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Abstract 
 
Design patterns have a key role in software development process. 

They describe both structure and the behavior of classes and their 

relationships. Maintainers can benefit from knowing the design 

choices made during the implementation.  

This thesis presents a Multiple Level Detection Approach (MLDA) 

to recover design pattern instances from the Java source code. 

MLDA is able to recover design pattern instances based on a 

generated class-level representation of an investigated system. 

Specifically, MLDA presents what is the so-called Structural 

Search Model (SSM) which incrementally builds the structure of 

each design pattern based on the generated source code model. 

Moreover, MLDA uses a rule-based approach to match the 

method signatures of the candidate design instances to that of the 

subject system. As the experiment results illustrate, MLDA is able 

to recover 23 design patterns with a reasonable detection 

accuracy.  Furthermore, this thesis presents a metrics-based 

approach to address the impact of design pattern instances on 

software understandability and maintainability. This approach 

classifies system classes into two groups: pattern classes and 

non-pattern classes. The experimental results show that pattern 

classes have better inheritance and size metrics than do non-

pattern classes. Unfortunately, no safe conclusion can be drawn 

regarding the impact of design patterns on software 

understandability and maintainability, since non-pattern classes 

have better coupling and cohesion metrics than do pattern 

classes. 
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hapter One 
Introduction 
Software engineering is a branch of computer science that 

concerns with the design, coding and testing of software 

applications. Software engineering aims to improve the quality of software 

production by managing different software aspects such as reliability, 

security, dependability, portability and functionality.  

The need for software engineering is increasing tremendously due to the 

changes in the functional and non-functional requirements. In addition, 

object-oriented software becomes the key element in the evolution of 

computer systems and the development of a high-quality software is one of 

the main intentions of software engineering [1].  

Software engineering focuses on the behavior and specification of 

system structures. More specifically, software engineering is concerned with 

processes, methods and software tools. It involves the extraction of 

functional and non-functional system requirements, system architectural 

design, system specific design and a set of activities such as testing, 

deployment and maintenance.   

Pressman, in his book [2], defines software engineering as "the 

establishment and use of sound engineering principles in order to obtain 

economically software that is reliable and works efficiently on real machines". 

The Institute of Electrical and Electronics Engineers (IEEE) defines software 

engineering as "the application of a systematic, disciplined and quantifiable 

approach to the development, operation, and maintenance of software" [3]. 

Software engineering does not focus on the programming itself as the main 

activity. Instead, during the development process, most software engineers 

use ready software packages which are easy to import. The main role of a 

software engineer is to define "what to do" activities. In contrast, the system 

analyst should define "how to do" activities. The key software engineering 

activities are: requirements eliciting, software architecture design, coding, 

software integration, software deployment and software testing. 

C 
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The System Development Life Cycle (SDLC) is a key concept in 

software engineering which involves a number of activities such as planning, 

analysis, design, implementation and testing. The quality of the final software 

system is directly affected by the earliest set of design decisions [2]. 

Specifically, the quality should be considered through the design, 

implementation and testing phases. To build and design software 

applications, all functional and non-functional requirements must be elicited 

and defined. In addition, the software architecture should be created. 

Software architecture involves one or more software structures which 

comprise elements and relationships among them. It provides a black-box 

representation of the software. 

This chapter aims to introduce the reader to areas and aspects related 

to this thesis. In addition, this chapter presents our motivations for writing 

this thesis.  

This thesis presents a design pattern detection approach to recover 

design instances from object-oriented programs. In addition, we tried to 

address the impact of these design instances on certain software quality 

attributes. It could be worthwhile to introduce the reader to the key concepts 

and aspects related to this thesis. These are: software models, software 

architecture, software reengineering and design patterns. Presenting these 

aspects helps the reader to build a general picture of the role of design 

patterns in the software development process. 

Section One presents an overview of existing software development 

models. Software architecture design and documentation are presented in 

Section Two. Furthermore, software reengineering concepts and design 

patterns are presented in Sections Three and Four respectively. Section Five 

presents a brief overview of major software quality models. Finally, Sections 

Six and Seven present research questions, motivations and a list of 

publications made based on the thesis chapters. 
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1.1 An Overview of Software Development 

The history of the software development process appears in Figure 1.1. 

Software engineering was introduced in 1968. The waterfall development 

model was one of the earliest developed models. Other methodologies 

appear continuously after the introduction of the waterfall model. In fact, the 

spiral development model is considered the most valuable addition to 

software engineering development methodologies [2], [4-6]. 

 

 

 

 

 

 

 

 

Figure 1.1: History of software development 

To face changing requirement problems, extreme programming (XP) 

development methodology was developed by Kent Beck [2]. XP made a 

separation between stakeholders’ decisions and business-interest 

decisions. Usually, XP projects start with a simple design and get the system 

working quickly. XP mainly relies on face-to-face communications with rare 

use of documentation. The XP development methodology appears in Figure 

1.2 [2]. Furthermore, a widely used development methodology in many 

enterprises is the Rational Unified Process (RUP) [2]. It involves roles that 

represent the skills and responsibilities of the developers, work products, and 

tasks, which are activities assigned to a role. RUP works in an iterative 

manner and involves four main phases: inception phase, elaboration phase, 

construction phase and transition phase.  



4 
 

 

 

 

 

 

 

Figure 1.2: Extreme programming development methodology 

 

1.2 Software Architecture 

The software architecture is a structure, or more than one structure, which 

comprises elements and relationships among them [7]. The architect plays 

a major role in building and designing software architecture. However, 

different factors could affect the development of software architecture, such 

as stakeholders, the developing organization, architect skills and 

experience, and the technical environment. 

Software architecture affects the earliest set of design decisions. In 

addition, software architecture can enable or inhibit quality attributes. The 

architect and the development team must decide the required quality 

attributes at earlier stages of the development process. For example, 

performance and portability often occur in mutual tension. Increasing 

portability by reducing the required attachments will hurt performance. 

Furthermore, the degree of trade-offs among quality attributes could affect 

the quality of the final software release. 

The importance of software architecture appears clearly when 

investigating the software code. The architecture defines constraints on the 

implementation and makes the changes easier to manage. Consequently, 

the system will be executable early in the SDLC.  Software structures which 
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represent the main building unit of software architecture can be classified 

into three categories based on the nature of the elements that they show [7]: 

• Module structure: units of code are the main building elements of this 

structure. The decomposition structure, class structure and uses 

structure are a few examples of module structure.  

• Component and connector structure: elements were represented as 

components, whereas the relationships between them were 

represented as connectors. Client-server and concurrency structures 

are two popular examples of a component and connector structure.  

• Allocation structure which shows the relationship between software 

elements and other external elements. Work-assignment structure and 

deployment structure are two popular examples of an allocation 

structure.  

 

1.2.1 Software Architecture Design  

Developing software architecture's design requires the elicitation of quality 

and functional and business requirements. The design of a software 

architecture should provide a black-box representation of a subject system 

since no details are required at this design level. The Attribute Driven Design 

(ADD) is one of the most popular methods for software architecture design. 

ADD has been developed by extending other design development methods 

[7].  

ADD uses quality attribute scenarios as input and produces levels of 

a module decomposition view as output. ADD starts by selecting the module 

to decompose (i.e. the whole system). Then the system will be decomposed 

into a number of sub-systems which will also be decomposed in their turn 

into sub-modules. Based on the quality attribute scenarios and the functional 

requirements, architectural drivers will be selected. The next step in 

designing the architecture is the selection of suitable architectural designs 

(or, in certain cases, creating them). Finally, for each module, the 

instantiation and the assigning of functionalities were performed. The 



6 
 

implementation of quality attributes during software architecture design helps 

the development team to differentiate a good system from a bad one. 

