The priority can be established

by placing the rules in an appropriate order in the knowledge base.

Hence, the topmost rule will be fired first.

• Firing the most specific rule (also known as the longest matching

strategy). This is based on the assumption that a specific rule

processes information more than a general one does.

• Firing the rule that uses the data most recently entered in the database.

The inference engine first fires the rules whose condition uses the data

most recently added to the database. Tags can be attached to each fact

in the database.

Rule-based systems are developed using specialized software tools

called shells. These shells come equipped with an inference mechanism

(forward chaining, backward chaining, or both). The shell provides the key

components of a rule-based system. The knowledge is entered based on a

specific format. Examples of shells are JESS, CLIPS, Drools, rules engine

and e2glite. The inference process used in a rule-based system is deductive

inference. This means that the rules of logic are used to deduce new

knowledge from existing rules and knowledge. CLIPS is one of the most

popular shells, widely used through the industry and in academia [78]. CLIPS

is written in C and supports three programming paradigms: object-oriented,

rule-based and procedural. CLIPS uses forward chaining and provides a

language for representing facts and rules. The language is based on the

artificial intelligence language LISP. CLIPS inference engine does the

required matching between facts and rules using the “Rete algorithm” [96].

120

5.1.1 Motivation

The method signatures of GoF design patterns share common

characteristics and features, such as methods overriding, methods call and

level of abstraction. Rule-based systems use human experience in a specific

field to build an intelligent system that mimics human behavior.

Our manual attempts to match the method signatures of the candidate

design pattern instances to that of the subject system produces a set of IF-

THEN statements. Rule-based systems provide a separation of knowledge

from system processing. Specifically, the structure of the rule-based systems

provides an effective separation of the knowledge base from the inference

engine.

In fact, our main motivation behind the use of a rule-based system to

match the method signatures of the candidate design instances to that of the

subject system is the ability to represent the method signatures of the

candidate design instances as an independent piece of knowledge, which

can be transformed into a set of rules. In addition, the method signatures of

GoF design patterns have a uniform structure which facilitates their

representation as a set of rules. On the other hand, the comparison process

that the inference engine can perform allows the effective matching of the

set of rules to the facts. Rule-based systems can deal with uncertain and

incomplete knowledge. Specifically, part of the method signatures can be

used to generate a set of rules.

However, rule-based systems are unable to learn. Thus, the matching

process is trying to match “exactly” the method signatures of the candidate

design instances to that of the subject system. In addition, a rule-based

system cannot automatically modify its knowledge base, adjust existing

rules, or add new ones. In the case of method signatures matching, there is

no need to modify the existing rules. All rules will be generated based on the

created template of GoF method signatures. The structure and method

signatures of GoF design patterns did not change over time since their

introduction in 1995.

121

The use of object-oriented programming languages to implement the

matching process between facts and rules leads to too many nested IF-

THEN statements, too many loops, and complicated matching structure. This

leads to an inefficient, inaccurate and hard-coded matching process.

The use of a rule-based system aims to remove the false positive

instances detected by SSM. The fundamental hypothesis that we want to

explore is as follows: representing the method signatures of the candidate

design instances and subject systems using a rule-based system is effective

in improving the precision of recovering design pattern information which

relies on relationships matching. CLIPS, an expert system tool, will be used

to process the facts and rules that represent the method signatures of the

subject system and the candidate design instances respectively. CLIPS

supports forward chaining and is widely used in academia and industry.

5.1.2 Rule-Based Systems and Design Patterns

The use of rule-based systems is not widely adopted in the area of design

pattern detection. Only two approaches adopted the idea of using rules and

method signatures to detect instances of design patterns. The approach

presented by Alnusair et al. [44], Sempatrec, uses ontology formalism to

represent the conceptual knowledge of the source code and semantic rules

to capture the structures and behaviors of design patterns in the subject

system. Sempatrec presents an ontology model that includes a Source Code

Representation Ontology (SCRO) which explicitly represents the

conceptual-knowledge structure found in the source code. SCRO captures

the key concepts and features of object-oriented programs, such as methods

overriding, method signatures and invocations, aggregation between objects

and control structures (repetition, sequence controls and selection). SCRO’s

knowledge is represented using the Web Ontology Language (OWL-DL), a

sub-language of OWL, based on Description Logic (DL).

Various object properties and data properties are defined within

SCRO to represent the relationship between concepts by linking individuals

from different OWL classes. For example, “hasOutputType” is an object-

functional property defined for the return type of a method. A system, the

122

knowledge generator, has been built to extract knowledge automatically from

Java bytecode. It captures every SCRO concept that represents a source-

code element. Moreover, the knowledge generator generates instances for

all ontological properties defined in SCRO. The semantic instances

generated by the knowledge generator subsystem are serialized using

Resource Description Framework (RDF) and linked to SCRO or any other

OWL ontology. Figure 5.2 shows part of the knowledge base and an RDF

description of JHotDraw generated by the Sempatrec knowledge generator.

Figure 5.2: Part of Sempatrec’s knowledge base representation of

JHotDraw

Sempatrec applies a rule-based approach to detect instances of

design patterns. Specifically, the OWL-DL inference engine computes the

entailments from a set of facts and Semantic Web Rule Language (SWRL)

rules defined in the ontologies. The detection process is based on the logical

inference that requires a rule-based reasoner capable of processing the

SWRL rules.

The inference engine will recover pattern instances based on a

matching between the semantic constraints specified in the rules and the

source code descriptions found in the knowledge base representing the

subject system. Further details on the Sempatrec recovery process were

presented in Chapter Two.

The idea of using method signatures matching was adopted by

Dongjin et al. where they presented a sub-pattern representation for 23 GoF

scro: hasAccessControl scro: public;
scro: hasSuperType
<#org. jhotdraw.util.Storable >;
scro: use <#org. jhotdraw. framework. Connector >;
scro: hasAbstractMethod
<#org. jhotdraw. framework. Figure . draw [. . . .] > ;
. . . .
. . . .
<#org. jhotdraw. framework. Figure. draw [. . . .] >
rdf: type scro: AbstractMethod;
scro: hasOutputType <#void >;
scro: hasInputType <#java. awt. Graphics >;
scro: hasSignature
” org. jhotdraw . framework. Figure.draw [. . .]”;
scro: hasAccessControl scro: public.
. . . .

123

design patterns (a sub-patterns approach) [33]. The recovery process of the

sub-patterns approach was presented in detail in Chapter Two. The sub-

patterns approach detected the instances of design patterns by the matching

sub-graphs of the class-relationships directed graph that represents the

subject system. The method signatures of the candidate design instance are

analyzed and matched to a predefined template to achieve the final

instances. However, it is not clear how the matching process is performed.

The sub-patterns approach did not explain how the method signatures of the

candidate instances are matched to that of the subject system. We tried to

contact the authors, but unfortunately, there was no response.

We used the concepts of method signatures and rule-based systems

to filter the candidate design instances and enhance SSM’s recovery

accuracy. The method signatures provide more concrete behavior of pattern

participant classes. The MLDA rules/facts generator has been developed to

generate the required rules and facts. On the other hand, the inference

engine of CLIPS will be used to match the generated set of rules and facts.

5.2 CLIPS

The 'C' Language Integrated Production System (CLIPS) is a rule-based

programming language useful for creating expert systems. It attempts to

match the patterns of rules against the facts in the rule list. CLIPS is also

useful for creating other programs where a heuristic solution is easier to

implement than an algorithmic solution. CLIPS was developed at NASA's

Johnson Space Center from 1985 to 1996 and, since then, it has been

available as a public domain software [78].

CLIPS has been designed in a way to facilitate the development of

software that model human knowledge or experience. CLIPS provides two

ways to model the knowledge:

• Rules that are mainly designed to support heuristic knowledge based

on experience;

124

• Deffunctions, generic functions and object-oriented that are mainly

intended for procedural knowledge.

The rule-based system can be developed using only rules, only

objects, or a mixture of rules and objects. The CLIPS shell provides the basic

elements of an expert system:

• A fact-list which contains all the facts about the problem. Facts are

stored in short-term memory.

• A knowledge-base which contains all the rules. Rules are stored in the

knowledge base (database).

• An inference engine which controls the overall execution of the rules.

In procedural languages, such as C, Ada and BASIC, the execution

can proceed without data. In contrast, data are required to cause the

execution of rules in CLIPS which is a forward chaining system, starting from

the facts to develop a solution. The CLIPS inference engine uses “Rete

algorithm” for rules and facts matching.

5.2.1 Rete Algorithm

Rete algorithm is a pattern matching algorithm for implementing expert

systems, designed by Charles L Forgy in 1974 [96]. It is used to determine

which rule the inference engine should fire. Rete algorithm aims to speed up

the pattern matching process. It is a directed acyclic graph that represents

higher level rule sets.

A Rete-based expert system builds a network of nodes where each

node, except the root node, corresponds to the condition part of the rule. A

complete rule left-hand side can be defined by tracing the path from the root

node to a leaf node. The new inserted facts are propagated along the

network, causing nodes to be annotated when that fact matches the pattern.

When a leaf node is reached, this indicates that all the conditions (patterns)

for a given rule are satisfied. Thus, the corresponding rule is fired. Rete

algorithm stores information about matches in a network structure.

125

Rete becomes the basis for many expert system shells, including

Jess, Drools, BizTalk, Rule engine, Soar and Sparkling Logic SMARTS and

CLIPS.

Rete algorithm uses node sharing to reduce a certain type of

redundancy. The ability of Rete algorithm to store partial matches allows the

production system to avoid complete re-evaluation of all facts each time

changes are made. However, Rete algorithm is theoretically independent of

the number of rules in the system [96].

When facts are asserted to the working memory, the inference engine

creates Working Memory Elements (WMEs) for each fact. Each WME enters

the Rete network at a single root node. It may then be propagated through

the network until it arrives at a terminal node. Rete algorithm constructs a

matching network from the conditions of a set of rules. The inputs of Rete

algorithm are a set of facts and the outputs are activation records that

indicate how rules match against facts. Rete algorithm avoids redundant

matching and shares matching across rules with common conditions.

Figure 5.3 shows a simple example to illustrate how Rete algorithm

matches the set of facts against rule conditions. For a single rule’s condition,

Rete algorithm will construct a single-input node for each fact-value test. The

combination of the first two single-input nodes produces a so-called dual-

input node which outputs facts that match both tests. Another dual-input

node is constructed from the previous dual-input node and the next single-

input node. This step is repeated until all tests in the rule’s conditions are

plugged into the chain of dual-input nodes.

For a second rule condition, Rete algorithm re-uses single-input

nodes. If Rete algorithm does not already construct a single-input node for a

fact-value test in the second rule’s condition, it will construct a new one.

Furthermore, Rete algorithm re-uses dual-input nodes when the fact-value

tests appear in the same order in the second rule’s condition as in the first.

However, a different set of dual-input nodes will be constructed if the tests

are in a different order in the second rule’s conditions.

126

5.2.2 Rules and Facts Matching in CLIPS

CLIPS attempts to match the patterns (conditions) of rules against the facts

in the rule list. When all patterns of a rule match the facts, the rule is activated

and put on the agenda (i.e. the action part will be executed when the rule’s

condition part matches fact(s) in the working memory). Hence, the rule fires.

The term “fire” means that CLIPS has selected a certain rule for execution

from the agenda.

The agenda is a collection of activations which are rules that match

pattern entities. Zero or more activations may be on the agenda.

However, when multiple activations are on the agenda, CLIPS

automatically determines which activation is appropriate to fire. The

activations are ordered by CLIPS in terms of increasing priority. Specifically,

the CLIPS inference engine sorts the activations according to their salience,

i.e. the topmost rule will be fired first. This sorting process, as illustrated in

the previous section, is called conflict resolution because it eliminates the

conflict of deciding which rule should be fired next. The “run” command will

fire all rules in the agenda.

127

Figure 5.3: A simple Rete algorithm example

128

5.3 Methodology

The candidate design pattern instances that have been detected by MLDA’s

Structural Search Model (SSM) will be filtered by applying a rule-based

approach. The rule-based approach aims to remove the false positive

instances by matching the method signatures of the candidate design

instances to that of the subject system. A rules template for GoF method

signatures has been created to reflect the required method signatures for

each design pattern. In addition, we introduce what is the so-called MLDA

rules/facts generator, a simple Java program that is able to write a set of

rules and facts based on the method signatures representation of the

candidate design instances and subject system. Figure 5.4 shows the

architecture of MLDA’s level three.

Figure 5.4: The architecture of MLDA’s level three

The hybrid system architecture illustrates the relationship between

SSM, the MLDA rules/facts generator, the rules template and CLIPS. In fact,

this architecture is an enhancement of the initial MLDA architecture

presented in Chapter Three. As Figure 5.4 illustrates, the MLDA rules/facts

generator make access to two tables: the candidate instances table

recovered by SSM and the method signatures of the subject system.

129

Furthermore, the outputs of the MLDA rules/facts generator are two

files (.txt files) that store the generated set of rules and facts. These files will

be loaded into CLIPS where its inference engine will do the required

processing and the matching between facts and rules. The output of the

inference engine is a print message indicating that a candidate instance is a

true positive. The hybrid system uses the MLDA parser to parse the subject

system and to recover its method signatures from each class/interface. The

MLDA parser, as presented in Chapter Three, is developed based on

Javaparser version 1.0.11 [80] which generates an Abstract Syntax Tree

(AST) representation of the static behavior of the subject system.

The MLDA parser recovers all methods that are implemented inside

each class/interface, with the following signatures:

• Access modifier signature which can be public, private, or protected.

• Return type signature which can be void, data type, or another class.

• Is_static signature which indicates whether the method is static or not.

This table field is set to YES or NO.

• Call_to signature which indicates if the method makes a call to another

method. This table field is kept blank if the method does not call another

method.

Consequently, the outputs of the MLDA parser are method

signatures, a source code model and a design patterns library. The method

signatures template acts as a basis for generating the rules. The template

involves a rule template for each design pattern. The template aims to

represent the key method characteristics between the pattern participant

classes, such as method overriding (superclass and subclass implement the

same method), method calls (a method in one class calls a method in

another class), method return type (some design pattern methods require a

certain return type). In expert systems, there is no standard syntax for a rule.

Rules can be created based on the experience of the knowledge engineer in

a specific problem domain. However, rules should have machine

processable representation. In addition, rules representation should be

130

directive, readable and consistent. Rules and facts should be written in such

a way that they can be matched by the inference engine.

5.3.1 Rules Template for Method Signatures of Design Patterns

A rules template has been created to reflect the required method signatures

between pattern participant classes. We used readable and consistent rule

syntax consistent with CLIPS rules syntax. In addition, we tried to represent

the required method signatures of pattern participant classes. Table 5.1

shows the created rule syntax and its corresponding significance. The

template has been created in such way that it complements the structure of

each design pattern.

Table 5.1: The created rules template syntax and its significance

As Table 5.1 illustrates, all the required method signatures between

pattern participant classes are represented by the rules template. Each rule

has its condition and action parts. All the required method signatures are

included in the condition parts. On the other hand, the action part indicates

whether the instance is a true positive or a false positive. Some design

patterns require methods call and methods overriding between participant

classes, such as Adapter and Proxy. Other design patterns require methods

return types, such as Prototype and Builder. The static signature (Is_static)

has been used only once to filter the Singleton candidate instances. The

Singleton design pattern requires a class to implement one static method

with a Singleton return data type. The rules template is stored in the design

patterns library to complement the structure representation of each design

Rule Syntax Significance
Class A has method m Method m implemented inside class A
method m returntype Class A Method m returns an object of type

Class A
method m Is_static YES/NO Method m is static or not
test (=(str-compare m1 m2)0) To check whether m1 and m2 are the

same methods (for overriding
purposes)

test (neq m1 m2) To check whether m1 and m2 are two
different methods

method m1 call_to method m2 The implementation of method m1
involves a call to method m2

131

pattern. The MLDA rules/facts generator will generate the rules for the

candidate instances based on the rules template. All template rules are

consistent with the standard definition of design patterns presented by GoF.

Table 5.2 presents the created rules template for GoF design

patterns. This table uses the rules syntax of Table 5.1. Each rule has title,

condition and action parts. Each rule/action is enclosed in a parenthesis.

Comments can be added when necessary after a semicolon. The rules

template is consistent with CLIPS syntax. Hence, the generated rules can

be loaded directly into CLIPS for processing.