 

1.2.2 Software Architecture Documentation  

Documenting a software architecture helps the development team to decide 

what it is important to capture. The documentation process relies on the 

collected requirements and should be abstract enough to be understood by 

the stakeholders.  

To create a software architecture's document, the architect and the 

development team should select the relevant views (the view is a 

representation of the software architecture), document a view and then 

document the information that fits more than one view [7][8], consequently 

producing a list of candidate views. In fact, some of the views can fit every 

system. Hence, the number of relevant views is quite large. To reduce the 

list size, views that serve very few stakeholders can be merged with a view 

that gives information from two or more views at once. Finally, the list of the 

views is prioritized based on the project details. Unfortunately, there is no 

standard template to document views. However, the seven-part template 

presented by Bass et al. [7] shows good results in practice. The seven parts 

of a documented view appear in Figure 1.3.  

The first section of the template is the primary representation. This 

section shows the elements of the architecture and their relationships. 

Graphical representations and tables were used to represent these elements 

and their relationships. The details of the elements and their relationships 

appear in the element catalog section. Moreover, the element catalog 

section shows the behavior and interface of each element. The context 

diagram section shows the relationship between the system and its 

environment. The variability guide section helps the architect and the 

development team to trace any variation points. The type of variation point 

depends on the type of view. In the case of module views, the variation points 

are versions of the modules. On the other hand, the variation points are 
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constraints on the scheduling in a component and connector view, whereas 

they are conditions on the view in an allocation view.  

 

 

 

 

 

 

 

Figure 1.3: The seven parts of a documented view 

The architecture background section explains why the design has 

been made in this way. It shows how the assumptions and the analysis 

results were reflected in the design. The glossary-of-terms section shows the 

terms used in the views. The last section is the other information section 

which shows different kinds of information, such as management and 

decision support information. 

The documentation of a view is completed by collecting the 

information that applies to more than one view. This can be done by 

developing a cross-view documentation template which shows how a 

document is organized.  

 

1.3 Software Reengineering  

Reengineering is a rebuilding activity that improves the maintainability and 

structure of software systems. Reengineering may involve modifying and 

updating a system's internal data without affecting its functionality and/or its 

architecture.  



8 
 

Moreover, reengineering provides a cost-effective development 

solution. Usually, the costs of reengineering current software are less than 

the costs of building a new one. Chikofsky and Cross [9] introduced the 

concept of forward engineering to describe conventional software 

development. Forward engineering uses a system specification as a starting 

point.  

In contrast to forward engineering, reengineering [2] starts with an 

existing system. The quality of software to be developed, the involvement of 

expert staff and data size can affect the reengineering process. The key 

activities of a reengineering process are presented in Figure 1.4. The 

process model of software reengineering is cyclical; this means that each 

activity may be revisited more than once. The activities are performed in a 

linear manner.   

 

 

 

 

 

 

 

 

 

Figure 1.4: The process model of software reengineering 

The activities of the software reengineering process model can be described 

as follows:  

• Inventory analysis: the inventory is a spreadsheet model that provides 

certain details such as the critical business and size of every active 

Inventory  
analysis

Document 
restructuring 

Reverse 
engineering

Code 
restructuring 

Data 
restructuring 

Forward 
engineering
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application. The candidates for reengineering can be achieved at this 

stage by sorting the detailed information, taking into account the 

maintainability aspects. 

• Document restructuring: restructuring of a document is considered one 

of the key reengineering activities. Weak documentation affects the 

quality of the final specification. In addition, the recreation of the 

documentation puts too much of a burden on the development team. 

• Reverse engineering: reverse engineering is the process of design 

recovery which extracts design information from the source code. 

Reverse engineering normally uses object models, data models, UML 

classes, state diagrams and deployment diagrams. The level of 

abstraction issues, completeness issues and directionality issues must 

be considered during any reverse engineering activity. The 

completeness of the reverse engineering process is determined by the 

level of details at any abstraction level [2]. The abstraction level 

depends on the complexity of the recovered design. The completeness 

and the level of abstraction often occur in mutual tension. All recovered 

information from the source code could be used later during the 

maintenance activities.  

• Code restructuring: code restructuring aims to produce a high-quality 

design that provides a functionality similar to that of the original source 

code.  

• Data restructuring: data can be restructured to extract certain data 

items and objects. Different kind of statements (I/O statements, data-

definition statements etc.) should be evaluated. At this stage, data re-

design is performed by the so-called "data name rationalization" to 

ensure that all naming conventions fit local standards.  

• Forward engineering: Forward engineering uses software engineering 

methods and concepts to recreate an existing application. Usually, the 

newly developed application has more capabilities than does the 
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original application. Forward engineering can be applied to client/server 

architectures and to object-oriented architectures.  

Object-oriented development becomes the main development 

paradigm in many software enterprises. The conventional software is 

reverse engineered into an object-oriented implementation by creating 

appropriate data, functional models and behavioral models. Sub-systems 

and class hierarchical and object models should be created as well. Some 

classes must be engineered from scratch and redesigned to fit the new 

object-oriented architecture.  

 

1.4 Design Patterns  

The concept of patterns was introduced into the field of architecture by 

Christopher Alexander who documented reusable architectural proposals for 

producing high-quality designs [10]. 

In software engineering, a pattern is a recurring solution to a standard 

problem in a context. In 1995, the idea of patterns was adopted by the so-

called Gang of Four (Gamma, Helm, Johnson and Vlissides) [11] -henceforth 

GoF. The GoF cataloged 23 design patterns. Each design pattern describes 

a problem that occurs over and over again in an attempt to describe the core 

solution to that problem. This solution can be re-used a million times over 

without doing it the same way twice. In fact, design patterns vary in their 

levels of abstraction. Each design pattern solves a specific design problem 

by connecting together a number of classes (participant classes) using 

different relationships. According to the GoF’s catalog, each design pattern 

involves both structural and behavioral aspects. Structural aspects describe 

the static arrangement of classes and their relationships. On the other hand, 

behavioral aspects describe dynamic interactions between pattern 

participant classes.   

Design patterns at the source code level reflect the earliest set of 

design decisions taken by the development team. In addition, the majority of 

current software systems involve instances of design patterns in their source 

codes. Design patterns can improve software documentation, speed up the 
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development process and enable large-scale reuse of software 

architectures. The template of design patterns presented by the GoF 

involves several sections, such as participants, structure and collaboration 

sections. These sections describe the design fingerprint (motif) [11].  Each 

occurrence of a design pattern in the source code is called a design pattern 

instance. A design instance should reflect the required pattern structure and 

behavior presented by the GoF. However, design pattern instances could be 

partially implemented in the source code (i.e. one or more of the instance’s 

participant classes are not implemented). A participant class is a class that 

plays a certain role in design pattern instance. 

Many approaches and tools were introduced in the literature to 

recover GoF design instances from object-oriented programs. Most of these 

approaches recover a few patterns and they lack accuracy. This thesis tries 

to recover all GoF design patterns with a reasonable detection accuracy by 

presenting a structural rule-based approach. The presented approach 

covers the structural and dynamic aspects of GoF design patterns. 

Although GoF design patterns become standard designs for software 

development, they are not only the available design templates. For example, 

other design templates use architectural patterns such as model view 

controller, idiom patterns and gaming patterns. This thesis focuses on GoF 

design patterns. This does not suggest that GoF patterns are better than 

other design patterns, but all primary studies deal with GoF design patterns.  

In addition to design patterns recovery, the quality of software 

systems is another key aspect related to design patterns. The quality of 

software systems could be affected positively, negatively, or not affected at 

all, when certain design patterns are implemented. In this thesis, a metrics-

based approach has been developed to address the impact of design pattern 

instances on certain quality attributes. This approach uses the detected 

design pattern instances that have been recovered by the structural rule-

based approach.   
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1.5 Software Quality Attributes  

Measurement plays an important role in evaluating the quality of software 

applications. Quality is "the conformance to the functional and non-functional 

requirements, development standards and expected software 

characteristics" [12].   

A number of quality models have been developed to assess and 

characterize the quality of software systems. Each model has its own 

elements, characteristics and attributes and most of these quality models 

quantitatively measure the internal aspects of software applications. 

Followings are the most widely used quality models. 

1.5.1 McCall’s Quality Model  

Factors that affect the quality can be measured directly or indirectly (e.g. 

usability). McCall et al., henceforth McCall’s quality model, introduced a 

number of useful factors that affect the quality of software applications. 

These factors focus on the product’s operational characteristics, the ability 

to accept changes and the flexibility to work in new environments [12].  

McCall’s quality model is considered a predecessor of today’s quality 

models. It tries to bridge the gap between users and developers by 

introducing quality factors that reflect their views.  More specifically, McCall’s 

quality model involves 11 quality factors to describe the user’s view (external 

view), 23 quality criteria to describe the developer’s view (internal view) and 

metrics, which provide a method for measurement. The metrics were 

achieved by answering a set of yes-and-no questions. Consequently, the 

quality is subjectively measured based on the person(s) who answer the 

questions. McCall's quality model is presented in Figure 1.5. 

1.5.2 Boehm’s Quality Model  

Boehm’s quality model qualitatively defines software quality using a set of 

metrics and attributes [13]. Boehm’s model involves three characteristic 

levels: high, intermediate and primitive.   
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Figure 1.5:  McCall’s quality model 

The high-level characteristics handle the as-is utility, portability and 

maintainability aspects. On the other hand, the intermediate-level 

characteristics involve seven quality factors that represent the expected 

qualities from the application (i.e. portability, reliability, efficiency, usability, 

testability, understandability and flexibility). Boehm’s quality model appears 

in Figure 1.6. 

 

 

 

 

 

 

Figure 1.6:  Boehm’s quality model 

 

1.5.3 ISO Quality Model 

ISO stands for International Organization for Standardization. The ISO 9001 

family is the most widely spread and widely used family. The ISO 9001 

management system handles the internal and external aspects of the 

organization by managing the quality of the delivered products.  In addition, 

ISO 9001 provides design, implementation, support and documenting 
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activities for quality and resource management processes, market and 

regularity research processes, product protection processes, customer 

needs, communication processes and training processes [17]. Based on 

McCall’s quality model and Boehm’s quality model, the ISO has released the 

ISO/IEC 9126 version to identify the internal and external quality 

characteristics. The identified characteristics are: 

• Functionality: the degree to which the software works as intended. 

• Usability: how easy it is for a user to accomplish a desired task.  

• Reliability: the degree to which the software delivers its services when 

needed. 

• Efficiency: the degree to which the software uses system resources in 

an optimal way.  

• Portability: the software application is portable when extracted from its 

development environment and transported easily to another 

environment. 

• Maintainability: the degree to which the software is easy to repair. 

Figure 1.7 shows the ISO/IEC 9126 quality attributes and their sub-attributes: 

 

 

 

 

 

 

 

 

 

Figure 1.7:  ISO/IEC 9126 quality attributes 
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In addition, ISO has released the 15504 version to address all 

processes involved in supporting, supplying, maintaining, operating, 

developing and delivering software activities. This thesis relies on the 

ISO/IEC 9126 as a reference model when describing and/or using any of the 

quality attributes. ISO/IEC 9126 is a widely accepted and used quality model 

in the software engineering community.  

1.5.4 Other Quality Models 

Other quality models were presented to characterize the quality of software 

systems. The FURPS model has been developed by Robert Grady [15] and 

extended by Rational Software Company [16] to FURPS+ to include design, 

implementations and interface requirements. FURPS stands for 

Functionality, Usability, Reliability, Performance and Supportability. 

Furthermore, the quality model developed by Dromey [17] attempts to handle 

the problem of evaluation differences between software products. Dromey’s 

model has been applied to different systems and involves three basic 

elements: software product, product properties and quality attributes. In 

addition, Dromey’s quality model attempts to link the properties of a software 

product to software quality attributes. This can be achieved by selecting high-

level quality attributes, listing system components/modules, investigating the 

effects of each property on the quality attributes and evaluating the model. 

 

1.6 Motivation  

This section presents the key motivations for building a new detection 

approach to recover design pattern instances from object-oriented programs. 

In addition, the general motivations behind the development of a metrics-

based approach to address the impact of design pattern instances on 

software quality attributes are presented.  

Recovering design pattern information from a source code helps to 

document the systems, enable large-scale reuse of software architectures 

and speed up the software development process. However, current design 

pattern detection approaches lack accuracy and recover a few design 
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patterns. Only three approaches recover ALL GoF design patterns. 

Moreover, most detection approaches focus on the structural features of 

design patterns. Specifically, these approaches focus on four relationships 

that may occur between classes and interfaces inside any object-oriented 

program (inheritance, aggregation, association and dependency). Hence, 

most current detection approaches fail to recover all the possible structures 

similar to that of ALL GoF design patterns since these approaches search 

for a maximum of four relationships and their matching techniques are not 

able to accurately match the recovered structures to that of GoF (e.g. 

matrices matching using similarity scoring and exact matching, sub-graph 

discovery, machine learning and software metrics, data flow analysis, 

constraints over variables, class diagram analysis and semantic rules). This 

introduces the necessity of a new recovery approach that can recover all the 

possible structures similar to that of ALL GoF design patterns.  

In addition, current recovery approaches ignore the role of method 

signatures of GoF design patterns during the recovery process. These 

approaches face difficulties in creating a suitable representation of the 

method signatures and match them to that of GoF. Hence, these approaches 

only recover a few patterns and their accuracy is not reasonable. 

Consequently, a new recovery approach should be developed to accurately 

recover ALL GoF design patterns.   

The new recovery methodology should cover both the structural and 

behavioral aspects of GoF design patterns. The structural aspects should 

reflect the required structure (arrangement of classes) presented by GoF, 

whereas the behavioral aspects should reflect the required interactions 

between pattern participant classes. 

This thesis presents a rule-based approach to handle the problem of 

representing the required method signatures of GoF design patterns. More 

specifically, a rules template has been created to reflect the required method 

signatures of the candidate design pattern instances. The main motivation of 

using a rule-based approach is its ability to represent the method signatures 

of the candidate design instances as an independent piece of knowledge, 
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which can be transformed into a set of rules. In addition, the method 

signatures of GoF design patterns have a uniform structure which facilitates 

their representation as a set of rules. 

In fact, the motivation of the work in this thesis is to explore the effects 

of representing the method signatures of GoF design patterns using a rule-

based system on the process of design patterns recovery which relies on 

relationships matching. As a result, a novel methodology for design patterns 

recovery is proposed. This methodology combines both structural and 

behavioral features of GoF design patterns. 