Singleton_Rule
1. (defrule Singleton_rule
2. IF
3. (Singleton has method ?x)
4. (method ?x returntype Singleton)
5. (method ?x Is_static YES)
6. THEN
7. (Singleton_instance is true positive)
8.) End Singleton Rule

Prototype_Rule
1. (defrule Prototype_rule
2. IF
3. (ConcretePrototype has method ?x)
4. (Prototype has method ?y)
5. (test (=(str-compare ?x ?y)0))
6. (method ?x returntype Prototype)
7. THEN
8. (Prototype_instance is true positive)
9.) End Prototype rule

AbstractFactory_Rule
1. (defrule AbstractFactory_rule
2. IF
3. (AbstractFactory has method ?x)
4. (AbstractFactory has method ?y)
5. ((test(neq ?x ?y))
6. (ConcreteFactory has method ?x2)
7. (ConcreteFactory has method ?y2)
8. ((test(neq ?x2 ?y2))
9. (test (= (str-compare ?x ?x2)0))
10. (test (= (str-compare ?y ?y2)0))
11. THEN
12. (AbstractFactory_instance is true

positive)
13.) End AbstractFactory rule

Factory_Rule
1. (defrule Factory_rule
2. IF
3. (Creator has method ?x)
4. (ConcreteCreator has method ?y)
5. (test (= (str-compare ?x ?y) 0))
6. (method ?x returntype Product)
7. THEN
8. (Factory_instance is true positive)
9.) End Factory rule

Builder_rule
1. (defrule Builder_rule
2. IF
3. (Builder has method ?x)
4. (ConcreteBuilder has method ?y)
5. (test (= (str-compare ?x ?y) 0))
6. (method ?x returntype Product)
7. THEN
8. (Builder_instance is true positive)
9.) End Builder rule

Adapter_rule
1. (defrule Adapter_rule
2. IF
3. (Target has method ?x)
4. (Adapter has method ?y)
5. (test (=(str-compare ?x ?y) 0))
6. (Adaptee has method ?z)
7. (method ?y call_to method ?z)
8. THEN
9. (Adapter_instance is true positive)
10.) End Adapter rule

132

Bridge_rule
1. (defrule Bridge_rule
2. IF
3. (ConcreteImplementor has method

?y)
4. (Implementor has method ?x)
5. (test (= (str-compare ?x ?y) 0))
6. (Abstraction has method ?z)
7. (method ?z Call_to method ?x)
8. THEN
9. (Bridge_instance is true positive)
10.) End Bridge rule

Composite_rule
1. (defrule Composite_rule
2. (Leaf has method ?x)
3. (Component has method ?y)
4. (test (=(str-compare ?x ?y) 0))
5. (Composite has method ?z)
6. (test (=(str-compare ?x ?z)0))
7. THEN
8. (Composite_instance is true positive)
9.) End composite rule

Decorator_rule
1. (defrule Decorator_rule
2. (Component has method ?x)
3. (Decorator has method ?y)
4. (test (= (str-compare ?x ?y) 0))
5. (ConcreteDecorator has method ?z)
6. (test (= (str-compare ?y ?z) 0))
7. (method ?y call_to method ?x)
8. (method ?z call_to method ?y)
9. (ConcreteComponent has method ?q)
10. (test (= (str-compare ?z ?q) 0))
11. THEN
12. (Decorator_instance is true positive)
13.) End Decorator rule

Façade_rule
1. (defrule Façade_rule
2. IF
3. (Façade has method ?x)
4. THEN
5. (Façade_instance is true positive)
6.) End of Facade rule

Command_rule
1. (defrule Command_Rule
2. IF
3. (Command has method ?x)
4. (ConcreteCommand has method ?y)
5. (test (= (str-compare ?x ?y)0))
6. (Receiver has method ?z)
7. ((test(neq ?y ?z))
8. (method ?y call_to method ?z)
9. THEN
10. (command_instance is true positive)
11.) End command rule

Interpreter_rule
1. (defrule Interpreter_rule
2. IF
3. (AbstractExpression has method ?x)
4. (NonTerminalExpression has method

?y)
5. (test (= (str-compare ?x ?y) 0))
6. (method ?y call_to ?x)
7. THEN
8. (Interpreter_instance is true positive)
9.) End Interpreter rule

Iterator_rule
1. (defrule Iterator_rule
2. IF
3. (Iterator has method ?x)
4. (Aggregate has method ?y)
5. ((test(neq ?x ?y))

(ConcreteIterator has method ?z)
6. (test (= (str-compare ?x ?z) 0))
7. (ConcreteAggregate has method ?q)
8. (test (= (str-compare ?y ?q) 0))
9. (method ?y returntype Iterator)
10. THEN
11. (Iterator_instance is true positive)
12.) End Iterator instance

Flyweight_rule
1. (defrule Flyweight_rule
2. IF
3. (FlyweightFactory has method ?x)
4. (Flyweight has method ?y)
5. (method ?x returntype Flyweight)
6. ((test(neq ?x ?y))
7. (UnsharedConcreteFlyweight has

method ?z)
8. (test (= (str-compare ?y ?z) 0))
9. (ConcreteFlyweight has method ?q)
10. (test (= (str-compare ?z ?q) 0))
11. THEN
12. (flyweight_instance is true positive)
13.) End flyweight rule

133

Table 5.2: Rules template for the method signatures of GoF design
patterns

Proxy_rule
1. (defrule Proxy_rule
2. IF
3. (Subject has method ?x)
4. (Proxy has method ?y)
5. (test (= (str-compare ?x ?y) 0))
6. (RealSubject has method ?z)
7. (test (= (str-compare ?x ?z) 0))
8. (method ?y call_to method ?z)
9. THEN
10. (Proxy_instance is true positive)
11.) End of proxy rule

ChainOfResponsibility_rule
1. (defrule CoR_rule
2. IF
3. (Handler has method ?x)
4. (ConcreteHandler has method ?y)
5. (test (=(str-compare ?x ?y)0))
6. (method ?y call_to method ?x)
7. THEN
8. (CoR_instance is true positive)
9.) end of CoR rule

State/Strategy_rule
1. (defrule State/Strategy_Rule
2. IF
3. (Context has method ?x)
4. (State has method ?y)
5. ((test(neq ?x ?y))
6. (ConcreteState has method ?z)
7. (test (=(str-compare ?y ?z)0))
8. (method ?x call_to method ?y)
9. THEN
10. (State/Strategy_instance is true

positive)
11.) End State/Strategy rule

TemplateMethod_rule
1. (defrule TemplateMethod_rule
2. IF
3. (ConcreteClass has method ?x)
4. (AbstractClass has method ?y)
5. (test (=(str-compare ?x ?y)0))
6. THEN
7. (TemplateMethod_instance is true

positive)
8.) End TemplateMethod rule

Visitor_rule
1. (defrule Visitor_rule
2. IF
3. (Element has method ?x)
4. (ConcreteElement has method ?y)
5. (test (=(str-compare ?x ?y)0))
6. (Visitor has method ?z)
7. ((test(neq ?y ?z))
8. (method ?y call_to method ?z)
9. THEN
10. (Visitor_instance is true positive)
11.) End of Visitor rule

Mediator_rule
1. (defrule Mediator_rule
2. IF
3. (Colleague has method ?x)
4. (method ?x returntype Mediator)
5. THEN
6. (Mediator_instance is true positive)
7.) End of mediator rule

Memento_rule
1. (defrule Memento_rule
2. IF
3. (Originator has method ?y)
4. (Caretaker has method ?x)
5. ((test(neq ?y ?x))
6. (method ?x returntype Memento)
7. (ConcreteMemento has method ?z)
8. (test (=(str-compare ?y ?z)0))
9. (method ?y call_to method ?z)
10. THEN
11. (Memento_instance is true positive)
12.) End memento rule

Observer_rule
1. (defrule Observer_rule
2. IF
3. (Subject has method ?x)
4. (Observer has method ?y)
5. ((test(neq ?x ?y))
6. (ConcreteObserver has method ?z)
7. (test (=(str-compare ?y ?z)0))
8. (method ?x call_to method ?y)
9. THEN
10. (Observer_instance is true positive)
11.) End observer rule

134

5.3.2 MLDA Rules/Facts Generator

The MLDA rules/facts generator – henceforth the R/F generator – is a simple

Java program, implemented as part of the MLDA project, which generates a

set of rules and facts to represent the required method signatures of

candidate design instances and subject system respectively. Specifically, the

R/F generator constructs a connection to the SQL tables, which hold the

candidate design instances and the method signatures of the subject

system, and uses Java Stream Writer, which is a Java library, to write the

set of rules and facts. The outputs of the R/F generator are two files: rules.txt

and facts.txt. These two files will be loaded later into CLIPS for processing.

5.3.2.1 Generating Rules

The candidate design pattern instances of each design pattern are stored in

an SQL table. In order to generate the rules, the R/F generator constructs a

connection to the SQL table and makes an access to each record. Based on

the rules template, the R/F generator will generate a rule for each candidate

design instance. Specifically, the R/F generator will fill each template entry

by its corresponding role in the SQL table. Java “OutputStreamWriter” has

been used to write the rules into a text file.

Figure 5.5 presents an example to illustrate how the R/F generator

creates rules. The presented example shows the generated rules of the

Proxy candidate instances. As Figure 5.5 illustrates, the R/F generator

creates three rules to represent the required method signatures between

Proxy participant classes (i.e. Subject, Proxy and RealSubject). Method IDs,

titles and variables will be automatically incremented as new instances are

inserted into the table. All the generated rules have a consistent syntax which

can be loaded directly into CLIPS for processing. N candidate instances will

be represented as N rules in the generated text file.

5.3.2.2 Generating Facts

The MLDA parser stores the retrieved method signatures from the subject

system in an SQL table. The R/F generator represents each method

signatures record as a set of facts. The generated facts are consistent with

the rules syntax and conform to CLIPS syntax as well. The subject system

135

is represented as a set of classes/interfaces where each record stores the

methods implemented inside that class/interface. In addition, each record

stores the method access modifier, return type, static status and method

calls. Figure 5.6 shows an example of how the R/F generator generates facts

to represent the method signatures of a subject system. Facts are generated

based on the created facts template which is consistent with the rules

template in such a way that the rule conditions can be matched to the

generated facts.

The R/F generator is customizable. This means that the syntax of the

generated rules and facts can be changed by modifying the template.

Figure 5.5: An example of the MLDA R/F generator for Proxy candidate
instances

Figure 5.6: An example of the MLDA R/F generator for a subject system
facts generation

136

5.3.3 Matching Rules and Facts

The generated facts and rules will be loaded to CLIPS for processing. Facts

will be stored in the working memory while the rules will be stored in the

knowledge base. The CLIPS inference engine uses forward chaining which

relies on Rete algorithm to fire the rules. If rule conditions match a set of

facts, the rule will be inserted into the agenda for execution. At the end of the

cycle, all the matched rules will be in agenda. The inference engine will fire

the rules based on their order in the knowledge base. The topmost rule will

be executed first. However, the order of the rules in the knowledge base is

not important. This is mainly due to the way that the rules template was

created. More specifically, the action part of each rule does not assert new

facts to the working memory. The action part only prints a message indicating

that the instance is a true positive. Hence, the order of the rules will not affect

the rules execution. One cycle is required to fire all rules. The “run” command

would run the inference engine of CLIPS.

Rules that represent false positive instances should not be fired.

These instances have a structure similar to that of GoF design patterns but

they are not implementing the required method signatures of GoF design

patterns. On the other hand, rules that represent true positive instances

should be fired. However, some of the true positive instances are

considered, by referring to the relevant literature, as true positive instances

but are not implementing the required method signatures. Hence, these

instances are partially implemented.

5.4 Summary

This chapter presented a rule-based approach to filter the false positive

candidate instances detected by the MLDA’s structural search model.

The use of a rule-based approach aims to enhance the detection

accuracy that relies on the principle of relationship matching. Specifically,

the fundamental hypothesis that we want to explore is “whether representing

the method signatures of the candidate design instances and subject system

137

using a rule-based system is effective in improving the accuracy of design

patterns recovery that relies on the relationship matching”.

The method signatures of GoF design patterns have a uniform

structure and can be represented as an independent piece of knowledge,

facilitating their representation as a set of rules.

Rules will represent the required method signatures between the

participant classes of candidate instances. On the other hand, the method

signatures of the subject system will be represented as a set of facts.

A rules template has been created as a base template to generate the

rules and this template is consistent with the required method signatures of

GoF design patterns. The MLDA rules/facts generator has been developed

to generate the set of rules and facts, which will be directly loaded into CLIPS

for processing. CLIPS uses forward chaining which relies on Rete algorithm

to match the rules and facts.

Rules which represent the false positive instances should not be fired

by the inference engine. This indicates that these instances have a structure

similar to that of GoF design patterns but that they are not implementing the

required method signatures such as method overriding and method calls. In

contrast, rules which represent the true positive instances should be fired

since they should implement the required method signatures. However,

some of the true positive instances are partly implemented in the subject

system and only they implement the required structure of design patterns.

138

hapter Six
Applying a Rule-Based Approach
The candidate design pattern instances that have been

recovered from eight subject systems after applying SSM

will be filtered using a rule-based approach. The MLDA rules/facts generator

will generate the required rules and facts to represent the method signatures

of the candidate design instances and subject systems respectively. In

addition, the CLIPS inference engine will process the generated facts and

rules.

6.1 Introduction

SSM recovered the instances that have a structure similar to that of GoF.

However, these instances resulted in many false positive instances. This is

mainly due to the nature of object-oriented programs where many structures

might be implemented in a way that is similar to that of GoF design patterns.

Applying a rule-based approach aims to distinguish between GoF design

structures and other structures in a subject system. This requires a set of

facts, a set of rules and an inference engine to do the required processing.

The generated set of rules should reflect the required method

signatures between pattern participant classes based on their standard

definitions presented by GoF. On the other hand, the set of facts should

reflect the existing method signatures inside the subject systems. However,

applying a rule-based approach will cause an exact matching between the

rule and fact sets. Exact matching indicates that an instance is said to be a

true positive instance if its corresponding rule conditions can be met by a

specific set of facts. The fact and rule templates have been constructed in

such a way that they allow exact matching. The rules and facts template

complements the generated library of design patterns. The Design patterns

library reflects the structural features of design patterns, whereas the rules

and facts template reflects their dynamic behavior. Hence, the required

structural and behavioral features were considered.

C

139

This chapter presents the experimental results of applying a rule-

based approach in attempts to enhance the accuracy of SSM.

6.2 Method Signatures Representation

The MLDA rules/facts generator (R/F generator) has been used to generate

a set of rules and facts for each subject system and its recovered candidate

instances. Once rule conditions are met by facts, a print message will be

displayed to indicate that a candidate instance is a true positive. The number

of generated facts and rules for all subject systems are presented in Table

6.1.

The number of generated facts depends on the number of

implemented methods inside a subject system. As the number of

implemented methods increases, the number of generated facts increases.

On the other hand, the number of rules equals the number of candidate

instances (i.e. each candidate instance is represented as one rule). The

process of generating facts and rules is quite fast with the R/F generator

spending only a few seconds on this. In addition, the MLDA parser spent

around seven seconds recovering the methods from the subject systems.

The R/F generator generates, in total, 43424 facts to represent the method

signatures inside the subject systems and also generates, in total, 2994 rules

to represent the required method signatures of the candidate design

instances.

PMD has the largest number of facts and rules since it implements

more methods than other subject systems and has too many structures

similar to those of GoF design patterns. In contrast, JUnit and Lexi have the

lowest number of facts and rules. In addition, the rules and facts generation

time relies on the number of candidate instances and on the number of

implemented methods inside a subject system.

140

Table 6.1: The number of generated facts and rules

Figure 6.1 shows a screenshot of the process of running the MLDA

R/F generator. The generator makes a connection onto each table that

stores the candidate design instances, using an SQL connection command.

In addition, the generator makes an access to a table that stores subject

system method signatures. Then, based on the rules and facts templates,

two text files (rules.txt and facts.text) will be automatically placed in the

working directory of the MLDA project. These two files hold the method

signatures representation for the candidate design instances and subject

systems. The syntax of these two files is consistent in such a way that they

can be loaded directly into CLIPS for processing.

Subject Systems

N
um

be
r o

f f
ac

ts

N
um

be
r o

f r
ul

es

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

M
et

ho
ds

 p
ar

si
ng

tim

e
(s

ec
on

ds
)

JHotDraw 4222 195 0.5 1.40

JRefactory 9163 723 2.1 0.86

JUnit 1981 68 0.4 0.43

QuickUML 2397 185 0.4 0.54

Lexi 1664 216 0.5 0.17

MapperXML 6976 319 0.4 0.21

Nutch 6853 487 0.4 0.95

PMD 10168 801 0.7 2.2

Total 43424 2994 5.4 6.76

141

Figure 6.1: A screenshot for the running of the MLDA R/F generator

6.3 Rules and Facts Matching

The generated rules and facts will be loaded into CLIPS for processing. The

inference engine of CLIPS will do the required “exact” matching between the

set of rules and facts. Rules which represent the true positive instances

should be fired. In contrast, rules which represent the false positive instances

should not be fired.

6.3.1 CLIPS Processing

After loading the rules and facts files, the “reset” command is used to insert

the facts into the working memory of CLIPS. The rules are automatically

inserted into the knowledge base of CLIPS. All the matched rules will be

inserted into the Agenda for execution. The “run” command will run the

inference engine of CLIPS and all the rules in the Agenda will be executed.

The output of the inference engine is a message which indicates that the

instance is a true positive. Figure 6.2 shows a screenshot of CLIPS after

loading the facts and rules files of PMD.

142

Figure 6.2: A screenshot of CLIPS after loading the rules and facts of PMD

6.3.2 A PMD Example

To illustrate how CLIPS matches the set of facts and rules, the matching

process for a Builder candidate instance, which is recovered from PMD, is

presented. SSM recovered 16 Builder instances from PMD and these

instances are true positive instances. Figure 6.3 shows a candidate Builder

instance with its corresponding generated rule.

The generated rule reflects the required method signatures between

Builder participant classes (“AvoidDeeplyNestedIfStmtsRuleTest”, “Rule”,

“MockRule”, and “Properties”). The rule suggests:

• Class “Rule” should implement a method;

• Class “MockRule” should implement the same method (overriding) that

“Rule” implements;

• The return type of that method should be of type class “Properties”.

Hence, all the required method signatures are reflected in the

generated rule. However, reducing the number of rule conditions will

enhance its opportunity to be matched with the set of facts. This may

increase the number of false positive instances.

143

Figure 6.3: A candidate Builder instance with its generated rule

The inference engine of CLIPS will match the rule conditions of the

candidate Builder instance against the generated set of PMD facts. Figure

6.4 shows part of the generated facts of PMD after loading the facts file onto

CLIPS. The presented facts are required to satisfy Builder rule conditions.

The inference engine of CLIPS will fire the Builder rule which

represents the candidate instance of Figure 6.3. This indicates that this

instance has a structure consistent with the structure of GoF and that it

implements the required method signatures.

Figure 6.4: Part of the generated fact list of PMD

144

6.4 Accuracy Evaluation

The rule-based system has been applied to the recovered candidate

instances after applying SSM. Tables 6.2 and 6.3 show the experimental

results of recovering 23 design patterns from subject systems after applying

the rule-based system.

6.4.1 Experiments and Results

The experimental results show that the method signatures of GoF design

patterns provide an appropriate fingerprint for the detection of design pattern

instances from object-oriented programs. Moreover, the third level of MLDA

allows the detection of the template method design pattern. Specifically, the

template method design pattern requires an inheritance relationship

between two different classes. These two classes should implement the

same method. This condition has been checked by the rule-based system

and most of the false positive instances have been removed.

Furthermore, the experimental results show an enhancement in the

detection accuracy for all subject systems. The recall rate did not affect this

since it relies on the number of false negative instances. However, by

referring to the relevant literature, some instances implement the required

method signatures and these are not design patterns. MLDA recovered 61

such design instances. This is mainly due to the way that these instances

were implemented. For example, one Command instance in JHotDraw has

been implemented using two aggregation relationships and one inheritance

relationship and it implements the required method signatures presented by

GoF. This instance is not considered a true positive instance in the literature.

145

Su
bj

ec
t

Sy
st

em
s/

De

si
gn

Pa

tte
rn

s

JH
ot

Dr
aw

JR

ef
ac

to
ry

JU

ni
t

Qu
ic

kU
M

L

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

Si
ng

le
to

n
2

2
2

0
0

10
0

10
0

10

10

10

0
2

10
0

83

0
0

0
0

0
NA

NA

1

1
1

0
0

10
0

10
0

Pr
ot

ot
yp

e
2

2
2

0
0

10
0

10
0

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

Ab

st
ra

ct

Fa
ct

or
y

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0

Fa
ct

or
y

M
et

ho
d

0
0

0
0

2
NA

0

10
1

81

79

2
8

98

91

2
2

2
0

0
10

0
10

0
12

12

12

0

6
10

0
67

Bu

ild
er

0

0
0

0
0

NA

NA

0
0

0
0

2
NA

0

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0
Ad

ap
te

r
31

13

11

2

0
85

10

0
17

15

15

0

1
10

0
94

7

5
5

0
6

10
0

45

26

25

25

0
4

10
0

86

Br
id

ge

7
5

4
1

0
80

10

0
0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0
Co

m
po

sit
e

1
1

1
0

0
10

0
10

0
0

0
0

0
0

NA

NA

0
0

0
0

1
NA

0

1
1

1
0

0
10

0
10

0
De

co
ra

to
r

1
1

1
0

2
10

0
33

1

1
1

0
0

10
0

10
0

1
1

1
0

0
10

0
10

0
2

2
2

0
1

10
0

67

Fa
ça

de

1
1

1
0

0
10

0
10

0
2

2
2

0
NA

10

0
NA

0

0
0

0
0

NA

NA

1
1

1
0

0
10

0
10

0
Fl

yw
ei

gh
t

1
1

1
0

0
10

0
10

0
0

0
0

0
NA

NA

NA

0

0
0

0
0

NA

NA

1
1

1
0

0
10

0
10

0
Pr

ox
y

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

1

1
1

0
1

10
0

50

Co
R

0
0

0
0

0
NA

NA

0

0
0

0
NA

NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

Co

m
m

an
d

17

9
8

1
1

89

89

45

32

22

10

3
69

88

0

0
0

0
0

NA

NA

17

17

17

0
1

10
0

94

In
te

rp
re

te
r

0
0

0
0

0
NA

NA

0

0
0

0
NA

NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

Ite

ra
to

r
0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0
0

0
0

0
0

NA

NA

M
ed

ia
to

r
2

0
0

0
0

NA

NA

0
0

0
0

NA

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

M
em

en
to

1

0
0

0
0

NA

NA

0
0

0
0

NA

NA

NA

0
0

0
0

0
NA

10

0
6

0
0

0
0

NA

NA

O
bs

er
ve

r
0

0
0

0
2

NA

0
0

0
0

0
0

NA

NA

0
0

0
0

1
NA

0

1
1

1
0

0
10

0
10

0
St

at
e/

St
ra

te
gy

33

7

6
1

0
86

10

0
11

8

8
0

3
10

0
73

8

3
3

0
0

10
0

10
0

11

10

10

0
0

10
0

10
0

Vi
sit

or

1
1

1
0

1
10

0
50

1

1
1

0
1

10
0

50

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

Te
m

pl
at

e
M

et
ho

d
95

5

4
1

0
80

10

0
53

5
21

4

17

0
19

10

0
50

2

1
1

0
50

10

0
10

5
13

3

10

0
23

10

0

To

ta
l/A

ve
ra

ge

19
5

48

42

6
8

94
%

75

%

72
3

17
1

14
2

29

20

83
%

88

%

68

13

12

1
9

92
%

57

%

18
5

85

75

10

16

88
%

82

%

 No
te

:

CI
: C

an
di

da
te

 In
st

an
ce

s
af

te
r a

pp
lyi

ng
 S

tru
ct

ur
al

 S
ea

rc
h

M
od

el
 (l

ev
el

 tw
o)

 D

I:
De

te
ct

ed
 In

st
an

ce
s

af
te

r a
pp

lyi
ng

 th
e

m
et

ho
d

sig
na

tu
re

s
m

at
ch

in
g

le
ve

l (
le

ve
l t

hr
ee

)
P:

 P
re

cis
io

n%

 R
: R

ec
al

l%

NA

: N
ot

 A
pp

lic
ab

le

TP
: T

ru
e

Po
sit

ive
s

 F

P:
 F

al
se

 P
os

itiv
es

 F

N:
 F

al
se

 N
eg

at
ive

s

Ta
bl

e
6.

2:
 T

he
 e

xp
er

im
en

ta
l r

es
ul

ts
 o

f r
ec

ov
er

in
g

23
 G

oF
 d

es
ig

n
pa

tte
rn

s
af

te
r a

pp
ly

in
g

th
e

ru
le

-b
as

ed
 s

ys
te

m
-p

ar
t 1

146

Su
bj

ec
t

Sy
st

em
s/

De

sig
n

Pa
tte

rn
s

Le
xi

M

ap
pe

rX
M

L
Nu

tc
h

PM
D

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

CI

DI

TP

FP

FN

P%

R%

Si
ng

let
on

2

2
2

0
0

10
0

10
0

3
3

3
0

0
10

0
10

0
2

2
2

0
0

10
0

10
0

2
2

2
0

2
10

0
50

Pr

ot
ot

yp
e

1
1

1
0

0
10

0
10

0
0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

1

1
1

0
0

10
0

10
0

Ab
str

ac
t F

ac
to

ry

0
0

0
0

0
NA

NA

0

0
0

0
2

NA

0
0

0
0

0
0

NA

NA

0
0

0
0

2
NA

0

Fa
cto

ry
 M

et
ho

d
26

0

0
0

0
NA

NA

0

0
0

0
22

NA

0

8
5

5
0

0
10

0
10

0
7

7
7

0
25

10

0
22

Bu

ild
er

13

0

0
0

0
NA

NA

2

1
1

0
0

10
0

10
0

0
0

0
0

0
NA

NA

16

16

16

0

0
10

0
10

0
Ad

ap
te

r
44

9

9
0

21

10
0

30

17

5
5

0
36

10

0
12

63

44

44

0

0
10

0
10

0
53

42

42

0

45

10
0

48

Br
idg

e
0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

1
1

1
0

0
10

0
10

0
Co

m
po

sit
e

3
3

3
0

0
10

0
10

0
0

0
0

0
1

NA

0%

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

De
co

ra
to

r
0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
4

NA

0
0

0
0

0
0

NA

NA

Fa
ça

de

1
1

1
0

0
NA

NA

1

1
1

0
0

10
0

10
0

1
1

1
0

0
10

0
10

0
1

1
1

0
0

10
0

10
0

Fl
yw

eig
ht

1

1
1

0
0

10
0

10
0

1
1

1
0

0
10

0
10

0
1

1
1

0
0

10
0

10
0

0
0

0
0

0
NA

NA

Pr

ox
y

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

4
4

4
0

0
10

0
10

0
3

3
3

0
1

10
0

75

Co
R

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

1

1
1

0
0

10
0

10
0

Co
m

m
an

d
15

6

6
0

0
10

0
10

0
52

26

26

0

0
10

0
10

0
23

23

23

0

2
10

0
92

3

3
3

0
0

10
0

10
0

In
te

rp
re

te
r

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

Ite
ra

to
r

36

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0
0

0
0

0
0

NA

NA

M
ed

iat
or

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

M

em
en

to

10

10

10

0
0

NA

NA

12

12

12

0
0

10
0

10
0

1
1

1
0

0
10

0
10

0
1

1
1

0
0

10
0

10
0

Ob
se

rv
er

0

0
0

0
0

NA

NA

0
0

0
0

3
NA

0

0
0

0
0

0
NA

NA

0

0
0

0
1

NA

0
St

at
e/

St
ra

te
gy

0

0
0

0
1

NA

0
11

11

11

0

0
10

0
10

0
12

4
11

6
11

3
3

0
97

10

0
24

8
21

21

0

0
10

0
10

0
Vi

sit
or

0

0
0

0
0

NA

NA

0
0

0
0

0
NA

NA

0

0
0

0
0

NA

NA

0
0

0
0

1
NA

0

Te
m

pla
te

M

et
ho

d
64

0

0
0

0
NA

NA

22

0
56

56

0

0
10

0
10

0
26

0
7

7
0

0
10

0
10

0
46

4
12

0
10

8
12

0

90

10
0

To

ta
l/A

ve
ra

ge

21
6

33

33

0
22

10

0%

50
%

31

9
11

6
11

6
0

64

10
0%

64

%

48
7

20
4

20
1

3
7

99
%

97

%

80
1

21
9

20
7

12

77

95
%

73

%

 No
te

:

CI
: C

an
did

at
e

In
sta

nc
es

 a
fte

r a
pp

lyi
ng

 S
tru

ctu
ra

l S
ea

rc
h

M
od

el
(le

ve
l tw

o)

DI
: D

et
ec

te
d

In
sta

nc
es

 a
fte

r a
pp

lyi
ng

 th
e

m
et

ho
d

sig
na

tu
re

s m
at

ch
ing

 le
ve

l (
lev

el
th

re
e)

P:

 P
re

cis
ion

%

 R
: R

ec
all

%

NA

: N
ot

 A
pp

lic
ab

le
TP

: T
ru

e
Po

sit
ive

s

FP
: F

als
e

Po
sit

ive
s

FN

: F
als

e
Ne

ga
tiv

es

Ta
bl

e
6.

3:
 T

he
 e

xp
er

im
en

ta
l r

es
ul

ts
 o

f r
ec

ov
er

in
g

23
 G

oF
 d

es
ig

n
pa

tte
rn

s
af

te
r a

pp
ly

in
g

th
e

ru
le

-b
as

ed
 s

ys
te

m
-p

ar
t 2

147

6.4.2 Average Accuracy

The average precision achieved by MLDA after applying the rule-based

system for the recovery of 23 design patterns from all subject systems is

93%. The rule-based approach removes most of the false positive instances

detected by SSM. Table 6.4 shows a summary for the achieved detection

accuracy after applying the hybrid structural rule-based approach. As the

results illustrate, representing the method signatures of the candidate design

instances and the subject system as a set of rules and facts enhances the

detection accuracy of design patterns, which relies on the principle of

relationship matching.

Table 6.4: Summary of the average accuracy achieved after applying SSM

and the rule-based approach

6.5 Results Comparison

The accuracy of MLDA has been compared to four approaches, as

presented in Tables 6.5 and 6.6. The selection of these approaches was

made based on their results which were detailed enough to compare and

 After applying SSM After applying the rule-based approach

All GoF design patterns

 All GoF design patterns
Except Template method

design pattern

All GoF design patterns
Subject
Systems CI TP FP FN

CI TP FP FN

CI DI TP FP FN

JHotDraw 195 42 153 8 100 38 62 8 195 48 42 6 8
JRefactory 723 142 581 20 188 138 50 20 723 171 142 29 20
JUnit 68 12 56 9 18 11 7 9 68 13 12 1 9
QuickUML 185 75 110 16 80 72 8 16 185 85 75 10 16
Lexi 216 22 194 22 152 22 130 22 216 33 33 0 22
MapperXML 319 116 203 64 99 60 39 64 319 116 116 0 64
Nutch 487 201 286 7 227 194 33 7 487 204 201 3 7
PMD 801 207 594 77 337 99 238 77 801 219 207 12 77
Total 2994 817 2177 223 1201 634 567 223 2994 889 828 61 223

Average
precision 27%

53%

93%

Average
recall 79%

74%

79%

Average F-
measure 41%

62%

85%

Note:
CI: Candidate Instances after applying Structural Search Model (level two)
DI: Detected Instances after applying a rule-based appraoch (level three)
TP: True Positives FP: False Positives FN: False Negatives

148

were applied to the same subject systems (JHotDraw version 5.1 and JUnit

version 3.7). However, the comparison among design pattern detection

approaches is challenging. This is due to the fact that there is no standard

benchmark to validate the results of each approach. In fact, each approach

has its limitations, patterns representation, subject systems and validation

method. Tables 6.5 and 6.6 show the results of the design patterns recovery

of MLDA, Sempatrec [44], DeMIMA [41], Sub-patterns [33] and SSA [31] for

JHotDraw and JUnit respectively. As illustrated, MLDA achieves reasonable

detection accuracy in terms of precision for the detection of JHotDraw and

JUnit instances.

The positiveness of MLDA relies on its ability to build the structure of

each design pattern, record all the object interactions and match the method

signatures. Hence, increasing the number of true positive instances. More

specifically, MLDA recovers the five key relationships that may occur

between classes and interfaces inside an object-oriented program, tries all

the possible combinations between the recovered classes and interfaces

and matches these structures to that of GoF. In addition, MLDA matches the

method signatures of the candidate design instances to that of the subject

system. Representing the method signatures using a rule-based approach

provides a fingerprint for design patterns inside the source code. Both the

structure and the method signatures are required to detect accurately the

instances of GoF design patterns. The rule-based system enhances the

detection accuracy of design patterns, which relies on the relationship

matching.

However, MLDA missed the instances partly implemented in the

source code, since SSM relies on the standard definition of GoF. On the

other hand, the lack of dynamic and runtime information explains the

existence of false positives. It must be noted that we only compare the results

that DeMIMA, SSA, Sempatrec, and Sub-patterns revealed.

149

Table 6.5: Comparison of the results of MLDA and that of other

approaches for JHotDraw

Table 6.6: Comparison of the results of MLDA and that of other

approaches for JUnit

Furthermore, the accuracy of MLDA has been compared to the sub-

patterns approach for 23 design patterns since it is the only approach that

recovers all GoF design patterns. Table 6.7 presents that comparison. The

average accuracy of MLDA for JHotDraw and JUnit was 93% and 90%

respectively. On the other hand, the average accuracy of the sub-patterns

approach for JHotDraw and JUnit was 100% and 84% respectively.

DPs SS
MLDA DeMIMA SSA Sempatrec Sub-patterns

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

AD JD 85 100 92 4 100 8 44 100 61 45 100 NA NA

DE JD 100 33 50 8 100 15 33 33 33 50 33 40 100 NA NA

CO JD 89 89 89 33 100 50 100 100 100 100 100 100 100 NA NA

FM JD NA 0 NA 2 100 4 100 67 80 100 100 100 100 NA NA

SI JD 100 100 100 100 100 100 100 100 100 100 100 100 100 NA NA

OB JD NA 0 NA 25 100 40 50 40 44 50 40 44 100 NA NA

TM JD 80 100 89 7 100 13 20 100 33 50 100 67 100 NA NA

VI JD 100 50 67 100 100 100 100 100 NA NA

Average % 92 63 81 34 100 47 74 88 75 83 87 85 100 NA NA
Note:
AD: Adapter DE: Decorator CO: Command FM: Factory Method SI: Singleton OB: Observer TM: Template Method
VI: Visitor SS: Subject Systems JD: JHotDraw JU: JUnit P:Prescion R: Recall F: F-measure
Blank: Not Revealed NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances

DPs SS
MLDA DeMIMA SSA Sempatrec Sub-patterns

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

AD JU 100 45 62 0 17 100 29 100 100 100 100 100 100

DE JU 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

CO JU NA NA NA 100 100 100 100 100 100 100 100 100 100 100 100

FM JU 100 100 100 100 100 100 100

SI JU NA NA NA 100 100 100

OB JU NA 0 NA 25 100 40 100 100 100 100 100 100 100 50 67

TM JU 50 100 67 0 100 100 100 100 100 100 100 100 100

VI JU NA NA NA 100 100 100

Average % 88 69 82 45 100 80 83 100 86 100 100 100 100 94 96
Note:
AD: Adapter DE: Decorator CO: Command FM: Factory Method SI: Singleton OB: Observer TM: Template Method
VI: Visitor SS: Subject Systems JD: JHotDraw JU: JUnit P:Prescion R: Recall F: F-measure
Blank: Not Revealed NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances

150

Table 6.7: Comparison of the results of MLDA and that of the sub-patterns

approach for 23 design patterns

6.6 Summary

This chapter presented the experimental results of applying a rule-based

system aimed at enhancing detection accuracy that relies on the

relationships matching. The rule-based system provides a consistent format

to represent the method signatures of the candidate design instances and

the subject system. More specifically, the CLIPS inference engine has been

used to match the set of rules and facts. Once all the rules’ conditions are

met by subject system facts, a message indicates that this instance is a true

positive instance and will be printed.