Furthermore, this thesis tries to address the impact of GoF design 

patterns on software maintainability and understandability since they are the 

most commonly investigated quality attributes in the available literature. The 

impact of GoF design patterns on software quality attributes provides a 

support for decision-making during software design and refactoring. Most 

previous studies in the literature used experiment, case studies, conceptual 

analysis and survey to assess the impact of design patterns on software 

quality attributes. We believe that these methods lead to controversial results 

since most of them are based on human intervention and lack accuracy. 

Consequently, there is a necessity to introduce a new approach to address 

the impact of GoF design patterns on the quality of software systems. This 

thesis presents a metrics-based approach to assess the impact of GoF 

design patterns. The main motivation behind the use of software metrics to 

quantify the subject system is their ability to provide a static and stable 

representation of the subject system. Moreover, since our proposed 

recovering methodology relies on a class-level representation of the subject 

system and the recovered design instances have been validated based on 

the all publicly available results in the literature, a list of classes playing roles 

in design patterns was generated for all subject systems. This will facilitate 

the use of class-level metrics to quantify each class in the subject system. 

Hence, software metrics can be calculated for classes playing roles in design 

patterns and can be compared with classes that don’t play roles in design 

patterns. 
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1.7 Aims and Objectives   

This thesis mainly aims: 

• To recover ALL GoF design patterns with reasonable detection 

accuracy based on hybrid structural and behavioral characteristics.  

Hence, a structural search model which relies on the principle of 

relationships matching has been developed to reflect the required structural 

aspects. In addition, the method signatures of GoF design patterns have 

been represented using a rule-based approach to reflect the required 

behavioral aspects.  

The structural search model will recover the instances of GoF design 

patterns based on the relationships matching between classes and 

interfaces. Furthermore, the rule-based approach will be applied to the 

recovery process. This leads to the second aim of this thesis:  

• To explore the effects of applying a rule-based approach to the process 

of design patterns recovery which relies on the relationships matching. 

Finally, this thesis aims: 

• To address the impact of GoF design patterns on software 

maintainability and understandability. 

 

1.8 Research Questions 

The main research questions formulated in this thesis can be stated as 

follows: 

• Is the Structural Search Model (SSM), which relies on the relationships 

matching, able to recover instances of design patterns with a 

reasonable detection accuracy?  

The structural characteristics of GoF design patterns will be recovered 

using the developed Structural Search Model. This model relies on the 

relationships matching between classes and interfaces and builds the 
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structure of ALL GoF design patterns incrementally. In addition, the SSM will 

try all the possible combinations between classes and interfaces to recover 

all the possible structures similar to that of GoF.  

• Is the use of a rule-based system to match the method signatures of 

the candidate design instances to that of a subject system able to 

reduce the number of false positive candidate instances (i.e. enhancing 

the detection accuracy of design patterns which relies on relationships 

matching)?  

The behavioral characteristics of GoF design patterns will be 

represented using a rule-based approach. A rule template has been created 

to represent the required method signatures of GoF design patterns. The 

rule-based approach will be applied to filter the candidate design instances 

recovered by the SSM. 

• Do classes playing roles in design patterns have better software metrics 

than other classes in the system (i.e. do design pattern instances 

enhance software maintainability and understandability)? 

The third research question tries to address the impact of design 

pattern instances on certain quality attributes. More specifically, we tried to 

address the impact of design instances on software maintainability and 

understandability since they are the most commonly investigated quality 

attributes. All subject system classes will be classified into two groups: 

classes that are playing roles in design patterns and classes that are not. In 

addition, software metrics, with their correlations to quality attributes, will be 

used in attempts to reach a safe conclusion. 

 

1.9 Contribution to Knowledge  

The main contribution of this thesis is the addition to the body of software 

engineering of real evidence on the effects of applying a rule-based 

approach to the process of design pattern detection, which relies on 

relationships matching. 
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A Structural Search Model (SSM) has been developed to recover the 

instances of GoF design patterns based on the connecting relationships 

between classes and interfaces. This model builds the structure of each 

design pattern incrementally, tries all the possible combinations between 

classes and interfaces inside a subject system and relies on the five key 

relationships that may occur between these classes and interfaces 

(Inheritance, Realization, Aggregation, Association and Dependency). On 

the other hand, A rule-based approach to filter the candidate design 

instances recovered using the SSM has been developed. This rule-based 

approach matches the method signatures of GoF to that of the subject 

system. Moreover, this thesis proposes a rules template to reflect the 

required method signatures of GoF design patterns. 

Consequently, the hybrid structural rule-based approach tries to 

achieve reasonable detection accuracy in terms of recall and precision. This 

approach combines both structural and behavioral characteristics of GoF 

design patterns. 

Furthermore, the second contribution of this thesis is to address the 

impact of GoF design patterns on software maintainability and 

understandability. A metrics-based approach has been developed in an 

attempt to reach a safe conclusion.  

 

1.10 Thesis Organization   

This thesis is organized as follows: Chapter Two highlights and compares 

most of the detection approaches presented in the literature In addition, 

Chapter two presents the reported impact of GoF design patterns on 

software maintainability and understandability. The general methodology 

and the structural search model to recover design pattern instances are 

discussed in Chapter Three. Chapter Four presents the experimental results 

of applying the structural search model to eight subject systems. The rule-

based system and its effect on detection accuracy are presented in Chapters 

Five and Six respectively. Chapter Seven addresses the impact of design 
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patterns on software understandability and maintainability. Finally, thesis 

conclusions, future research directions and limitations of the presented work 

are presented in Chapter Eight. 

 

1.11 Summary 

This chapter presented an abstracted overview of areas and aspects related 

to this thesis. These aspects are software development models, software 

architecture, design patterns and quality attributes. Moreover, the key 

motivations for writing this thesis and these research questions, aims and 

contribution to knowledge were presented.  
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hapter Two 
Literature Review  
Since the introduction of design patterns in 1995, many tools 

and approaches have been presented in the literature to 

recover their instances from object-oriented programs. This chapter provides 

the current state of the art in design pattern detection. In addition, the 

reported impact of design patterns has been presented. The selected 

approaches cover the whole spectrum of the research in design pattern 

detection. We noticed diverse accuracy values recovered by different 

detection approaches and the lessons learned are listed at the end of this 

chapter. These can be used for future research directions and guidelines in 

the area of design pattern detection.  

 

2.1 Introduction  

Many tools and approaches have been developed in the last two decades to 

recover design pattern instances from object-oriented programs. The main 

objective of these approaches is to recover accurately the instances of 

design patterns. However, detection approaches differ in their input, 

extraction methodology, case studies, recovered patterns, system 

representation, accuracy and validation method.  

The field of design pattern detection still faces a number of key 

challenges, such as the fact that the current detection approaches are 

working independently from each other and there are no standard 

benchmarks or references to validate the recovered instances and the 

possible variants of the design pattern. In addition, the evaluation of design 

pattern detection approaches is somehow difficult since most current 

detection tools are not publicly available. Some detection approaches 

applied their experiments on small-size programs using a few patterns and 

these achieved high precision and recall rates. However, most detection 

approaches rely on code level for patterns detection, using the source code 

as input and representing it in one of the parsing formats, Abstract Syntax 

C 
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Tree (AST) or Abstract Syntax Graph (ASG). Moreover, the current design 

pattern detection tools are built to implement a certain methodology and 

each tool works independently without the ability to integrate it with other 

existing tools.   

The accuracy of design pattern detection tools is affected by a number 

of factors, such as pattern variants, instance definition, type of matching, 

system size and parsing and modeling techniques.  In fact, most detection 

approaches recover only one category of design patterns or only certain 

patterns.  

On the other hand, the implementation of design patterns can vary 

across studies and these variants could be responsible for any differences 

observed in the reported results of the effects of design patterns on quality 

attributes. 

An empirical review and evaluation of current existing detection 

approaches is important to guide the researcher through the weaknesses of 

these approaches. This chapter presents the current state of design pattern 

detection approaches. Specifically, we have presented a comparative study 

on design pattern detection approaches in terms of detection methodology, 

analysis style, system representation, subject systems, recovered design 

patterns and evaluation criteria. Furthermore, this chapter presents the 

reported impact of design patterns on software quality attributes. 

 

2.2 Overview of Detection Approaches 

Design pattern detection approaches could be classified based on different 

criteria and aspects. This chapter has categorized detection approaches 

based on their detection methodology and on their analysis style.  

Most detection approaches use similar key steps which aim to match 

the source code representation to that of GoF. The detection methodologies 

could be categorized, based on their key recovery steps, into four main 

groups: database-query approaches, metrics-based approaches, UML 
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structure, graph and matrix-based approaches and miscellaneous 

approaches.          

 

2.2.1 Database-Query Approaches 

Database-query approaches transform the source code into an intermediate 

representation, such as AST, ASG, UML structures, XMI etc. SQL queries 

are used to recover pattern information from the generated representation. 

The database in use affects the performance of the queries. Unfortunately, 

database-query approaches are not able to recover instances of behavioral 

design patterns.  

2.2.1.1 Rasool et al. Approach 

The approach presented by Rasool et al. [18] used annotations, regular 

expressions and database queries to recover instances of design patterns. 

The varying features of patterns are defined and rules are applied to match 

these features to source code elements. Time and search space are reduced 

by using appropriate semantics from large legacy systems.  Rasool et al.’s 

approach only recovers certain patterns and its accuracy and efficiency are 

not reported. 

2.2.1.2 Stencel and Wegrzynowicz Approach 

Stencel and Wegrzynowicz [19] present a pattern recognition method to 

detect non-standard implementations of design patterns as well as standard 

implementations. The Detection of Diverse Design Pattern Variants tool (D3) 

has been developed to implement the detection methodology. In addition, a 

simple program meta-model has been generated to store the program’s core 

elements, such as attributes, operations and instances. D3 detected the 

creational instances of design patterns from the Java source code using 

static analysis and SQL queries. The execution time is reported only where 

D3 spent 36 seconds to recover the creational instances from JHotDraw. 
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2.2.1.3 Marek Vokac Approach 

Marek Vokac constructed a tool to recover certain design patterns from the 

C++ source code [20]. The tool relies on descriptions of structural signatures 

associated with the chosen design patterns. The UNDERSTAND FOR C++ 

parser [21] has been used to generate a file that stores entities’ and 

references’ data which will be transferred into an SQL database. The SQL 

table involves links to certain files and metrics. The recognition of design 

patterns is done by a series of SQL statements designed to look for a given 

structure. The experiments were conducted only on a Customer Relationship 

Management system.  

2.2.1.4 SPOOL 

SPOOL (Spreading Desirable Properties into the Design of Object-Oriented, 

Large-Scale Software Systems) is a joint research project between the 

University of Montreal and Bell Canada. The SPOOL environment comprises 

functionality for design composition, change effect analysis and detection of 

design patterns [22]. The SPOOL reverse engineering environment involves 

a three-tier architecture. The top tiers involve source code capturing, 

analysis and visualization. On the other hand, the design repository resides 

on the bottom tier. The SPOOL environment appears in Figure 2.1. 

 

 

 

   

 

 

 

 

 

Figure 2.1: The SPOOL environment 
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SPOOL reads C++ files as input and uses a Datrix parser to parse 

them. Datrix represents the C++ source code in the form of an ASCII-based 

representation (Datrix/TA intermediate format). SPOOL converts Datrix TA 

files into XML syntax (Datrix/TA-XML). Moreover, SPOOL uses an XML 

parser (xml4j) to read the content of Datrix/TA-XML files.  

SPOOL recovered different source code information, such as classes, 

structures, attributes, parameters, return types, call actions, object 

instantiations and friendship relations. The design pattern recovery process 

aims to structure parts of the class diagrams so that they resemble pattern 

diagrams. SPOOL supports manual and automatic design pattern recovery.  

Furthermore, SPOOL introduces the concept of a reference class (the class 

that most reflects the class behavior).   

The SPOOL environment has been applied on three industrial 

systems. For confidentiality reasons, System A and System B were used to 

represent the first and second systems. The third system is ET++ v3.0. 

SPOOL recovered 43 instances of the Template Method pattern in system A 

(these instances of the Template Method design pattern were recovered by 

traversing all source code classes using the implementation of Template 

Method query, searching for local operations calls and verifying whether the 

“primitiveOperation” is polymorphic). Furthermore, SPOOL detected 46 

bridge design instances in ET++ and the “Abstraction” participant class was 

selected as a reference class. Bridge query searches for classes with an 

instance variable of type “Implementor”. In addition, it verifies whether the 

receiver of an operation call is of type “Implementor” and whether it is 

overridden by at least one subclass of “Implementor” (fingerprinting a bridge 

instance). The efficiency and accuracy of SPOOL were not reported. 

 

2.2.2 Metrics-Based Approaches  

Metrics-based approaches compute program related metrics, such as 

aggregations, associations and dependencies, from different source code 

representations. Different techniques are applied to compare pattern metric 
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values to that of the source code. Metrics-based approaches reduce the 

search space through filtration.  

2.2.2.1 MAISA 

MAISA (Metrics for Analysis and Improvement of Software Architecture) is a 

research tool developed at the University of Helsinki [23]. MAISA represents 

design pattern detection as a constraint satisfaction problem (CSP) where 

problems are represented as a set of constraints over variables in a particular 

domain. A CSP involves a set V of variables, a domain Di for each variable i 

∈ V and a set of constraints P. The target is to find an assignment S to the 

variables in such a way that the assignment satisfies all the constraints: S = 

{i: = x | p1 ∧ p2 ∧ … ∧ pn ∧ p1j ∧ p2j ∧ … ∧ pmj ∀ pk ∈ Pi ∀pkj ∈ Pij ∀i, j ∈ V, 

x ∈ Di}. 

MAISA represented CSP as a graph in which variables and their 

domains are represented as nodes. On the other hand, constraints are 

represented as arcs.  An arc-consistency algorithm (AC-3) is used to delete 

the values that cannot satisfy certain constraints from the node domains. 

Values deletion is performed until a solution is found. Metric prediction 

attributes are stored in a library. A user can select the pattern that he wants 

to search for. MAISA will search for the selected pattern and provide each 

match as a potential candidate.  

MAISA was implemented in Java. In addition, Prolog was used for the 

structural coding of software architecture and architectural patterns. 

Architecture and patterns are described as UML diagrams which will be 

translated later on to Prolog format. Pattern relationships and architecture 

components are expressed using Prolog facts. MAISA uses software metrics 

to measure software architecture and to estimate the final system. The 

architectural measurements comprise size and complexity metrics, such as 

the number of messages, the depth of the inheritance tree and the number 

of classes.  