As the experimental results illustrate, the rule-based system is able to

reduce the number of false positive instances. These instances have a

structure similar to that of GoF, but they fail to implement the required

method signatures.

 MLDA Sub-patterns
 JHotDraw JUnit JHotDraw JUnit

Design Patterns P% R% F% P% R% F% P% R% F% P% R% F%
Singleton 100 100 100 NA NA NA 100 NA NA 100 100 100
Prototype 100 100 100 NA NA NA 100 NA NA NA NA NA

Abstract Factory NA NA NA NA NA NA NA NA NA NA NA NA
Factory Method NA 0 NA 100 100 100 100 NA NA 100 100 100

Builder NA NA NA NA NA NA NA NA NA NA NA NA
Adapter 85 100 92 100 45 62 100 NA NA 100 100 100
Bridge 80 100 89 NA NA NA 100 NA NA NA NA NA

Composite 100 100 100 NA 0 NA 100 NA NA NA NA NA
Decorator 100 33 50 100 100 100 100 NA NA 100 100 100
Façade 100 100 100 NA NA NA 100 NA NA NA NA NA

Flyweight 100 100 100 NA NA NA 100 NA NA NA NA NA
Proxy NA NA NA NA NA NA 100 NA NA NA NA NA

Chain of Responsibility NA NA NA NA NA NA NA NA NA NA NA NA
Command 89 89 89 NA NA NA 100 NA NA NA NA NA
Interpreter NA NA NA NA NA NA NA NA NA NA NA NA

Iterator NA NA NA NA 0 NA NA NA NA NA NA NA
Mediator NA NA NA NA NA NA NA NA NA NA NA NA
Memento NA NA NA NA 100 NA NA NA NA NA NA NA
Observer NA 0 NA NA 0 NA 100 NA NA 50 50 50

State_Strategy 86 100 93 100 100 100 100 NA NA 40 NA NA
Visitor 100 50 67 NA NA NA 100 NA NA NA NA NA

Template method 80 100 89 50 100 67 100 NA NA 100 100 100

Average% 93 77 89 90 61 86 100 NA NA 84 92 92
Note:
P:Prescion R: Recall F: F-measure
NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances

151

hapter Seven
Design Patterns Impact
The impact of GoF design patterns on software quality

attributes provides a support for decision-making during

software design and refactoring. Researchers attempted to investigate the

impact of applying design patterns on software quality by empirical methods

such as case studies, surveys and experiments. Unfortunately, safe

conclusions could not be drawn since the reported results are controversial.

The impact of design patterns on software quality is governed by a

number of factors such as pattern variants, developer experience and quality

that must be achieved by the pattern. In addition, the application of one

pattern enhances certain quality attributes and simultaneously decreases

others. The implementation of design patterns can vary across studies and

these variants could be responsible for any differences observed in the

reported results of the effects of design patterns on quality attributes. This

chapter aims to assess quantitatively the impact of software design patterns

on software maintainability and understandability using software metrics and

design-pattern occurrences. Our use of these quality attributes relies on their

definitions and features as they are presented by the ISO/IEC 9126 quality

model [14]. ISO/IEC 9126 enjoys the benefits of being an international

standard agreed by the software engineering community.

7.1 Introduction

Design patterns are the focus of many works studying their relevance,

visualization and identification, with the hypothesis that their use improves

quality. Gamma et al. claim in the preface of their book [11]: “You will have

insight that makes your own designs more flexible, modular, reusable and

understandable”.

C

152

Gamma et al. [11] describe through discussions how design patterns

support adaptability and are expected to promote software evolution; they

easy maintenance tasks by explicitly identifying class roles and by localizing

where extensions and change should occur. However, the authors do not

demonstrate the benefits to real software development projects. One benefit,

for example, is that design patterns promote adaptability by supporting

modifications through specialization. Developers can adapt a system built

using these patterns by creating new concrete classes with desired

functionality rather than by direct modifications to existing classes.

However, design patterns usually lead to an increased number of

software artifacts, such as classes, associations and delegations, which

increase the static complexity of a software system. Moreover, when the

additional associations are instantiated at run-time, they result in additional

links between objects which increase the dynamic complexity of a software

system. A relevant benefit of design patterns is resilience to changes,

avoiding that new requirement and, in general, any kind of system evolution

causes major re-design. In addition, quality aspect advantages of design

patterns include decoupling a request from specific operations (Chain of

responsibility and Command), making a system independent from software

and hardware platforms (Abstract Factory and Bridge), making a system

independent of algorithmic solutions (Iterator, Strategy and Visitor) and

avoiding modifying implementations (Adapter, Decorator and Visitor). Since

design patterns influence the system structure and their implementations are

influenced by it, pattern implementations are often tailored to the instance of

use. This makes it hard to distinguish between the pattern, the concrete

instance and the object model involved. In fact, the application of patterns

involves the introduction of new classes/interfaces and the moving of

methods and requires additional code.

This chapter aims to address whether the classes playing roles in

design patterns have better software metrics than do other classes in the

system. Higher values of certain software metrics indicate good quality (e.g.

cohesion). In contrast, higher values of other software metrics indicate bad

quality (e.g. coupling between objects). This will provide an indication of how

153

the implementation of design pattern instances affects the quality of a subject

system. The main motivation behind the use of software metrics to quantify

the subject system is their ability to provide a static and stable representation

of the subject system. Moreover, since MLDA uses a class-level

representation of the subject system and the recovered design instances

have been validated based on the all publicly available results in the

literature, a list of classes playing roles in design patterns was generated for

all subject systems. This will facilitate the use of class-level metrics to

quantify each class in the subject system. Hence, software metrics can be

calculated for classes playing roles in design patterns and can be compared

with classes that don’t play roles in design patterns. Previous research

studies which correlate class-level metrics to software quality might be used

in attempts to address the impact of design patterns on software quality

attributes. More specifically, we will examine the impact of design patterns

on understandability and maintainability (whether they are positive or

negative or whether they have no impact). The selection of these attributes

was made since they are the most commonly investigated quality attributes,

concerning design patterns’ impact, in the available literature.

The remaining of this chapter is organized as follows: Section Two

outlines a methodology to address the impact of design patterns, using

software metrics and design pattern occurrences, on software maintainability

and understandability. The experiments and results are presented in Section

Three. Finally, threats to validity and conclusions are summarized in

Sections Four and Five respectively.

7.2 Methodology

There is no formal theory that links design patterns to software quality

concepts. However, it has been claimed that the use of design patterns

provides several advantages, such as increased reusability and improved

maintainability and comprehensibility of existing systems.

154

 The methodology presented relies on software metrics, which are

useful measurements for characterizing software systems, in an attempt to

assess the impact of design patterns on software maintainability and

understandability. Based on their scope, software metrics can be divided into

two categories [97]:

• Project metrics: these metrics deal with the dynamics of a project and

with what is needed to reach a certain point in the development life

cycle. Project metrics provide a higher level of abstraction of the

system. They can be used for estimation purposes such as estimating

the number of required staff.

• Design metrics: these metrics deal with assessing the size, quality and

complexity of software systems. Design metrics use the source code as

input to quantify the system design and are more locally and specifically

focused.

Software design metrics for all system classes, at the class level, will

be calculated to investigate whether a safe conclusion can be drawn

regarding the impact of design patterns on software maintainability and

understandability. To calculate the required metrics, a Java metrics tool

named JHawk has been used. We used the latest version of JHawk, v6.1.3,

under the academic license granted from virtual machinery [98].

7.2.1 JHawk Tool

JHawk is a Java metrics tool that can evaluate the static behavior of the Java

source code [98]. It collects metrics at four different levels. The lowest level

is the method level, followed by the class level, the package level and the

system level. More specifically, JHawk uses the source code of the subject

system as input and calculates its metrics based on numerous aspects of

the code, such as volume, complexity, relationships between class and

packages and relationships within classes and packages. JHawk metrics

could be used to capture poor design, poor coding practice, fault prediction,

simple quantity measurements and overall code quality. JHawk classifies its

metrics into three categories: quantitative metrics which measure the

155

quantity of the source code; complexity metrics which measure how complex

the code is in terms of its functionality and readability complexity; and

structural metrics which measure the contribution of individual code artifacts

to the quality of the code.

The selection of JHawk to calculate the required metrics was made

since it has been used by a significant number of academic studies on Java

metrics. In addition, JHawk provides around 103 different Java source code

metrics at different levels (system, package, class and method). It has

unrivaled accuracy and acceptable ranges can be set for particular metrics

and for packages, methods and classes. Furthermore, JHawk allows new

metrics to be created and added to its metric set. Reports can be output in

HTML, CSV and XML formats.

7.2.2 A Metrics-Based Approach

Figure 7.1 presents a metrics-based approach to assess the impact of

design pattern instances on software quality attributes. As mentioned above,

all metrics will be calculated using JHawk at the class level.

The steps of the metrics-based approach can be summarized as

follows:

1. Recover design pattern instances from each subject system.

2. For each design instance, determine its participant classes.

3. Classify system classes into two groups: classes that play roles in

design patterns (henceforth pattern classes) and classes that do

not (henceforth non-pattern classes).

4. Calculate size, coupling and inheritance metrics for all system’s

classes.

5. For each class in the system, calculate the percentage of

participation in the total metric value.

6. Calculate the percentage of participation in the total value of each

metric for both groups: pattern classes and non-pattern classes.

156

7. Correlate software metrics to quality attributes using previous

research studies.

Figure 7.1: A metrics-based approach to assess the impact of design
patterns

Based on the validated set of design pattern instances recovered

using MLDA, all classes participating in design patterns were determined in

eight subject systems. Furthermore, the following metrics will be calculated

[99], [100]:

• Number of methods (NOM): counts the total number of methods

implemented inside a given class.

• Lack of Cohesion of Methods (LCOM): counts the sets of methods in a

given class that are not related through the sharing of some of the

class's fields.

• Total Response For Class (RFC): measures the number of different

methods that can be executed when an object of a given class receives

a message (when a method is invoked for that object).

• Coupling Between Objects (CBO): counts the number of classes

coupled to a given class. This coupling can occur through method calls,

field accesses, inheritance, arguments, return types and exceptions.

157

• Total Lines of Code (LOC): counts the total lines of code inside a given

class (excluding comments and blanks).

• Fan-IN (F-IN): counts the number of classes calling methods

implemented in a given class.

• Depth of Inheritance Tree (DIT): counts the maximum inheritance path

from a given class to the root class in the inheritance hierarchy.

• Cohesion (COH): counts the degree to which the elements inside

a given class belong together.

• Fan-out (FOUT): counts the number of classes called by methods

implemented in a given class (i.e. the number of classes that a given

class uses and not the classes it is used by).

• Number of Children (NOC): counts the number of direct sub-classes of

a given class.

The selection of these metrics was made since they have a key role

in characterizing the quality of software systems. More specifically, these

metrics reflect the main aspects of any object-oriented program, i.e. size,

coupling and inheritance [97], [99]. The input of the metrics-based approach

is the source code of the subject system, whereas the output is the

percentage of participation for both groups in the total metric value. The

participation percentage of each individual class is calculated based on the

total system metric value. For example, if the total system coupling was 1396

and a class has a coupling value of 65, then its participation percentage in

the total system coupling can be calculated as (65 / 1396) × 100% = 4.66%.

Hence, the participation percentage for all classes in the system can be

calculated.

7.2.3 Correlation of Software Metrics to Quality Attributes

The external behavior of software systems can be recognized based on its

internal metrics. Several studies were presented in the literature to correlate

the impact of calculated software metrics with quality attributes. This

correlation was made based on certain statistical analysis and experiments.

158

The impact can be positive or negative, or there can be no impact at all. We

are trying to address the impact of design patterns on software

understandability and maintainability since they are the most commonly

investigated quality attributes. Table 7.1 illustrates the correlated impact of

NOM, LOC, RFC, CBO, LCOM, COH, F-IN, FOUT, DIT and NOC on

software understandability and maintainability. This correlation was made

based on the correlation presented by [101], [102], [103], [104] and [105].

These studies were selected since they have significant correlation levels.

However, to the best of our knowledge, there are no studies that contradict

the reported impact presented by the selected studies.

Table 7.1: The correlation between software metrics and software
understandability and maintainability

The positive impact (▲) of a metric indicates that high values of that

metric are desirable. On the other hand, a metric’s negative impact (▼)

indicates that high values of that metric are not desirable. Table 7.1

demonstrates that most of the selected metrics have a negative impact on

software maintainability and understandability (i.e. high values of these

metrics is a sign of bad quality). The cohesion metric has been reported to

have a positive impact on understandability and maintainability efforts,

whereas FOUT has no impact at all.

Size Coupling Inheritance

Metrics\
Quality attributes N

O
M

LO
C

R
FC

C
B

O

LC
O

M

C
O

H

F-
IN

FO
U

T

D
IT

N
O

C

Understandability

▼ ▼ ▼ ▼ ▼ ▲ ▼ ◄► ▼ ▼

Maintainability

▼ ▼ ▼ ▼ ▼ ▲ ▼ ◄► ▼ ▼

▲: Positive impact ▼: Negative impact ◄►: No impact
NOM: Number of Methods LOC: Lines Of Codes
RFC: Response For Class CBO: Coupling Between Objects
LCOM: Lack of Cohesion in Methods COH: Cohesion
F-IN: Fan-IN FOUT: Fan-out
DIT: Depth of Inheritance Tree NOC: Number of Children

159

NOM inside a given class is a predictor of how much time and effort

is required to understand and maintain the class. Classes with large numbers

of methods are likely to be more application specific and, hence, more

maintainability and understandability effort is required. In addition, the

greater the number of methods in a class, the greater the potential impact

on children, since children will inherit all the methods defined in the class.

LOC physically measures the total number of Java statements,

excluding comments and blanks, inside a given class. LOC is an estimation

metric which gives an indication of the amount of effort required to develop

a software. However, LOC can be hardly used to estimate the developers’

productivity and/or the functionality of a software, since skilled developers

may be able to develop the same functionality with less code. In general, as

the number of lines of codes increases, the maintainability and

understandability efforts also increase.

RFC is a set of methods that can potentially be executed in response

to a message received by an object of a class. It is calculated by adding the

number of methods in the class, not including inherited methods, plus the

number of distinct method calls made by the methods in the class (each

method call is counted only once even if it is called from different methods).

This can be done by inspecting method calls within the class's method

bodies. If a large number of methods can be invoked in response to a

message, then the maintainability and understandability efforts become

more complicated (i.e. the larger number of methods that can be invoked

from a class, the greater the complexity of the class).

CBO provides an indication of the strength of interconnections

between system classes. Higher values of this metric indicate that more

maintainability and understandability efforts are required. The tightly coupled

system means that its classes are dependent on each other. In general,

classes are tightly coupled if they use shared variables or if they exchange

control information. A particular class in a tightly coupled system might be

harder to reuse and test since dependent classes must be included. In

contrast, loosely coupled systems mean that classes are independent and

160

can function completely without the presence of the others. However, it is

difficult to find a system with classes that are completely independent. Low

coupling is a sign of a good design and a well-structured system.

LCOM measures the correlation between the methods and the local

instance variables of a class. It is viewed as a measure of how well the

methods of the class co-operate to achieve the aims of the class. LCOM is

calculated as the ratio of methods in a class that do not access a specific

data field, averaged over all data fields in the class. More specifically, LCOM

is a count of the number of method pairs whose similarity is zero, minus the

count of method pairs whose similarity is not zero. If none of the methods of

a class display any instance behavior, i.e. they do not use any instance

variables, then they have no similarity and the LCOM value for the class will

be zero. Lower values of LCOM are desirable (the class is more cohesive).

Higher values of LCOM indicate that the system needs greater

maintainability and understandability efforts and that the classes should be

split into two or more sub-classes. LCOM can be in the range of 0 to 2 with

values over 1 viewed as being suggestive of poor design [100].

COH is used to indicate the degree to which a class has a single and

well-focused purpose. It refers to the degree to which the elements inside a

class belong together. A cohesive class performs one function. Lack of

cohesion means that a class performs more than one function. High

cohesion is desirable since it promotes a lesser maintainability and

understandability effort. Cohesion is increased if the class methods carry out

a small number of related activities. Cohesion is often contrasted with

coupling (i.e. high cohesion often correlates with loose coupling and vice

versa) [105].

F-IN measures the number of other classes that reference a given

class. In contrast, FOUT measures the number of other classes referenced

by a given class. A high F-IN indicates a heavily used class. Hence, more

understandability and maintainability efforts are required. A high FOUT

means that the class calls many other classes. However, the correlations

161

presented by [101], [102], [103], [104] and [105] claim that FOUT does not

affect software maintainability and understandability.

DIT measures the maximum length of a path from a class to a root

class in the inheritance structure of a system. In fact, classes that are deep

down in the classes’ hierarchy potentially inherit many methods from super-

classes, increasing the maintainability and understandability efforts. Hence,

maintainability and understandability decline with increasing DIT. Moreover,

deeper trees involve greater design complexity since more classes and

methods are involved. On the other hand, the deeper a particular class is in

the hierarchy, the greater the potential reuse of inherited methods. In Java

programming language, where all classes inherit the class “Object”, the

minimum value of DIT is 1.

The NOC metric measures the number of direct sub-classes of a

given class. It provides an indication of how a software reuses itself. Classes

with a large number of children are considered difficult to modify and usually

require greater maintainability and understandability effort since the effects

of changes will propagate on to all children in the inheritance hierarchy. In

addition, the greater the number of children, the greater the likelihood of

improper abstraction of the parent class. Hence, a low NOC is desirable.

NOC measures the breadth of a class hierarchy, whereas maximum DIT

measures the depth.

7.3 Experiments and Results

All the experiments have been run on Windows 7 with Intel Core i5-2400

CPU. JHawk calculated the required software metrics for all subject systems.