MAISA involves the following components: UML editor, pattern library, 

pattern miner, metric analyzer and reporting tool. MAISA have been applied 

to Nokia’s DX200 switching system and two instances of Abstract Factory 
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design pattern were recovered. The efficiency and accuracy of MAISA were 

not reported. 

2.2.2.2 FUJABA 

FUJABA (From UML to Java and Back Again) is a design pattern detection 

tool in which design patterns are defined as sub-patterns [24]. The source 

code is represented as an Abstract Syntax Graph (ASG). Later, during the 

detection process, ASG is enriched with annotations that indicate the 

presence of sub-patterns in the source code.  

FUJAPA applied transformation rules to capture the structural and 

behavioral aspects of design patterns. Transformation rules are organized 

into multiple levels of hierarchies. For example, level one of the hierarchy 

holds the source code information. FUJABA used a combined bottom up and 

top down strategy to apply the transformation rules. FUJAPA‘s detection 

algorithm uses assigned level numbers, which are associated with the 

transformation rules, to establish the orders of applying the rules on ASG. In 

addition, FUJABA uses fuzzy values to accept or reject the detected pattern 

elements (sub-patterns). The use of sub-patterns makes the detection 

process incremental. Hence, relevant information can be achieved in a short 

time. For example, FUJABA represented the Composite design pattern as 

three sub-patterns (Generalization, Association and Delegation).  

Generalization is recovered during level one, whereas Association and 

Delegation are recovered during level two.  

FUJABA relies on class diagrams, activity diagrams and state chart 

representations of design patterns. Class diagrams describe design pattern 

structure, whereas activity diagrams and state chart diagrams describe the 

behavioral aspects of design patterns. One of the interesting features of 

FUJABA is its ability to generate codes from collaboration diagrams. The 

FUJABA environment has been applied to an automatic material 

transportation system. FUJABA is a semi-automatic tool which needs the 

intervention of a software engineer. FUJABA did not report any evaluation 

results to assess its effectiveness or efficiency.  
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2.2.2.3 Antoniol et al. Approach 

The approach presented by Antoniol et al. [25] generates an Abstract Object 

Language (AOL) representation for both source code and subject system 

design. Class-level metrics, such as the number of aggregations, 

associations and inheritances, are computed as well. Specifically, a brute-

force approach to identify all possible pattern candidates was adopted. To 

identify all pattern candidates in a design containing N classes, all possible 

arrangements of the classes and their relationships are computed.  

The experiments have been performed on a public domain code and 

an industrial code in order to assess the approach effectiveness. The 

reported precision was 55%.  

2.2.2.4 Detten and Becker Approach 

The approach in [26] combines both clustering-based and pattern-based 

reverse engineering approaches. This approach shows that the occurrences 

of bad smells in the software system code can falsify the results of a metric-

based clustering. Moreover, the approach applies pattern detection to an 

initial decomposition of the system to detect bad smells, thereby preventing 

the clustering algorithm performing a further decomposition.  

2.2.2.5 Uchiyama Technique 

The technique presented by Uchiyama et al. (hereafter, Uchiyama 

technique) uses source code metrics and machine learning to detect design 

patterns [27]. By using the goal question metric method (GQM), some source 

code metrics are selected to judge roles. Pattern specialists define a set of 

questions to be evaluated and select some metrics to help to answer these 

questions. Moreover, Uchiyama technique uses a hierarchical neural 

network simulator in which the input is metric measurements of each role 

and the output is the expected role. Figure 2.2 shows the technique 

presented by Uchiyama et al. [27]. 
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Figure 2.2: Uchiyama technique 

The hierarchy number is set to three, the number of inputs is set to 

the number of decided metrics and the number of outputs is set to the 

number of roles. The sigmoid function has been used as a transfer function 

in the neural network. In addition, a back-propagation has been used to 

calculate the error margin between output Y and correct answer T. The 

Uchiyama technique detected five design patterns: Singleton, Adapter, 

Template method, State and Strategy.  

The detection was done by matching the candidate roles, produced 

by the machine learning simulator, to the pattern structure definitions. 

Searching is looking for all possible combinations of candidate roles that are 

in agreement with pattern structures. The Uchiyama technique recovered 

inheritance, interface implementation and aggregation relationships. Pattern 

agreement values were calculated based on the role and relation agreement 

values. The Uchiyama technique has been applied to small-scale programs 

as well as to large-scale programs (Java library v1.6.0, JUnit v4.5 and Spring 

framework v2.5 RC2). A total of 40 pattern instances in the small-scale 

programs and 126 pattern instances in the large-scale programs were used 

as learning data. The Uchiyama technique has distinguished between the 

Strategy and State design patterns and is able to detect pattern variations. 

However, the validity of the parameters, expressions, agreement values and 

thresholds is not proved. The Uchiyama technique was evaluated in terms 
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of recall and precision. The reported precision and recall rates were 63% and 

76% respectively.  

 

2.2.3 UML Structure, Graph and Matrix-Based Approaches 

These approaches represent the structural and behavioral information of the 

subject system as UML structure, graph or matrix. Most of these approaches 

have good precision and recall rates but they are not capable of handling the 

implementation variants of design patterns. 

2.2.3.1 Seemann and Gudenberg Approach 

Seemann and Gudenberg, in their work, showed how to recover design 

information from the Java source code [28]. A compiler collects the 

relationships information, method calls and inheritance hierarchies and the 

result of the compile phase is a graph. A filtering was made to the graph to 

detect design patterns. Seemann and Gruenberg’s approach detects only 

Strategy, Bridge and Composite design patterns. 

2.2.3.2 DEPAIC++ 

DEPAIC++ (DEsign PAtterns Identification of C++ programs) is a design 

patterns detection tool developed by Espinoza et al. in 2002 [29]. DEPAIC++ 

is a canonical model formulated to analyze the structure of C++ classes. In 

addition, DEPAIC++ verifies whether or not the code being analyzed is using 

design patterns. DEPAIC++ is composed of two modules that first transform 

the C++ code into a canonical form and then recognize design patterns. 

However, DEPAIC++ did not analyze the behavior of the source program. It 

detects design patterns starting from a structural analysis of the source code, 

whereas some design patterns implement different behaviors in their 

solutions. 

2.2.3.3 Columbus  

Columbus is a reverse engineering framework developed at the University 

of Szeged to analyze C++ projects [30]. The recovered information is 

presented as Columbus schema for C++. The schema represents C++ 
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elements at different levels of abstraction. The schema description is 

represented using a UML class diagram. Moreover, physical representations 

were created from a schema instance (Abstract Syntax Graph). The 

operation of Columbus is performed using three plug-ins: 

• Extraction plug-in which analyzes the C++ source file and creates a file 

to store the recovered information. Columbus reads the input files and 

passes them to an extractor which will generate the appropriate internal 

representation. The extractor parses the input source file by invoking a 

separate program called CAN (C++ ANalyzer).  

• Linker plug-in which builds a complete internal representation of the 

project. Columbus applied different filtering methods, such as filtering 

using C++ elements categories, filtering by input source files and 

filtering by scopes.  

• Exporter plug-in which exports the internal representation to a given 

output format such as HTML, Graphic Exchange Language (GXL) and 

MAISA. 

Columbus recovery capabilities were applied on three C++ projects: 

IBM Jikes Complier, Leda Graph Library and Star Office Writer. Columbus 

presented different statistics for the subject systems, such as number of 

classes, number of functions, memory consumption and CPU times. The 

accuracy of Columbus was not reported. 