The calculation process was quite fast with JHawk taking only a few seconds

to generate the results. Furthermore, based on a validated set of design

pattern instances recovered using our research prototype, MLDA, two sets

of classes were created: pattern classes and non-pattern classes.

162

7.3.1 Recovered Design Instances

Table 7.2 presents the number of design pattern instances implemented in

all subject systems, as they are recovered by MLDA and as they are

validated based on all publicly published results in the available literature.

(i.e. the number of implemented design instances in a subject system is the

number of true positive instances plus the number of false negative

instances). Hence, all classes playing roles in design patterns were

identified. As Table 7.2 demonstrates, 1051 design pattern instances were

implemented in all subject systems. In addition, most creational, structural

and behavioral instances were implemented in JRefactory, PMD and Nutch

respectively. The Adapter and State/Strategy design patterns were

implemented in all subject systems, whereas the interpreter design pattern

was not implemented in any subject system. The maximum occurrence of a

design pattern was for State/Strategy with 108 instances implemented in

Nutch. Furthermore, as can be seen in Table 7.2, most implemented

instances in PMD, MapperXML and Nutch are behavioral instances which

require dynamic interactions between classes. Most JRefactory instances

are creational instances which require initializations of classes.

163

Table 7.2: Total number of design instances implemented in subject
systems

7.3.2 Participation Percentage in the Total Metric Value

After the identification of all design pattern instances in all subject systems,

the number of classes playing roles in design patterns, the number of classes

playing roles in structural, creational and behavioral instances and the

number of classes playing more than one role have been identified.

Table 7.3 presents the total number of classes playing roles in design

patterns for all subject systems. A class may play more than one role and

participate in two or more different design patterns. The percentage of design

patterns in a subject system is the percentage of classes playing roles in

design patterns to the total number of system classes. Around 40% of the

subject systems’ classes participate and play roles in design patterns. Most

Type Design Patterns

JH
ot

D
ra

w

JR
ef

ac
to

ry

JU
ni

t

Q
ui

ck
U

M
L

Le
xi

N
ut

ch

PM
D

M
ap

pe
rX

M
L

C
re

at
io

na
l

Pa
tte

rn
s

Singleton 2 12 0 1 2 2 4 3
Prototype 2 0 0 0 1 0 1 0

Abstract factory 0 0 0 1 0 0 2 2
Factory method 2 87 2 18 0 5 32 22

Builder 0 2 0 1 0 0 16 1

St
ru

ct
ur

al

Pa
tte

rn
s

Adapter 11 16 11 29 30 44 87 41
Bridge 4 0 0 1 0 0 1 0

Composite 1 0 1 1 3 0 0 1
Decorator 3 1 1 3 0 4 0 0
Façade 1 2 0 1 1 1 1 1

Flyweight 1 0 0 1 1 1 0 1
Proxy 0 0 0 2 0 4 4 0

B
eh

av
io

ur
al

Pa

tte
rn

s

ChainofResponsibility 0 0 0 0 0 0 1 0
Command 9 25 0 18 6 25 3 26
Interpreter 0 0 0 0 0 0 0 0

Iterator 0 0 1 0 0 1 0 0
Mediator 0 0 0 0 0 0 0 0
Memento 0 0 0 0 10 1 1 12
Observer 2 0 1 1 0 0 1 3

State/Strategy 6 11 3 10 1 113 21 11
Visitor 2 2 0 0 0 0 1 0

Template method 4 4 1 3 0 7 108 56

 Total 50 162 21 91 55 208 284 180

164

QuickUML classes play roles in design patterns, whereas only 28% of

JHotDraw classes play roles.

Table 7.3: The number of classes playing roles in design patterns in all
subject systems

Table 7.4 illustrates the percentage of participation in the total metric

value for both pattern classes and non-pattern classes in all subject systems.

Consistent behavior can be noticed for size and inheritance metrics. These

metrics negatively affect the maintainability and understandability of a

subject system. More specifically, the calculated averages for size and

inheritance metrics indicate that the participation of pattern classes, in the

total metric value, is less than that of the other classes in the system. Hence,

total system size and inheritance were shaped based on the non-pattern

classes.

On the other hand, the average participation of the pattern classes in

the total coupling metrics, except RFC, is higher than that of the other

classes in the system. Both groups, participate almost equally in the average

RFC metric. The functionality of the system might be relying on the design

pattern classes (i.e. design pattern classes provide key functionality to the

Number of classes/
Subject Systems

JH
ot

D
ra

w

JR
ef

ac
to

ry

JU
ni

t

Q
ui

ck
U

M
L

Le
xi

N
ut

ch

PM
D

M
ap

pe
rX

M
L

Total number of classes 201 612 112 145 170 398 570 374
NCPR in creational
instances 8 122 3 37 24 12 83 52

NCPR in structural
instances 35 35 30 66 43 100 112 79

NCPR in behavioral
instances 30 80 10 39 20 82 155 114

Classes playing more
than one role 17 48 5 37 25 54 133 76

NCPR in all design
pattern instances 56 189 38 105 62 140 217 169

Percentage of design
pattern classes to the
total system classes

28% 31% 34% 72% 36% 35% 38% 45%

Note:
NCPR: Number of Classes Playing Roles

165

system) which require interacting and collaboration between pattern classes

and other classes in the system. This could explain why the participation of

design pattern classes, in the total system coupling, is higher than that of

other classes in the system. This is consistent with the results presented by

[73] where design pattern implementations increased the coupling metrics

on the class level for the relevant classes.

Furthermore, total system cohesion was formulated based on the

non-pattern classes, which contradicts the common belief that the

implementation of design pattern enhances system cohesion, as suggested

in [61].

Consequently, the participation of pattern classes in five out of nine

metrics is less than that of other classes in the system. These metrics have

a negative impact on software maintainability and understandability. In

contrast to common beliefs, design pattern classes shaped the system

coupling. The pattern participant classes provide the key functionality to the

system, which may explain why these classes tend to couple and interact

with other classes. In addition, the total system cohesion was formulated

based on the non-pattern classes. High values of cohesion are desirable.

Non-pattern classes implement more methods than do pattern

classes in all subject systems, except in PMD and MapperXML. In addition,

pattern classes of PMD and MapperXML have RFC, CBO and F-IN higher

than non-pattern classes do. This could be explained by investigating the

implemented design instances in these two systems where most of the

implemented instances are behavioral instances. Behavioral instances are

concerned with interaction between classes, which requires method calls

and collaborations between classes. Hence, pattern classes tend to have

more methods and coupling with other classes. Furthermore, in most subject

systems, pattern classes have fewer cohesion values than do non-pattern

classes. Consequently, total system cohesion relies on the non-pattern

classes. This is a sign of the improper use of pattern classes where they

perform more than a single purpose function.

166

Furthermore, inheritance metrics, depth of inheritance tree and

number of children of pattern classes for all subject systems are all fewer

than those of non-pattern classes. Hence, pattern classes require less

maintainability and understandability effort.

Pattern classes of FOUT metric, which has been reported to have no

impact on software maintainability and understandability, have fewer metric

values than non-pattern classes. Consistent with other coupling metrics,

pattern classes of PMD and MapperXML have fewer FOUT metric values

than other classes in the system since most of their design instances are

behavioral instances.

We noticed that total system coupling and cohesion was directly

affected by the implementation of behavioral design instances. Classes

playing roles and participating in behavioral patterns had higher coupling and

lower cohesion than did other classes in the system.

167

Sy
st

em
/ M

et
ric

s

N
O

M

LC
O

M

R
FC

C

B
O

N

LO
C

F-

IN

D
IT

C

O
H

FO

U
T

N
O

C

JH
ot

D
ra

w

pa

tte
rn

 c
la

ss
es

50

%

23
%

50

%

48
%

44

%

54
%

30

%

38
%

42

%

29
%

no

n-
pa

tte
rn

 c
la

ss
es

50

%

77
%

50

%

52
%

56

%

46
%

70

%

62
%

58

%

71
%

JR
ef

ac
to

ry

pa
tte

rn
 c

la
ss

es

34
%

23

%

34
%

35

%

31
%

40

%

20
%

30

%

32
%

24

%

no
n-

pa
tte

rn
 c

la
ss

es

66
%

67

%

66
%

65

%

69
%

60

%

80
%

70

%

68
%

76

%

JU
ni

t
pa

tte
rn

 c
la

ss
es

26

%

24
%

26

%

42
%

23

%

60
%

14

%

32
%

28

%

13
%

no

n-
pa

tte
rn

 c
la

ss
es

74

%

76
%

74

%

58
%

77

%

40
%

86

%

68
%

72

%

87
%

Q
ui

ck
U

M
L

pa
tte

rn
 c

la
ss

es

47
%

22

%

48
%

58

%

48
%

66

%

31
%

32

%

51
%

69

%

no
n-

pa
tte

rn
 c

la
ss

es

53
%

78

%

52
%

42

%

52
%

34

%

69
%

68

%

49
%

31

%

Le
xi

pa

tte
rn

 c
la

ss
es

45

%

21
%

45

%

46
%

41

%

66
%

12

%

8%

25
%

50

%

no
n-

pa
tte

rn
 c

la
ss

es

55
%

79

%

55
%

54

%

59
%

34

%

88
%

92

%

75
%

50

%

N
ut

ch

pa
tte

rn
 c

la
ss

es

40
%

13

%

41
%

55

%

38
%

68

%

21
%

20

%

43
%

N

A
no

n-
pa

tte
rn

 c
la

ss
es

60

%

87
%

59

%

45
%

62

%

32
%

79

%

80
%

57

%

N
A

PM
D

pa
tte

rn
 c

la
ss

es

70
%

35

%

70
%

66

%

67
%

80

%

44
%

35

%

60
%

13

%

no
n-

pa
tte

rn
 c

la
ss

es

30
%

65

%

30
%

34

%

33
%

20

%

56
%

65

%

40
%

73

%

M
ap

pe
rX

M
L

pa
tte

rn
 c

la
ss

es

66
%

64

%

67
%

75

%

66
%

76

%

56
%

56

%

76
%

19

%

no
n-

pa
tte

rn
 c

la
ss

es

34
%

36

%

33
%

25

%

34
%

24

%

44
%

44

%

24
%

81

%

 Av
er

ag
e

pa
tte

rn
 c

la
ss

es

47
%

29

%

48
%

53

%

45
%

64

%

28
%

31

%

45
%

33

%

no
n-

pa
tte

rn
 c

la
ss

es

53
%

71

%

52
%

47

%

55
%

36

%

72
%

69

%

55
%

67

%

N
ot

e:

N
O

M
: N

um
be

r o
f M

et
ho

ds

 L
O

C
: L

in
es

 O
f C

od
es

 R

FC
: R

es
po

ns
e

Fo
r C

la
ss

C

B
O

: C
ou

pl
in

g
Be

tw
ee

n
O

bj
ec

ts

LC
O

M
: L

ac
k

of
 C

oh
es

io
n

in
 M

et
ho

ds

 C
O

H
: C

oh
es

io
n

F-
IN

: F
an

-IN

 F

O
U

T:
 F

an
-o

ut

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

N

O
C

: N
um

be
r o

f C
hi

ld
re

n

Ta
bl

e
7.

4:
 T

he
 p

ar
tic

ip
at

io
n

pe
rc

en
ta

ge
 in

 th
e

to
ta

l m
et

ric
 v

al
ue

 fo
r b

ot
h

cl
as

se
s

gr
ou

ps
 in

 a
ll

su
bj

ec
t s

ys
te

m
s

168

7.4 Threats to Validity

There are possible threats to the validity of the presented results in this

chapter. To correlate the internal software metrics to the external quality

attributes, the correlations presented by previous studies, [101], [102], [103],

[104] and [105], have been used Hence, our findings are subject to the

significance of the previous correlations.

In addition, the calculated software metrics rely on the capabilities of

the JHawk tool. Using other tools may show fewer differences in the

calculated metrics. Finally, the design pattern occurrences and classes

playing roles were recovered using our research prototype MLDA. To ensure

more accurate validation, the recovered instances have been validated

based on all publicly available results and repositories in the literature.

Hence, using other tools to recover the design pattern instances may show

some differences in terms of design instances and pattern classes.

7.5 Summary

This chapter presented a metrics-based approach to address the impact of

design pattern instances on software maintainability and understandability.

This approach classifies systems classes into two groups: classes that are

playing roles in design patterns (pattern classes) and classes that are not

playing roles in design patterns (non-pattern classes). Size, coupling and

inheritance metrics were calculated for both groups using JHawk, a Java

metrics tool. Furthermore, the participation percentage (for both groups) in

the total metric value was calculated in attempts to address the degree of

participation of pattern classes in the total system metric value. The

correlation of metrics to software maintainability and understandability

presented by previous research studies has been used.

The experiment results illustrate that design pattern classes have

fewer roles in size and inheritance metrics than do non-pattern classes, a

sign that design pattern classes enhance software understandability and

169

maintainability. On the other hand, non-pattern classes have fewer roles in

coupling metrics than do pattern classes, which contradicts the common

beliefs that design patterns enhance system coupling and cohesion. Hence,

no safe conclusion can be drawn regarding the impact of design patterns on

software maintainability and understandability.

The only conclusion that can be drawn is that design pattern classes

have better size and inheritance metrics than non-pattern classes do. In

addition, design pattern classes provide the key functionality of the system,

which may explain why these classes tend to interact and why they are

coupled with other classes in the system.

 However, further investigations are required to reach a safe

conclusion. One possible solution is to apply certain refactoring techniques

to create two versions of a system: patterns and non-patterns versions. Then

software metrics can be calculated and compared with both versions.

170

hapter Eight
Conclusions and Future Directions
This chapter concludes the thesis with a summary of the

conducted work, revisits the research questions and

presents the contribution of this thesis. The limitations of the work and future

research directions are presented at the end of this chapter.

8.1 Conclusions

Design patterns have a key role in the software development process. They

describe both the structure and behavior of classes and their relationships.

Design patterns can improve software documentation, speed up the

development process and enable large-scale reuse of software

architectures.

This thesis presented a hybrid structural rule-based approach to

recover GoF design patterns from the Java source code. In addition, a

metrics-based approach has been presented in attempts to investigate the

impact of design pattern instances on software understandability and

maintainability.

The main research questions that this thesis aims to address are:

1. Is the Structural Search Model (SSM), which relies on the

relationships matching, able to recover instances of design patterns

with a reasonable detection accuracy?

2. Is the use of a rule-based system to match the method signatures of

the candidate design instances to that of the subject system able to

reduce the number of false positive candidate instances (i.e.

enhancing the detection accuracy of design patterns, which relies on

relationships matching)?

C

171

3. Do classes playing roles in design patterns have better software

metrics than other classes in the system (i.e. do design pattern

instances enhance certain software quality attributes)?

Concerning the first research question, SSM produces too many false

positive instances. Hence, the structure of design patterns is not enough to

recover their instances from the Java source code. Although SSM relies on

five key relationships, uses a class-level representation of the subject

system, builds the design pattern structure incrementally and tries all

possible combinations of classes until a complete pattern structure is

achieved, it produces too many false positive instances. Moreover, SSM is

not able to recover instances of the Template design patterns since this

pattern relies on one relationship (the inheritance relationship) and method

recovery capabilities were required to recover its instances.

For the second research question, we tried to enhance the detection

accuracy of SSM by developing a rule-based system which matches the

method signatures of the candidate design instances to that of the subject

system. The rule-based system represented the method signatures of the

candidate design instances as a set of rules, whereas the method signatures

of the subject system are represented as a set of facts. The rules and facts

have been created using the so-called MLDA rules/facts generator. Rules

that represent the true positive instances should be fired. On the other hand,

rules that represent the false negative instances should not be fired since

they have the structure of design patterns and have failed to implement the

required method signatures. The CLIPS inference engine has been used to

match the set of rules and facts.

As the experiments demonstrate, most of the false positive instances

have been removed. Representing the method signatures using a rule-based

approach provides a fingerprint for design patterns inside the source code.

Both the structure and the method signatures are required to detect

accurately the instances of GoF design patterns. The rule-based system

172

enhances the detection accuracy of design patterns, which relies on the

relationship matching.

Concerning the third research question, the metrics-based approach

could not reach a safe conclusion regarding the impact of GoF design

patterns on software understandability and maintainability. This approach

classifies system classes into two groups: classes that are playing roles and

participating in design patterns (pattern classes) and classes that are not

playing roles or participating in design patterns (non-pattern classes).

Specifically, a list of classes playing roles in design patterns was generated,

based on our validated recovered design instances and using our research

prototype MLDA, from eight subject systems. This motivates us to build the

metrics based approach. The participation percentage in the total metric

value has been calculated for both groups.

 However, the metrics-based approach shows that classes that play

roles in design patterns have better inheritance and size metrics than do non-

pattern classes. This gives a sign that design patterns enhance software

understandability and maintainability. The total system inheritance and size

metrics rely on the pattern classes. In contrast, non-pattern classes have

better coupling metrics than do pattern classes where the total system

coupling relies on the pattern classes, contradicting the common belief that

design patterns enhance system coupling.

The key observations can be summarized as follows:

1. Design patterns can vary in their implementations inside the source

code. To overcome this challenge, this thesis uses the standard

format presented by GoF.

2. There is no agreed reference benchmark to validate the recovered

design pattern instances. In fact, we refer to all publicly available

results and repositories in the literature. Consequently, an MLDA

repository for design pattern instances in eight subject systems has

been developed. This repository can be used by other researchers in

the future to validate their recovered design instances.

173

3. The matching of the method signatures of the candidate design

instances to that of the subject system using a rule-based system

enhances the detection accuracy of design patterns, which relies on

relationship matching. But relationship matching produces too many

false positive instances and is not enough to recover design pattern

instances.