2.2.3.4 Similarity Scoring Approach 

Design pattern detection using Similarity Scoring Approach (SSA) is a 

research prototype developed in Java at the University of Macedonia to 

handle the problem of multiple variants of design patterns [31]. SSA 

describes design patterns to be detected, as well as the subject system, as 

graphs. SSA represents all system static information as a set of matrices.  

SSA uses a graph similarity algorithm to detect design patterns by 

calculating the similarity of vertices in the pattern and the subject system. To 

handle the system-size problem, SSA divides the system into a number of 

sub-systems and the similarity algorithm is applied to the sub-systems 
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instead of the whole system. SSA was applied to three open source systems: 

JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7. Results were validated 

against the documentation of the systems.  

Moreover, SSA uses matrices to represent the relationships between 

classes, which are directed graphs that can be mapped into a square matrix. 

To preserve the validity of the results, SSA similarity scores were bound 

within the range [0, 1]. SSA shows that the use of a similarity algorithm 

produces more accurate results than the use of exact/inexact graph 

matching.  

SSA Methodology 

Since design patterns involve class hierarchies, SSA locates these 

hierarchies and applies the similarity algorithm to them. The methodology 

presented by SSA can be summarized as follows: 

• Each characteristic of the subject system (associations, generalization, 

abstract classes, object creations, abstract method invocations) is 

represented as a N×N adjacency matrix where N is the total number of 

classes in the subject system. 

• Inheritance hierarchies are detected. Classes that do not participate in 

any hierarchy are listed in a separate group of classes.  

• Building sub-system matrices. The whole system is partitioned into a 

number of sub-systems to improve detection efficiency. The 

experimental results show that the time required to apply the similarity 

algorithm to sub-systems is less than that for the whole system. Sub-

systems are formed by merging all system hierarchies, two at a time.  

• Appling the similarity algorithm between design pattern matrices and 

sub-system matrices by calculating normalized similarity scores.  

• Recovering design patterns in each sub-system. A list is created for 

each pattern role. Sub-system similarity scores are sorted in 

descending order. Sub-system classes that have scores equal to the 

highest score of each role are inserted into the list. Exact matching, for 
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a pattern role, occurs when scores are equal to one. On the other hand, 

scores for modified pattern versions result in scores that are less than 

one. 

To improve the accuracy of the detection process, SSA minimized the 

number of roles by considering only the important roles of each design 

pattern. In some cases, in which the sub-system does not involve the 

required pattern attributes, the detection process is terminated and the sub-

system is excluded.  

SSA Results Evaluation  

SSA has been evaluated in terms of efficiency and accuracy. The validation 

of results was done manually by inspecting the source code and referring to 

the documentation of the subject systems.  

In terms of accuracy, SSA obtained false positives for two patterns: 

Factory Method and State design patterns. SSA achieved a precision of 

100% for all the examined design patterns and a recall ranging from 66.7% 

to 100%.   

SSA detected the following design patterns: Adapter, Command, 

Composite, Decorator, Factory Method, Observer, Prototype, Singleton, 

State, Strategy, Template Method and Visitor.  

SSA efficiency was determined by measuring the CPU times and 

memory consumption during the detection process. SSA shows that the 

similarity algorithm is the most intensive task. Furthermore, storing the 

adjacency matrices is the main consumer of resources. 

SSA has a number of limitations. For example, it assumes that no 

more than one characteristic for a given design pattern instance is modified. 

To distinguish true positives from false positives, SSA uses a threshold 

value. For the pattern roles that have two characteristics (association and 

generalization), a threshold value of 0.5 is assigned. Moreover, SSA cannot 

detect the characteristics that are external to sub-system boundary, such as 

chains of delegations. Finally, SSA does not employ any dynamic 

information.  
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2.2.3.5 DP-Miner 

Design Patterns Discovery Matrix (DP-Miner) was developed at the 

University of Texas as a research prototype to detect design pattern 

instances [32]. DP-Miner represents system structure (all classes of the 

system) as a matrix of columns and rows. Each cell in the matrix represents 

a certain relationship between classes. On the other hand, the relationships 

between pattern participant classes are represented in another matrix. The 

detection of design patterns is performed by matching the two matrices. The 

architecture of DP-Miner appears in Figure 2.3.  

 

 

 

 

 

 

Figure 2.3: DP-Miner architecture 

DP-Miner used an IBM plugin called “UniSys” to transform UML class 

diagrams into XMI format. DP-Miner involves three analysis phases: 

structural, behavioral and semantic. In the structural analysis phase, DP-

Miner takes the advantage of prime numbers where any given number can 

be broken into a unique list of prime numbers. A unique prime number is 

assigned to each structural element. “One” is excluded since it is used as an 

identity for multiplication. DP-Miner calculates the weight of each class 

according to the following formula: 

Total class weight = Wa × Wm × Was × Wg × Wd × Wag 

Where: Wa: 2 number of attributes in the class, Wm: 3 number of methods in the class,                  

Was: 5 number of association relationships in the class, Wg: 7 number of generalisation relationships in the 

class, Wd: 11 number of dependency relationships in the class and Wag: 13 number of aggregation 

relationships in the class 
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For example, if a class weight is calculated as 5670, then it can be 

broken into 21 × 34 × 51 × 71, which indicates that this class has one 

attribute, one association and one generalization. Optimization has been 

applied to handle the overflow problem which may occur because of the 

large numbers of methods and attributes. DP-Miner encoded the system 

design into n × n matrix (where n is the total number of classes in the 

system). On the other hand, design pattern relationships are encoded into m 

× m matrix (where m is the total number of participant classes). Design 

pattern detection is done by matching the system design matrix to the design 

pattern matrix. Each cell in the system design matrix is initialized by 1.  

For each cell in the system design matrix, if the relationship between 

class I and class J is:    

• Association: then cell value is multiplied by 5. 

• Generalization: then cell value is multiplied by 7.  

• Dependency: then cell value is multiplied by 11. 

DP-Miner excluded the aggregation relationships from the structural 

analysis phase since it is difficult to extract them from an XMI file. On the 

other hand, DP-Miner checks class types such as abstract, concrete, or 

interface. The behavioral analysis phase focuses on finding dependency 

relationships and method delegations. To handle the problem of 

implementation variants, DP-Miner constructs a Control Flow Graph (CFG).  

However, it is not clear how the behavioral aspects are recovered by DP-

Miner. How is the XMI file parsed?  

Furthermore, DP-Miner uses semantic analysis to get clues from 

named conventions of classes. However, not all classes in the system may 

be named with pattern-related information (i.e. some implementations may 

be developed without any pattern knowledge).  

DP-Miner Results Optimization  

DP-Miner was applied to the Java AWT package (Abstract Windowing 

Toolkit). The AWT package involves 346 files which contain 485 classes and 
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111 interfaces. When DP-Miner is applied to a large number of attributes and 

methods, an overflow is noticed in practice. To handle this, DP-Miner 

optimized the weight calculations and the matrix construction. 

Depending on the observation of GoF pattern characteristics, DP-

Miner concluded that there was no more than one attribute in each pattern 

participant class. In addition, the number of operations in any pattern 

participant class is less than five. Based on the observation that there is only 

one instance of each relationship, the maximum weight for a given class is 

25 × 35 × 5 × 7 × 13 = 31352832. Hence, DP-Miner changes the way of 

scanning the XMI file so the matrix can be built in one iteration. The matrix 

construction time of JavaAWT is reduced to 15 seconds.                                    