4. Classifying the system classes into pattern classes and non-pattern

classes and calculating the participating percentage in the total metric

value shows that pattern classes shape the total system inheritance

and size and fail to play fewer roles than do non-pattern classes in the

coupling metrics. This is mainly due to the fact that design patterns

provide the key functionality to the system, which requires more

interaction and coupling with other classes.

This thesis has added to the body of software engineering real evidence that

the applying of a rule-based approach enhances the detection accuracy of

GoF design patterns, which relies on relationships matching. In addition, this

thesis shows that classes playing roles in design patterns shape the total

system inheritance and size metrics.

8.2 Limitations

There are some limitations of the work presented in this thesis. First of all,

design pattern instances are recovered based on the standard structural

format presented by GoF. Secondly, the way in which the results are

validated could affect precision and recall. To validate the number of true

positives, false positives and false negatives, we refer to all publicly

published results in the available literature.

Thirdly, this thesis focuses on Java programming language. It could

be worthwhile to conduct the evaluation on other projects having different

languages.

174

Finally, the proposed metrics-based approach relies on previous

studies to correlate the internal software metrics to the external quality

attributes. Hence, our findings, regarding the impact of GoF design patterns,

are subject to the significance of the previous correlations.

8.3 Future Directions

MLDA relies on static analysis capabilities to recover the instances of design

patterns. A dynamic analysis level could be added to record the dynamic

behavior of pattern participant classes and record the messages interaction

during the runtime. Thus, all false positive instances could be eliminated.

Furthermore, since MLDA uses the standard format of design

patterns, SSM could be enhanced to recover different variants of design

pattern. This can be done by summarizing all the possible variants of each

design pattern and adding variant structures as possible candidate

structures on to SSM. Moreover, SSM would allow the user to build its own

pattern by adding the number of required relationships for each pattern.

Based on the validated set of design pattern instances recovered from

eight subject systems, the MLDA benchmark for design pattern instances, a

tool for automatic validation of recovered design instances could be

developed. This tool would validate the design pattern instances recovered

by other detection tools. In addition, the validation tool could inform the

researcher whether the recovered instance was a true or a false positive and

show a list of all false negative instances. Moreover, the researcher could

update the repository by entering its validated set of design pattern instances

recovered from other subject systems.

Finally, the metrics based approach could be used to compare the

metrics set of two system versions: the pattern version and the non-pattern

version. However, producing two identical versions for the same system

would not be an easy task since both versions should provide the same

functionality. Certain refactoring techniques should be applied to ensure that

both versions provide the same functionality. Another option would be to

175

track versions of a software and to compare their metrics set. This could offer

a sign of the impact of design patterns.

176

eferences

[1] Rayl, A.J.S. (October 16, 2008). "NASA Engineers and Scientists-
Transforming Dreams Into Reality". http://www.nasa.gov/index.html. NASA.
Retrieved December 27, 2014.

[2] Pressman, R.S.,"Software Engineering: A Practitioner's Approach",
McGraw-Hill, 2010.

[3] IEEE Computer Society and the ACM. “Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering”, 2004.

[4] W. H. Thomas, "Fundamentals of Digital Computer Programming”,
Proceedings of the I.R.E., IEEE Computer Society, 1953.

[5] D. N. Reps, G. J. Kirk, JR., "Distribution System Primary-Feeder Voltage
Control II-Digital Computer Program", Transactions of the American Institute
of Electrical Engineers Power Apparatus and Systems, Part III, Vol 77, Issue
3, IEEE Computer Society, 1958.

[6] L. B. Lusted, "Computer Programming of Diagnostic Tests", IRE
Transactions on Medical Electronics", Vol ME-7, Issue 4, IEEE Computer
Society, 1960

[7] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, 3rd Edition, Addison-Wesley Professional, 2012.

[8] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J. Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 2003.

[9] Chikofsky, E.J., and J.H. Cross. II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, January 1990, pp. 13-17.

[10] Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Language:
Town, Buildings, Construction. Oxford University Press, New York.

[11] Gamma, E., Helms, R., Johnson, R., Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, Reading, MA.

[12] McCall, J., P. Richard, and G. Walters, “Factors in Software Quality,”
three volumes, NTIS AD-A049-014,015,055, November 1977.

R

http://www.amazon.com/Len-Bass/e/B001ILFOQA/ref=dp_byline_cont_book_1
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Paul+Clements&search-alias=books&text=Paul+Clements&sort=relevancerank
http://www.amazon.com/Rick-Kazman/e/B001ILMANU/ref=dp_byline_cont_book_3

177

[13] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., and
Merritt, M., Characteristics of Software Quality, North Holland, 1978.

[14] ISO, International Organization for Standardization, "ISO 9000:2000,
Quality management systems - Fundamentals and vocabulary", 2000.

[15] Grady, R. B., Practical software metrics for project management and
process improvement, Prentice Hall, 1992.

[16] Kruchten, P., the Rational Unified Process an Introduction – Third
Edition, Addison Wesley Longman, Inc., 2003.

[17] Dromey, R.G., "Concerning the Chimera [software quality]", IEEE
Software, no. 1, pp. 33-34, 1996.

[18] G. Rasool, I. Philippow, P. Mader, “Design Pattern Recovery Based on
Annotations”. International Journal of advances in Engineering Software, Vol
41, Issue 4, 2010, pp. 519-526.

[19] K. Stencel, and P. Wegrzynowicz, “Detection of Diverse Design Pattern
Variants”, 15th Asia-Pacific Software Engineering Conference, 2008, pp. 25-
32.

[20] M. Vokac, “ An efficient tool for recovering design patterns from C++
code”, Journal of Object Technology, Volume 5, No. 1, 2006, pp. 139–157.

[21] Scientific Tool works Inc. Understand for C++, 2003.

[22] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick
Page; Pattern based reverse-engineering of design components. In ICSE
99: Proceedings of the 21st International Conference on Software
Engineering, pages 226–235, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[23] Paakki J., Karhinen A., Gustafsson J., Nenonen L. and Verkamo A.I.,
Software metrics by architectural pattern mining, Proceedings of the
International Conference on Software: Theory and Practice (16th IFIP World
Computer Congress), 2000, 325–332.

[24] Niere, J., Shafer, W., Wadsack, J.P., Wendehals, L., Walsh, J., 2002.
Towards pattern design recovery. In: Proceedings of International
Conference on Software Engineering (ICSE’02), Orlando, FL, USA, pp. 338–
348.

[25] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern recovery in
object-oriented software”, In Proceedings of the 6th international workshop
on program comprehension, 1998, pp. 153–160.

[26] M. V. Detten, and S. Becker, “Combining Clustering and Pattern
Detection for the Reengineering of Component-based Software Systems”, In

178

Proceedings of the 7th International Conference on the Quality of Software
Architectures, QoSA, pp. 23-32, 2011.

[27] Uchiyama, S., Kubo, A., Washizaki, H., and Fukazawa, Y. (2014).
Detecting Design Patterns in Object-Oriented Program Source Code by
Using Metrics and Machine Learning. Journal of Software Engineering and
Applications, 7, 983-998. doi: 10.4236/jsea.2014.712086.

[28] Jochen Seemann and Juergen Wolff von Gudenberg. Pattern-based
design recovery of java software. In SIGSOFT ’98/FSE-6: Proceedings of
the 6th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 10–16, New York, NY, USA, 1998. ACM Press.

[29] Felix Agustin Castro Espinoza, Gustavo Nuez Esquer, and Joel Surez
Cansino. Automatic design patterns identification of C++ programs. In
EurAsia-ICT 02: Proceedings of the First EurAsian Conference on
Information and Communication Technology, pages 816–823, London, UK,
2002. Springer-Verlag.

[30] Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus—
reverse engineering tool a schema for C++. 18th IEEE international
conference on software maintenance (ICSM’02), pp. 172–181, October
2002.

[31] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.: Design
Pattern Detection Using Similarity Scoring. IEEE Transaction on Software
Engineering 32(11) (2006).

[32] Dong, J., Lad, D.S., Zhao, Y.: Dp-miner: Design pattern discovery using
matrix. In: Proc. 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, ECBS 2007, pp. 371–380
(2007).

[33] Dongjin Yu, Yanyan Zhang, and Zhenli Chen: A comprehensive
approach to the recovery of design pattern instances based on sub-patterns
and method signatures. The Journal of Systems and Software 103 (2015)
1–16.

[34] Ampatzoglou, A., Michou, O., Stamelos, I., 2013b. Building and mining
a repository of design pattern instances: practical and research benefits.
EntertainmentComput.4, 131–142.

[35] Christian Kramer and Lutz Prechelt. Design recovery by automated
search for structural design patterns in object-oriented software. In Working
Conference on Reverse Engineering, pages 208–1996.

[36] Y.-G. Guéhéneuc and N. Jussien, “Using Explanations for Design
Patterns Identification,” Proc. First IJCAI Workshop Modelling and Solving
Problems with Constraints, C. Bessie`re, ed., pp. 57-64, Aug. 2001.

179

[37] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting Design
Patterns,” Proc. 11th Working Conf. Reverse Eng. (WCRE’04), Nov. 2004.

[38] Beyer, D., Lewerentz, C. CrocoPat: efficient pattern analysis in object-
oriented programs. In: Proceedings of the International Workshop on
Program Comprehension (IWPC’03), Portland, OR, USA, pp. 294–295
(2003).

[39] J. McC. Smith, and D. Stotts. SPQR: Flexible Automated Design Pattern
Extraction from Source Code. In Proceedings of the 2003 IEEE International
Conference on Automated Software Engineering, Montreal QC, Canada,
October, 2003, pp. 215-224.

[40] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns
from java source code. In ASE ’06: Proceedings of the 21st IEEE
International Conference on Automated Software Engineering (ASE’06),
pages 123–134, Washington, DC, USA, 2006. IEEE Computer Society.

[41] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A Multi-Layered
Framework for Design Pattern Identification,” IEEE Trans. Software Eng.,
vol. 34, no. 5, pp. 667-684, Sept./Oct. 2008.

[42] Lucia, A.D., Deufemia, V., Gravino, C., and Risi, M., Design pattern
recovery through visual language parsing and source code analysis, The
Journal of Systems and Software, Vol 82, pp. 1177–1193, 2009.

[43] M. Zanoni, “Data mining techniques for design pattern detection,” Ph.D.
dissertation, Universita degli Studi di Milano-Bicocca, 2012.

[44] Alnusair, A., Zhao, T., Yan, G., 2014. Rule based detection of design
patterns in program code. Int.J.Softw.ToolsTechnol.Trans.16 (3), 315–334.

[45] Kyle Brown. Design reverse-engineering and automated design pattern
detection in Smalltalk, Master’s thesis, North Carolina State University, 1996.

[46] Bansiya Jagdish: Automating Design-Pattern Identification. Dr. Dobb’s
Journal. June 1998.

[47] Kim, H. and Boldyreff, C. (2000) A Method to Recover Design Patterns
Using Software Product Metrics. In Proceedings of the 6th International
Conference on Software Reuse: Advances in Software Reusability, Vienna,
27-29 June 2000, 318-335.

[48] Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W., 2003. Automatic
design pattern detection. In: Proceedings of International Workshop on
Program Comprehension (IWPC’03), Portland, OR, USA, pp. 94–103.

[49] Philippow, I., Streitferdt, D., Riebish, M., Naumann, S., 2005. An
approach for reverse engineering of design patterns. Software System
Modeling 4 (1), 55–79.

180

[50] A. Blewitt. Hedgehog: Automatic Verification of Design Patterns in Java.
PhD thesis, School of Informatics, University of Edinburgh, 2005.
http://www.bandlem.com/Alex/Papers/PhDThesis.pdf.

[51] Kaczor O., Guéhéneuc Y-G, Hamel S. Efficient identification of design
patterns with bit-vector algorithm. In Proceedings of the 10th European
conference on software maintenance and reengineering, Bari, Italy; 22–24
March 2006. p. 184–93.

[52] W.B Frakes and R.Baeza, Yates, Information Retrieval: Data Structure
and Algorithms, Prentice Hall, 1992.

[53] Danny B. Lange and Yuichi Nakamura. Interactive visualization of
design patterns can help in framework understanding. In Proceedings of the
10th annual conference on Object-oriented programming systems,
languages, and applications, pages 342 – 357. ACM Press, 1995.

[54] Peter Wendorff. Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project. In Pedro
Sousa and J¨urgenEbert, editors, Proceedings of 5th Conference on
Software Maintenance and Reengineering, pages 77–84. IEEE Computer
Society Press, March 2001.

[55] Wydaeghe, K. Verschaeve, B. Michiels, B. Van Damme, E. Arckens,
and V. Jonckers: Building an OMT-editor using design patterns: An
experience report, 1998.

[56] William B. McNatt and James M. Bieman. Coupling of design patterns:
Common practices and their benefits. In T.H. Tse, editor, Proceedings of the
25th Computer Software and Applications Conference, pages 574–579.
IEEE Computer SocietyPress, October 2001.

[57] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in API Design: A
Usability Evaluation”, Proceedings of the 29th international conference on
Software Engineering, IEEE, pp. 302–312, Minneapolis, Minnesota, 20–26
May 2007.

[58] J. Hannemann and G. Kiczales. “Design Pattern Implementation in Java
and AspectJ”, Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications
(OOPSLA ‘02), ACM, pp. 161–173, Seattle, Washington, 4–8 November
2002.

[59] S. Jeanmart, Y.-G. Guéhéneuc, H. Sahraoui and N. Habra, “A Study of
the Impact of the Visitor Design Pattern on Program Comprehension and
Maintenance Tasks”, Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement (ESEM’ 09), IEEE, pp.
69–78, Lake Buena Vista, Florida,15–16 October 2009.

181

[60] B.A. Malloy and J.F. Power, “Exploiting design patterns to automate
validation of class invariants: Research articles”, Software Testing
Verification & Reliability, Wiley Interscience, 16 (2), pp. 71–95, June 2006.

[61] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object oriented
design patterns in game development”, Information and Software
Technology, Elsevier, 49 (5), pp. 445–454, May 2007.

[62] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso and M. Di Penta, “An
empirical study on the evolution of design patterns”, Foundations of Software
Engineering (FSE’ 07), ACM, pp. 385–394, Dubrovnik, Croatia, 3–7
September 2007.

[63] J. M. Bieman, G. Straw, H. Wang, P. W. Munger and R. T. Alexander,
“Design Patterns and Change Proneness: An Examination of Five Evolving
Systems”, Proceedings of the 9th International Symposium on Software
Metrics, IEEE, pp. 40, Sydney, Australia, 03–05 September 2003.

[64] M. Di Penta, L. Cerulo, Y.-G. Guéhéneuc and G. Antoniol, “An empirical
study of the relationships between design pattern roles and class change
proneness”, Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’08), IEEE, pp. 217–226, Beijing, China, 28 September–
04 October 2008.

[65] M. Gatrell, S. Counsell and T. Hall, “Design Patterns and Change
Proneness: A Replication Using Proprietary C# Software”, Proceedings of
the 2009 16th Working Conference on Reverse Engineering ,pp. 160–164,
Lille, France, 13–16 October 2009.

[66] B. Baudry, Y. Le Sunye and J. M. Jezequel, “Toward a ‘Safe’ Use of
Design Patterns to Improve OO Software Testability”, Proceedings of the
12th International Symposium on Software Reliability Engineering, IEEE, pp.
324, Hong Kong, China, 27–30 November 2001.

[67] B. Baudry, Y. Le Traon, G. Sunye and J. M. Jezequel, “Measuring and
Improving Design Patterns Testability”, Proceedings of the 9th International
Symposium on Software Metrics, IEEE, pp. 50, Sydney, Australia, 03–05
September 2003.

[68] M. Elish, “Do Structural Design Patterns Promote Design Stability?,
Proceedings of the 30th Annual International Computer Software and
Applications Conference - Volume 01 (COMPSAC’06), IEEE, pp 215–220,
Chicago, Illinois, 17–21 September 2006.

[69] Design Patterns in Java: Reference and Example Site, Online
at http://www.fluffycat.com/java/patterns.html.

[70] F. Khomh and Y.-G. Guéhéneuc, “Do Design Patterns Impact Software
Quality Positively?”, Proceedings of the 2008 12th European Conference on
Software Maintenance and Reengineering, IEEE, pp. 274–278, Athens,
Greece, 01–04 April 2008.

http://www.fluffycat.com/java/patterns.html

182

[71] L. Prechelt, B. Unger-Lamprecht, W.F. Tichy, P. Brossler and L. G.
Votta, “A controlled experiment in maintenance comparing design patterns
to simpler solutions”, IEEE Transactions on Software Engineering, IEEE, 27
(3), pp. 1134–1144, December 2001.

[72] M. Vokac, W. Tichy, D. I. K. Sjoberg, E. Arisholm and M.Aldrin, “A
Controlled Experiment Comparing the Maintainability of Programs Designed
with and without Design Patterns—A Replication in a Real Programming
Environment”, Empirical Software Engineering, Springer, 9(3), pp 149–195,
September 2004.

[73] K. Kouskouras, A. Chatzigeorgiou and G. Stephanides, “Facilitating
software extension with design patterns and Aspect-Oriented Programming”,
Journal of Systems and Software, Elsevier, 81 (10), pp 1725–1737, October
2008.

[74] H. Rajan, S. M. kautz and W. Rowcliffe, “Concurrency by Modularity:
Design Patterns, a Case in Point”, Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications (OOPSLA ‘10), ACM, pp. 790–805, Reno, Nevada, 17–21
October 2010.

[75] Arcelli Fontana, F., Caracciolo, A., Zanoni, M., 2012. DPB: A benchmark
for design pattern detection tools. In Proceedings of the 16th European
Conference on Software Maintenance and Reengineering (CSMR’12). IEEE
Computer Society, Szeged, Hungary, pp. 235–244. doi:10.1109/C.

[76] Y.-G. Guéhéneuc, “P-MARt: Pattern-like micro architecture repository,”
Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories,
2007.

[77] Fülöp, L. J., Hegedus, P., & Ferenc, R. (2008). BEFRIEND - A
benchmark for evaluating reverse engineering tools. Periodica Polytechnica,
Electrical Engineering, 52(3-4), 153-162. DOI: 10.3311/pp.ee.2008-3-4.04.

[78] CLIPS: A Tool for Building Expert Systems. 2016. downloads. [ONLINE]
Available at: http://www.clipsrules.net/. [Accessed 5 January 2017].

[79] Frost, R., Hafiz, R. and Callaghan, P. (2008) “Parser Combinators for
Ambiguous Left-Recursive Grammars." 10th International Symposium on
Practical Aspects of Declarative Languages (PADL), ACM-SIGPLAN,
Volume 4902/2008, Pages: 167 - 181, January 2008, San Francisco.

[80] Github. 2012. JavaParser by javaparser. [ONLINE] Available at:
https://javaparser.github.io/javaparser/. [Accessed 1 March 2015].

[81] Herbert Schildt (2014) Java: The Complete Reference, 9th edition edn.,
: McGraw-Hill Osborne.

183

[82] Paul J. Deitel and Harvey M. Deitel (2014) Java How To Program (Early
Objects), 10th edition edn., : Pearson.

[83] Cay S. Horstmann and Gary Cornell (2012) Core Java Volume I--
Fundamentals, 9th edition edn., : Prentice Hall.

[84] Dane Cameron (2014) Java 8: The Fundamentals, 1st edition edn.,:
Cisdal Publishing.

[85] Cay S. Horstmann (2015) Core Java for the Impatient, 1st edition edn.,:
Addison-Wesley Professional.

[86] Cay S. Horstmann (2012) Big Java: Early Objects, 5th edition edn.,:
John Wiley & Sons Inc.

[87] Erich Gamma and Thomas Eggenschwiler. JHotDraw start page (no
date). Available at: http://www.jhotdraw.org/ (Accessed: 10 February 2016).

[88] Mike Atkinson. (2003). JRefactory. Available at:
http://jrefactory.sourceforge.net/. (Accessed: 20 February 2015).

[89] Erich Gamma, Kent Beck, David Saff and Mike Clark. (2004). JUnit.
Available at: http://junit.org/junit4/.

[90] Crahen E., Alphonce C., Ventura P. (2002), “QuickUML: A beginner’s
UML tool”, in OOPSLA ’02, Seattle, Washington, USA.

[91] Brill Pappin and Matthew Schmidt. (1999). Lexi - Java based Word
Processor. Available at: http://lexi.sourceforge.net/.

[92] M. Phelan, [online] Available: http://mapper.sourceforge.net/.

[93] Apache Software Foundation. Stable release (2015). Apache Nutch.
Available at: http://nutch.apache.org/.

[94] PMD. Stable release (2017). PMD. Available at: https://pmd.github.io/.

[95] Ligęza, A.: Logical Foundations for Rule-based Systems, 2nd edn.
Springer, Heidelberg (2006).

[96] Forgy, Charles L. "Rete: A fast algorithm for the many pattern/many
object pattern match problem." Artificial intelligence 19.1 (1982): 17-37.

[97] Lanza, M., Marinescu, R., 2006. Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the Design
of Object-Oriented Systems. Springer-Verlag, Germany.

[98] JHawk Metrics Tool, http://www.virtualmachinery.com/jhawkprod.htm,
2017.

[99] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

[100] S.R. Chidamber, C.F. Kemerer, "A Metrics Suite for Object-Oriented
Design", IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-493, June 1994.

https://pmd.github.io/
http://www.virtualmachinery.com/jhawkprod.htm

184

[101] Dandashi, F.: A Method for Assessing the Reusability of Object-
Oriented Code Using a Validated Set of Automated Measurements. In:
Proceedings of the ACM Symposium on Applied Computing, pp. 997–1003
(2002).

[102] Bruntink, M.; Deursen, A.: An empirical study into class testability. J.
Syst. Softw. 79, 1219–1232 (2006).

[103] Y.Kanellopoulos, P.Antonellis, D. Antoniou, C.Makris, E.Theodoridis,
C. Tjortjis and N.Tsirakis, “Code Quality Evaluation Methodology Using The
Iso/Iec 9126 Standard,” International Journal of Software Engineering &
Applications (IJSEA), Vol.1, No.3, July, 2010, pp.17-36.

[104] Mohammed Alshayeb: The Impact of Refactoring to patterns on
Software Quality Attributes. Arab J Sci Eng. 36: 1241-1251 (2011).

[105] D. Spinellis, Code Quality-The Open Source Perspective, Addison-
Wesley, 2006.

185

Appendix
Design Patterns Library Generated
by MLDA

Note that Class diagrams as they presented by GoF.

A. Creational Design Patterns

1. Singleton

Class_Relations
Source_Class Destination_Class Relation_Type
Singleton Singleton ASSOCIATION

A

Stats
Relation_Type Count
ASSOCIATION 1

186

2. Prototype

Class_Relations
Source_Class Destination_Class Relation_Type
Client Prototype AGGREGATION
ConcretePrototype1 Prototype DEPENDENCY
ConcretePrototype1 Prototype REALIZATION
ConcretePrototype2 Prototype DEPENDENCY
ConcretePrototype2 Prototype REALIZATION

Stats
Relation_Type Count
REALIZATION 2
AGGREGATION 1
DEPENDENCY 2

187

3. Abstract Factory

Class_Relations
Source_Class Destination_Class Relation_Type
Client AbstractProductA AGGREGATION
Client AbstractProductB AGGREGATION
ConcreteFactory1 AbstractFactory REALIZATION
ConcreteFactory2 AbstractFactory REALIZATION
ConcreteFactory1 ProductA1 ASSOCIATION
ConcreteFactory1 ProductB1 ASSOCIATION
ConcreteFactory2 ProductA2 ASSOCIATION
ConcreteFactory2 ProductB2 ASSOCIATION
ProductA1 AbstractProductA REALIZATION
ProductA2 AbstractProductA REALIZATION
ProductB2 AbstractProductB REALIZATION
ProductB1 AbstractProductB REALIZATION

Stats
Relation_Type Count
REALIZATION 6
AGGREGATION 2
ASSOCIATION 4

188

4. Factory

Class_Relations
 Source_Class Destination_Class Relation_Type
ConcreteProduct Product REALIZATION
ConcreteCreator Creator INHERITANCE
ConcreteCreator ConcreteProduct AGGREGATION

Stats
Relation_Type Count
INHERITANCE 1
AGGREGATION 1
REALIZATION 1

5. Builder

189

Class_Relations
Source_Class Destination_Class Relation_Type
Director Builder ASSOCIATION
ConcreteBuilder Product ASSOCIATION
ConcreteBuilder Builder REALIZATION

Stats
Relation_Type Count
REALIZATION 1
ASSOCIATION 2

B. Structural Design Patterns
6. Adapter

Class_Relations
Source_Class Destination_Class Relation_Type
Adapter Adaptee ASSOCIATION
Adapter Target REALIZATION

Stats
Relation_Type Count
REALIZATION 1
ASSOCIATION 1

190

7. Bridge

8. Composite

Class_Relations
Source_Class Destination_Class Relation_Type
Abstraction Implementor AGGREGATION
ConcreteImplementorA Implementor REALIZATION
ConcreteImplementorB Implementor REALIZATION
RefinedAbstraction Abstraction REALIZATION

Stats
Relation_Type Count
REALIZATION 3
AGGREGATION 1

191

Class_Relations
Source_Class Destination_Class Relation_Type
Composite Component ASSOCIATION
Composite Component REALIZATION
Leaf Component REALIZATION

Stats
Relation_Type Count
REALIZATION 2
ASSOCIATION 1

9. Decorator

Class_Relations
Source_Class Destination_Class Relation_Type
Decorator Component AGGREGATION
Decorator Component REALIZATION
ConcreteComponent Component REALIZATION
ConcreteDecoratorA Decorator REALIZATION
ConcreteDecoratorB Decorator REALIZATION

Stats
Relation_Type Count
REALIZATION 4
AGGREGATION 1

192

10. Facade

Class_Relations
Source_Class Destination_Class Relation_Type
Façade SubSystemTwo AGGREGATION
Façade SubSystemThree AGGREGATION
Façade SubSystemOne AGGREGATION

Stats
Relation_Type Count
AGGREGATION 3

11. Flyweight

Class_Relations
Source_Class Destination_Class Relation_Type
FlyweightFactory Flyweight ASSOCIATION
UnsharedConcreteFlyweight Flyweight INHERITANCE
ConcreteFlyweight Flyweight INHERITANCE

193

Stats
Relation_Type Count
INHERITANCE 2
ASSOCIATION 1

12. Proxy

Class_Relations
Source_Class Destination_Class Relation_Type
Proxy Subject REALIZATION
Proxy RealSubject ASSOCIATION
RealSubject Subject REALIZATION

Stats
Relation_Type Count
REALIZATION 2
ASSOCIATION 1

194

C. Behavioral Design Pattern
13. Chain of Responsibility

Class_Relations
Source_Class Destination_Class Relation_Type
Handler Handler AGGREGATION
ConcreteHandler1 Handler REALIZATION
ConcreteHandler2 Handler REALIZATION

Stats
Relation_Type Count
AGGREGATION 1
REALIZATION 2

14. Command

195

Class_Relations
Source_Class Destination_Class Relation_Type
Invoker Command AGGREGATION
ConcreteCommand Command REALIZATION
Invoker Command AGGREGATION

Stats
Relation_Type Count
AGGREGATION 2
REALIZATION 1

15. Interpreter

Class_Relations
Source_Class Destination_Class Relation_Type
NonterminalExpression AbstractExpression REALIZATION
TerminalExpression AbstractExpression REALIZATION
NonterminalExpression AbstractExpression AGGREGATION
AbstractExpression Context AGGREGATION

Stats
Relation_Type Count
REALIZATION 2
AGGREGATION 2

196

16. Iterator

Class_Relations
Source_Class Destination_Class Relation_Type
ConcreteAggregate Aggregate REALIZATION
ConcreteIterator ConcreteAggregate AGGREGATION
ConcreteIterator Iterator REALIZATION
ConcreteAggregate ConcreteIterator ASSOCIATION

17. Mediator

Stats
Relation_Type Count
ASSOCIATION 1
AGGREGATION 1
REALIZATION 2

197

Class_Relations
Source_Class Destination_Class Relation_Type
Colleague Mediator AGGREGATION
ConcreteColleague1 Colleague INHERITANCE
ConcreteColleague2 Colleague INHERITANCE
ConcreteMediator ConcreteColleague2 AGGREGATION
ConcreteMediator Mediator REALIZATION
ConcreteMediator ConcreteColleague1 AGGREGATION

Stats
Relation_Type Count
AGGREGATION 3
INHERITANCE 2
REALIZATION 1

18. Memento

Class_Relations
Source_Class Destination_Class Relation_Type
Caretaker Memento AGGREGATION
Originator Memento ASSOCIATION

Stats
Relation_Type Count
AGGREGATION 1
ASSOCIATION 1

198

19. Observer

Class_Relations
Source_Class Destination_Class Relation_Type
Subject Observer ASSOCIATION
ConcreteObserver Observer REALIZATION
ConcreteObserver ConcreteSubject AGGREGATION
ConcreteSubject Subject REALIZATION

Stats
Relation_Type Count
ASSOCIATION 1
AGGREGATION 1
REALIZATION 2

20. State

199

Class_Relations
Source_Class Destination_Class Relation_Type
Context State AGGREGATION
ConcreteStateA State REALIZATION
ConcreteStateB State REALIZATION

Stats
Relation_Type Count
AGGREGATION 1
REALIZATION 2

21. Strategy

Class_Relations
Source_Class Destination_Class Relation_Type
Context Strategy AGGREGATION
ConcreteStrategyA Strategy REALIZATION
ConcreteStrategyB Strategy REALIZATION
ConcreteStrategyC Strategy REALIZATION

Stats
Relation_Type Count
AGGREGATION 1
REALIZATION 3

200

22. Template method

Class_Relations
Source_Class Destination_Class Relation_Type
ConcreteClassA AbstractClass INHERITANCE
ConcreteClassB AbstractClass INHERITANCE

Stats
Relation_Type Count
INHERITANCE 2

201

23. Visitor

Class_Relations
Source_Class Destination_Class Relation_Type
ObjectStructure Element ASSOCIATION
ConcreteElementA Element REALIZATION
ConcreteElementB Element REALIZATION
ConcreteVisitor1 Visitor REALIZATION
ConcreteVisitor2 Visitor REALIZATION
ConcreteVisitor1 ConcreteElementA AGGREGATION
ConcreteVisitor2 ConcreteElementB AGGREGATION

Stats
Relation_Type Count
ASSOCIATION 1
AGGREGATION 2
REALIZATION 4

202

Appendix
Structural Search Model (SSM)

1. Singleton

2. Prototype

B

203

3. Abstract Factory

204

4. Factory

5. Builder

205

6. Adapter

7. Bridge

206

8. Composite

9. Decorator

207

10. Façade

11. Flyweight

208

12. Proxy

13. Chain of Responsibility

209

14. Command

15. Interpreter

210

16. Iterator

17. Mediator

211

18. Memento

19. Observer

212

20. State/Strategy

21. Visitor

213

22. TemplateMethod

214

Appendix
Pseudocode of the Structural
Search Model (SSM)

Singleton_Instances

1. FOR each record in database {
2. IF (Connecting _Relationship == association) {
3. s1 = getSourceClass() d1= getDestinationClass()
4. IF (s1== d1) INSERT s1 into Singleton
5. } // end IF
6. }// end FOR

Prototype_ instances

1. FOR each record in database { //1st FOR
2. IF (Connecting _Relationship == Realization) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { //2nd FOR
5. IF (Connecting _Relationship == Dependency) { // 3rd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(s1==s2 AND d1==d2) { // 4th IF ….prototype detected
8. INSERT s1 into Concrete _Prototype and INSERT d1 into

Prototype
9. END of 4th IF, 3rd IF, 2nd FOR, 1st IF, 1st FOR.

AbstractFactory_instances

1. FOR each record in database { //1st FOR
2. IF (Connecting _Relationship == aggregation) { //1st IF
3. s1= getSourceClass d1= getDestinationClass
4. FOR each record in database { //2ndFOR
5. IF (Connecting _Relationship == aggregation) { //2nd IF
6. s2= getSourceClass d2= getDestinationClass
7. IF (s1 == s2 AND d1 != d2) { //3rd IF
8. FOR each record in database { //3rd FOR
9. IF(Connecting _Relationship == Realization) { //5th IF
10. S3= getSourceClass d3= getDestinationClass

C

215

11. tempConcreteFactory= s3
12. FOR each record in database { //4th FOR
13. IF (Connecting _Relationship == Realization) { // 6th IF
14. S4= getSourceClass d4= getDestinationClass
15. IF (d4==d1 AND d4!= d3) { //7rd IF
16. FOR each record in database { //5th FOR
17. IF (Connecting _Relationship == Realization) { // 8th IF
18. S5= getSourceClass d5= getDestinationClass
19. IF (d2 == d5 AND d5!=d3) { // 9th IF
20. tempProdcutA = s4 tempProductB= s5
21. FOR each record in database {//6th FOR
22. IF (Connecting _Relationship == association) {// 10th IF
23. S6= getSourceClass d6= getDestinationClass
24. IF (d6==s4 OR d6==s5) { //11th IF …. Abstract factory detected
25. INSERT d1 into AbstractProductA
26. INSERT d2 into AbstractProductB
27. INSERT d3 into AbstractFactory
28. INSERT s3 into ConcreteFactory
29. INSERT s4 into ProductA
30. INSERT s5 into ProductB
31. }//end of 11th IF
32. } // end of 10th IF
33. }//end of 6th FOR
34. }// end of 9th IF
35. }// end of 8th IF
36. }// end of 5th FOR
37. }// end of 7th IF
38. }// end of 6th IF
39. }//end of 4th FOR
40. }//end of 5th IF
41. }// end of 3rd FOR
42. } //end of 3rd IF
43. }//end of 2nd IF
44. }// end of 2nd FOR
45. } //end 1st IF
46. }//end of 1st FOR

Factory_instances

1. FOR each record in database { //1st FOR
2. IF (Connecting _Relationship == inheritance) { // 1st IF
3. s1= getSourceClass d1 = getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship == Realization) {//2nd IF
6. s2= getSourceClass d2 = getDestinationClass
7. IF (s1!= s2 AND d1 != d2) { //3rd IF

216

8. FOR each record in database { // 3rd FOR
9. IF (Connecting _Relationship == aggregation) { // 4th IF
10. s3= getSourceClass d3 = getDestinationClass
11. IF (s1==s3 AND s2==d3) { // 5th IF … factory detected
12. INSERT d1 to Creator
13. INSERT d2 to Product
14. INSERT s1 to ConcreteCreator
15. INSERT s2 to ConcreteProduct
16. }// end of 5th IF
17. } // end of 4th IF
18. }// end of 3rd IF
19. }// end of 3rd FOR
20. } // end of 2rd IF
21. } //end of 2nd FOR
22. }// end of 1st IF
23. } // end of 1st FOR

Builder_instances

1. FOR each record in database { // 1st FOR
2. IF(Connecting _Relationship == association) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { //2nd FOR
5. IF (Connecting _Relationship == Realization) { // 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (d1==d2) { // 3rd IF
8. FOR each record in database { // 3rd FOR
9. IF (Connecting _Relationship == association) { // 4th IF
10. S3 = getSourceClass D3= getDestinationClass
11. IF (s2==s3) { // 5th IF …. Builder detected
12. INSERT s1 into Director
13. INSERT d1 into Builder
14. INSERT s2 into ConcreteBuilder
15. INSERT d3 into Product
16. }// end of 5th IF
17. }// end of 4th IF
18. }// end of 3rd FOR
19. }// end of 3rd IF
20. }// end of 2nd IF
21. }// end of 2nd FOR
22. }// end of 1st IF
23. }// end of 1st FOR

217

Adpater_instances

1. FOR each record in database {//1st FOR
2. IF(Connecting _Relationship == Realization) { //1st IF
3. s1 = getSourceClass d1 = getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship == association) { //2nd IF
6. s2 = getSourceClass d2 = getDestinationClass
7. IF (s1==s2) { // 3rd IF … adapter detected
8. INSERT d1 into Target
9. INSERT s1 into Adapter
10. INSERT d2 into Adaptee
11. } // end of 3rd IF
12. }// end of 2nd IF
13. }// end of 2nd FOR
14. }// end of 1st IF
15. }// end of 1st FOR

Bridge _instances

1. FOR each record in database { // 1st FOR
2. IF (Connecting _Relationship == aggregation) { //1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship == Realization) { // 2nd IF
6. s2 = getSourceClass; d2= getDestinationClass;
7. IF(s1==d2) { // 3rd IF
8. FOR each record in database { // 3rd FOR
9. IF (Connecting _Relationship == Realization) { // 4th IF
10. S3 = getSourceClass D3= getDestinationClass
11. IF (d3==d1) { //5th IF
12. INSERT s3 into ConcreteImplementor
13. INSERT d1 into Implementor
14. INSERT d2 into Abstraction
15. INSERT s2 into RefinedAbstraction
16. }// end 5th IF
17. }// end 4th IF
18. } // end 3rd FOR
19. }//end 3rd IF
20. }// end 2nd IF
21. }//end 2nd FOR
22. }//end 1st IF
23. }// end 1st FOR

218

Composite_instances

1. FOR record in database { // 1st FOR
2. IF (Connecting _Relationship == Realization) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { //2nd FOR
5. IF (Connecting _Relationship == association) { // 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (s1== s2 AND d1==d2) { // 3rd IF
8. FOR each record in database { // 3rd FOR
9. IF(Connecting _Relationship== Realization) { //4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (d3==d1) AND (s3 != s1) { //5th IF
12. INSERT s3 into Leaf
13. INSERT d1 into Component
14. INSERT s1 into Composite
15. }//end of 5th IF
16. } // end of 4th IF
17. }// end of 3rd FOR
18. }// end of 3rd IF
19. }// end of 2nd IF
20. }// end of 2nd FOR
21. }// end of 1st IF
22. }// end of 1st FOR

Decorator_instances

1. FOR each record in database { // 1st FOR
2. IF (Connecting _Relationship == aggregation) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR (each record in database { // 2nd FOR
5. IF (Connecting _Relationship == Realization) { // 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (s1==s2 AND d1==d2) { // 3rd IF
8. FOR each record in database { // 3rd FOR
9. IF (Connecting _Relationship == Realization) {// 4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (s1==d3) { // 5th IF
12. FOR each record in database { // 4rd FOR
13. IF (Connecting _Relationship == Realization) { // 6th IF
14. s4 = getSourceClass d4= getDestinationClass
15. IF(s4!= s3 AND s4 != s1 AND d4 ==d1) { // 7th IF
16. INSERT d1 into Component
17. INSERT s1 into Decorator
18. INSERT s3 into Concrete Decorator
19. INSERT s4 into Concrete Component

219

20. }// end of 7th IF
21. }// end of 6th IF
22. }// end of 4th FOR
23. } // end 5th IF
24. }// end of 4th IF
25. }// end of 3rd FOR
26. }// end of 3rd IF
27. }// end of 2nd IF
28. }// end of 2nd FOR
29. }// end of 1st IF
30. }// end of 1st FOR

Façade_instances

1. FOR each record in database { // 1st FOR
2. IF (Connecting _Relationship == aggregation) {// 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship == aggregation) { // 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(d2 != d1) { // 3rd IF , not with itself
8. FOR each record in database { //3rd FOR
9. IF (Connecting _Relationship == aggregation) { //4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF(d3 !=d1) { //5th IF
12. IF (s1==s2 AND s1==s3){ // 6th IF
13. INSERT s1 into Façade
14. INSERT d1 into Subsystem1
15. INSERT d2 into Subsystem2
16. INSERT d3 Subsystem3
17. } // end of 6th IF
18. }// end of 5th IF
19. }// end of 4th IF
20. }// end of 3rd FOR
21. }// end of 3rd IF
22. }// end of 2nd IF
23. }// end of 2nd FOR
24. }// end of 1st IF
25. }// end of 1st FOR

Flyweight_instances

1. FOR each record in database { //1st FOR
2. IF (Connecting _Relationship == association) { // 1st IF

220

3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship== inheritance) //2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (d2==d1 AND s2 != s1) { //3rd IF
8. FOR each record in database { //3rd FOR
9. IF (Connecting _Relationship == inheritance) { //4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (d3==d1 AND s2 !=s3) { // 5th IF
12. INSERT s1 into FlyweightFactory
13. INSERT d1 into Flyweight
14. INSERT s2 into UnsharedConcreteFlyweight
15. INSERT s3 into ConcreteFlyweight
16. } // end of 5th IF
17. }// end of 4th IF
18. }// end of 3rd FOR
19. }// end of 3rd IF
20. }// end of 2nd IF
21. }// end of 2nd FOR
22. }// end of 1st IF
23. }// end of 1st FOR

Proxy_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == Realization) {// 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database {// 2nd FOR
5. IF (Connecting _Relationship == Realization){ //2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(s1 != s2 AND d1==d2) {//3rd IF
8. FOR each record in database {// 3rd FOR
9. IF (Connecting _Relationship= = association) {//4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF(s3==s1 AND d3==s2) {//5th IF
12. INSERT d1 into Subject
13. INSERT s1 into Proxy
14. INSERT s2 into RealSubject
15. } // end of 5th IF
16. }// end of 4th IF
17. }// end of 3rd FOR
18. }// end of 3rd IF
19. }// end of 2nd IF
20. }// end of 2nd FOR
21. }// end of 1st IF
22. }// end of 1st FOR

221

ChainofResponsibility_instances

1. FOR each record in database { // 1st FOR
2. IF (Connecting _Relationship == aggregation) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. IF (s1==d1) {// 2nd IF , aggregation with itself
5. FOR each record in database { // 2nd FOR
6. IF (Connecting _Relationship == Realization) { //3rd IF
7. s2 = getSourceClass d2= getDestinationClass
8. IF(d2==s1) { //4th IF
9. INSERT s1 into Handler
10. INSERT s2 into ConcreteHandler
11. }// end of 4th IF
12. }// end of 3rd IF
13. }// end of 2nd FOR
14. }// end of 2nd IF
15. }// end of 1st IF
16. }// end of 1st FOR

Command_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == aggregation){ // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { // 2nd FOR
5. IF (Connecting _Relationship == INHERITANCE) { //2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(d1==d2) { //3rd IF
8. FOR each record in database {// 3rd FOR
9. IF (Connecting _Relationship == aggregation) {//4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (s3==s2 AND s3 != s1 AND d3 !=s1){ //5th IF
12. INSERT s1 into Invoker
13. INSERT d1 into Command
14. INSERT s2 into ConcreteCommand
15. INSERT d3 into Receiver
16. }// end of 5th IF
17. }// end of 4th IF
18. }// end of 3rd FOR
19. }// end of 3rd IF
20. }// end of 2nd IF
21. }// end of 2nd FOR
22. }// end of 1st IF
23. }// end of 1st FOR

222

Interpreter_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == aggregation { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { //2nd FOR
5. IF(Connecting _Relationship == Realization) { // 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(s1==d2) { //3rd IF
8. FOR each record in database {// 3rd FOR
9. IF(Connecting _Relationship == aggregation) { //4th IF
10. s3 = getSourceClass;
11. d3= getDestinationClass;
12. IF (s3 ==s2 AND d3==d2) { //5th IF
13. INSERT s1 into AbstractExpression
14. INSERT d1 Context
15. INSERT s2 into NonterminalExpression
16. }// end of 5th IF
17. }// end of 4th IF
18. }// end of 3rd FOR
19. }// end of 3rd IF
20. }// end of 2nd IF
21. }// end of 2nd FOR
22. }// end of 1st IF
23. }// end of 1st FOR

Iterator_instances

1. FOR each record in database // 1st FOR {
2. IF (Connecting _Relationship == Realization) // 1st IF {
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database {// 2nd FOR
5. IF (Connecting _Relationship == Realization) {// 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (s1 != s2 AND d1 !=d2) {//3rd IF
8. FOR each record in database {// 3rd FOR
9. IF (Connecting _Relationship == association) {//4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (s3==s2 AND d3 ==s1) { // 5th IF
12. FOR each record in database {// 4th FOR
13. IF(Connecting _Relationship == aggregation) { //6th IF
14. s4 = getSourceClass d4= getDestinationClass
15. IF (s4 ==s1 AND d4 ==s2 AND d4==s3 AND s4==d3){ //7th IF
16. INSERT d1 into Iterator
17. INSERT d2 into Aggregate
18. INSERT s1 into ConcreteIterator

223

19. INSERT s2 into ConcreteAggregate
20. }// end of 7th IF
21. }// end of 6th IF
22. }// end of 4th FOR
23. }// end of 5th IF
24. }// end of 4th IF
25. }// end of 3rd FOR
26. }// end of 3rd IF
27. }// end of 2nd IF
28. }// end of 2nd FOR
29. }// end of 1st IF
30. }// end of 1st FOR

Mediator_instances

1. FOR each record in data base {// 1st FOR
2. IF (Connecting _Relationship == inheritance) { // 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in data base {// 2st FOR
5. IF (Connecting _Relationship == inheritance) { // 2st IF
6. s2 = getSourceClass d2= getDestinationClass
7. (IF s1!=s2 AND d1 != d2) {// 3rd IF
8. FOR each record in database { // 3rd FOR
9. IF (Connecting _Relationship == aggregation) { // 4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (s3 ==d1 AND d3==d2) { // 5th IF
12. FOR each record in data base { //4th FOR
13. IF (Connecting _Relationship == aggregation) { //6th IF
14. s4 = getSourceClass d4= getDestinationClass
15. IF (d4==s1 AND s4 ==s2 s AND 4!=s3 AND d4 != d3) { //7th IF
16. INSERT d1 into Colleague
17. INSERT s1 into ConcreteColleague
18. INSERT s2 into ConcreteMediator
19. INSERT d2 into Mediator
20. }// end of 7th IF
21. }// end of 6th IF
22. }// end of 4th FOR
23. }// end of 5th IF
24. }// end of 4th IF
25. }// end of 3rd FOR
26. }// end of 3rd IF
27. }// end of 2nd IF
28. }// end of 2nd FOR
29. }// end of 1st IF
30. }// end of 1st FOR

224

Memento_instances

1. FOR each record in database {// 1st FOR
2. IF(Connecting _Relationship == ASSOCIATION) {// 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database {// 2nd FOR
5. IF(Connecting _Relationship == aggregation) {// 2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(d1==d2 AND s1 !=s2) {// 3rd IF
8. FOR each record in database {// 3rd FOR
9. IF(Connecting _Relationship == inheritance){ //4th if
10. s3 = getSourceClass d3= getDestinationClass
11. if(d3==d1 && s3!= s1 && s3!=s2){// 5th if
12. INSERT d1 into Memento
13. INSERT s1 into Originator
14. INSERT s2 into Caretaker
15. INSERT s3 into ConcreteMemento
16. }// end of 5th if
17. }// end of 4th if
18. }//end 3rd for
19. } // end of 3rd IF
20. }// end of 2nd IF
21. }// end of 2nd FOR
22. }// end of 1st IF
23. }// end of 1st FOR

Observer_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == Realization){ //1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database {// 2nd FOR
5. IF (Connecting _Relationship == Realization){ //2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF (s1!= s2 AND d1 != d2){//3rd IF
8. FOR each record in database {// 3rd FOR
9. IF (Connecting _Relationship == association){//4th IF
10. s3 = getSourceClass d3= getDestinationClass
11. IF (d1 ==s3 AND d2 ==d3) {//5th IF
12. FOR each record in database {//4th FOR
13. IF(Connecting _Relationship == aggregation){ //6th IF
14. s4 = getSourceClass d4= getDestinationClass
15. IF (s4 ==s2 AND d4==s1) {//7th IF
16. INSERT d1 into Subject
17. INSERT s1 ConcreteSubject
18. INSERT d2 into Observer

225

19. INSERT s2 into ConcreteObserver
20. }// end of 7th IF
21. }// end of 6th IF
22. }// end of 4th FOR
23. }// end of 5th IF
24. }// end of 4th IF
25. }// end of 3rd FOR
26. }// end of 3rd IF
27. }// end of 2nd IF
28. }// end of 2nd FOR
29. }// end of 1st IF
30. }// end of 1st FOR

State_Strategy_instances

1. FOR each record in data base {//1st FOR
2. IF (Connecting _Relationship == aggregation) { //1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record database { // 2nd FOR
5. IF (Connecting _Relationship == Realization){//2nd IF
6. s2 = getSourceClass d2= getDestinationClass
7. IF(d1==d2 AND s1!= S2) { //3rd IF
8. INSERT S1 into Context
9. INSERT d1 into State
10. INSERT s2 into ConcreteState
11. }// end of 3rd IF
12. }// end of 2nd IF
13. }// end of 2nd FOR
14. }// end of 1st IF
15. }// end of 1st FOR

Template_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == inheritance) {// 1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. IF(s1 != d1){ // 2nd IF
5. INSERT s1 into ConcreteClass
6. INSERT d1 into AbstractClass
7. }// end of 2nd IF
8. }// end of 1st IF
9. }// end of 1st FOR

226

Visitor_instances

1. FOR each record in database {// 1st FOR
2. IF (Connecting _Relationship == association) {//1st IF
3. s1 = getSourceClass d1= getDestinationClass
4. FOR each record in database { //2nd for
5. IF (Connecting _Relationship == Realization) {// 2nd IF
6. s2= getSourceClass d2= getDestinationClass
7. IF (d1==d2 AND s1!=s2) { //3rd IF
8. FOR each record in database {// 3rd FOR
9. IF (Connecting _Relationship == Realization) {// 4th IF
10. s3= getSourceClass d3= getDestinationClass
11. IF(s3 != s2 AND d3 !=d2){// 5th IF
12. FOR each record in database {//4th FOR
13. IF (Connecting _Relationship == aggregation) {// 6th IF
14. s4= getSourceClass d4= getDestinationClass
15. IF(s3==s4 AND d4==s2 AND s1 != d3){//7th IF
16. INSERT s1 into ObjectStructure
17. INSERT d1 into Element
18. INSERT s2 into ConcreteElement
19. INSERT d3 into Visitor
20. INSERT s3 into ConcreteVisitor
21. }// end of 7th IF
22. }// end of 6th IF
23. }// end of 4th FOR
24. }// end of 5th IF
25. }// end of 4th IF
26. }// end of 3rd FOR
27. }// end of 3rd IF
28. }// end of 2nd IF
29. }// end of 2nd FOR
30. }// end of 1st IF
31. }// end of 1st FOR

227

Appendix
List of Publications

[Chapter Two]

1. Al-Obeidallah, M.G., Petridis, M. and Kapetanakis, S.: ‘A Survey on
Design Pattern Detection Approaches’, International Journal of Software
Engineering, 7(3), pp. 41–59. (2016).

[Chapters Three and Four]

2. Al-Obeidallah, M.G., Petridis, M. and Kapetanakis, S.: MLDA: A Multiple
Levels Detection Approach for Design Patterns Recovery, in the proceedings
of 2017 International Conference On Computing and Data Analysis (ICCDA
2017), May 19-23, Florida, United States, 2017, pp. 33-40.

[Chapters Five and Six]

3. Al-Obeidallah M.G., Petridis M., Kapetanakis S. (2018). A Structural Rule-
Based Approach for Design Patterns Recovery. In: Lee R. (eds) Software
Engineering Research, Management and Applications. SERA 2017. Studies
in Computational Intelligence, vol 722. Springer, Cham.

Accepted Papers

[Chapters Three until Six] (The complete model with all datasets)

4. Al-Obeidallah M.G., Petridis M., Kapetanakis S. A Multiple Phases
Approach for Design Patterns Recovery Based on Structural and Method
Signature Features. Accepted for publication in the International Journal of
Software Innovation (IJSI), vol. 6, issue 3, December 2017.

IJSI is indexed by Thomson Reuters, Scopus, ACM, Web of science,
INSPEC, etc.

D

228

Awards

1. Best Student Paper Award (SERA 2017)

 “A Structural Rule-Based Approach for Design Patterns Recovery”, which
has been published in the 15th ACIS International Conference on Software
Engineering Research, Management and Applications (SERA 2017)
http://www.acisinternational.org/sera2017/, has won the best student paper
award in the conference. This paper was selected out of 80 submissions.

http://www.acisinternational.org/sera2017/

	Figure 1.1: History of software development
	Figure 1.2: Extreme programming development methodology
	Figure 1.3: The seven parts of a documented view
	Figure 1.4: The process model of software reengineering
	The activities of the software reengineering process model can be described as follows:
	Figure 1.5: McCall’s quality model
	Figure 1.6: Boehm’s quality model
	Figure 1.7: ISO/IEC 9126 quality attributes