DP-Miner Detection Methodology 

DP-Miner recovery relies mainly on calculating class weights and on the 

construction of a relationship matrix. The weight of each class provides an 

indication of the number of attributes and operations inside each class and 

its relationship with other classes. It must be noted that DP-Miner did not 

distinguish between the inheritance and realization relationships (i.e. DP-

Miner considers that the relationships of class A extend class B and that 

class A implements class B as an inheritance relationship). Moreover, DP-

Miner did not recover the aggregation and dependency relationships.  

DP-Miner recovered Adapter, Bridge, Strategy and Composite design 

patterns from the Java AWT package. To explain how DP-Miner works, an 

example of the recovery of the Adapter design pattern from JavaAWT is 

presented. DP-Miner calculates a weight for each Adapter participant class. 

The calculated weights are: Target class = 3 (one method), Adapter = 105 

(one method, one association and one generalization) and Adaptee class = 

3 (one method). The relationship matrix is also constructed to describe the 

relationships among Adapter participant classes. Table 2.1 shows the 

relationship matrix of the Adapter design pattern.  
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Table 2.1: DP-Miner’s Adapter pattern matrix 

Candidate instances of the Adapter design pattern are identified 

during the structural analysis phase. False positives are reduced later during 

the behavioral analysis phase. The semantic analysis phase is not applied 

since there are no ambiguity issues between the Adapter instances. DP-

Miner searches for weights of a group of classes in Java AWT that are 

integral multiples of the Adapter participant classes. The Adapter matrix may 

not have the exact sub-matrix of the JavaAWT matrix. Each candidate 

instance in the Adapter matrix must satisfy the following rules:  

• Target class should be abstract or interface and its weight should be a 

multiple of 3. 

• Adapter class should be concrete and its weight should be a multiple of 

105. 

• Adaptee class should be concrete and its weight should be a multiple 

of 3. 

During the behavioral analysis, DP-Miner will check whether there is 

any method that plays the role of the request method (the request method is 

defined in the Target class and re-implemented in the Adapter class). If an 

instance satisfies the first condition, then the tool will check if the request 

method in the Adapter class invokes the request method in the Adaptee 

class.  

DP-Miner detected 21 Adapter instances within 2.44 seconds and 3, 

76 and 65 instances of Composite, Strategy and Bridge respectively.  Result 

validations were performed based on the manual tracing of the Java AWT 

package and on the documentation provided by Java AWT. The detection 

accuracy was not reported. 

 

Class Target Adapter Adaptee 

Target 1 1 1 

Adapter 7 1 5 

Adaptee 1 1 1 
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2.2.3.6 Sub-Patterns Approach 

The approach presented by Dongjin et al. involves a sub-pattern 

representation for the 23 GoF design patterns, henceforth the sub-patterns 

approach [33]. The source code and predefined GoF design patterns are 

transformed into graphs with classes as nodes and relationships as edges. 

The instances of sub-patterns are identified by means of sub-graph 

discovery. The Joint classes have been used to merge the sub-pattern 

instances. Moreover, the behavioral characteristics of method invocations 

are compared with a predefined method signature template of GoF patterns 

to obtain final instances.  

The sub-patterns approach introduces a structural feature model to 

represent GoF design patterns. The structural feature model recovered four 

main relationships: inheritance, aggregation, association and dependency. 

In fact, the sub-patterns approach defined 15 sub-patterns to represent GoF 

design patterns. A class-relationship directed graph has been used to 

represent the classes and their relationships.  

In addition, the sub-patterns approach uses a class-relationship 

directed graph to represent system classes and the relationships among 

them. The directed graph has been defined as follows:  

V = {V0, V1….Vn} is the set of vertices that represents system classes.  

E = {e (vi, vj) С V × V is the set of directed edges that represents the 

relationships. 

W = E WE is the function that assigns weights to edges. 

The prime numbers 2, 3, 5 and 7 were used to represent the weights 

of the association, inheritance, aggregation and dependency respectively. If 

two classes have more than one relationship; the corresponding prime 

numbers are multiplied. 

The sub-patterns approach works in four main steps: 
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• Modelling the source codes into a class-relationship directed graph in 

which the vertices represent the classes and the edges, while their 

weights represent the relationships among classes. 

• Detecting the instances of sub-patterns by matching the sub-graphs of 

the class-relationship directed graph to that of the predefined sub-

patterns. 

• Merging the sub-pattern instances based on the joint classes and 

comparing them to the Structural Feature Model to produce the 

candidate instances.  

• Analyzing method signatures to obtain final instances.  

The sub-patterns approach used Enterprise Architect, a visual 

platform for modelling software systems, to parse the source codes and to 

produce class diagrams and XMI files. 

The searching algorithm will search for the candidate vertices in the 

class-relationship directed graph of the subject system (GCDRs). For each 

vertex (vi) in the class-relationship directed graph of the sub-pattern 

(GCDRm), the vertices in GCDRs are selected if their outbound composite 

weights and inbound composite weights can be divided, with no remainder, 

by those of vi in GCDRm. The candidate vertices are combined to generate 

k-sub graphs. Further details on how to calculate the outbound composite 

weights and inbound composite weights are presented in [33]. 

The sub-patterns approach has been applied to nine open source 

systems and a Design Pattern Instances Detection tool has been developed 

to implement the methodology. Precision, recall and F-measure metrics were 

used to assess the detection accuracy. Moreover, the execution time for the 

instances recovery, structural analysis and behavioral analysis was 

calculated. As it was reported by the authors, the sub-patterns approach 

spent a longer time on method signatures analysis than on structural 

analysis. The validation of the results is performed manually and the 

repository of Perceron [34] has been used as a reference benchmark. The 
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sub-pattern approach achieved precision which ranges from 68% to 100% 

and recall with ranges from 73% to 100%.  

We noticed contradictions in the results presented by the sub-pattern 

approach. For example, the authors stated that Perceron was used as the 

main reference to validate the recovered instances, but Perceron did not 

involve JHotDraw and JavaAWT in its list of open source projects. 

Furthermore, the reported results for the Factory Method recovery in JUnit 

was not accurate where the sub-pattern approach reported two instances 

and Perceron reported only one instance. The calculated precision and recall 

for the Factory method pattern were both 100%. Another example is the 

detection of the Proxy design pattern in Hodouk. Perceron reported zero 

instances, while the sub-pattern approach recovered 13 instances. The 

recall was calculated as 100%. 

 

2.2.4 Miscellaneous Approaches 

These approaches do not fit under any of the previous categories. The 

following is a brief description of each approach in this category.  

2.2.4.1 Kraemer and Prechelt Approach 

One of the first approaches to detect design patterns was presented by 

Kraemer and Prechelt in 1996 [35]. They tried to improve software 

maintainability through the detection of design patterns directly from the C++ 

source code. Design patterns are represented as Prolog rules which are 

used to query a repository of C++ codes.  

The detection process focused on five structural design patterns:  

Adapter, Bridge, Composite, Decorator and Proxy. The Kraemer and 

Prechelt approach was applied to four projects: NME, ACD, LEDA and zApp 

class library. The reported precision was 14-50%. 

2.2.4.2 PTIDEJ 

PTIDEJ (Pattern Traces Identification, Detection and Enhancement in Java) 

was developed at the University of Montreal using Java under the Eclipse 
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platform and, since then, PTIDEJ has evolved into a complete reverse 

engineering tool. PTIDEJ comprises several identification algorithms for 

design patterns, micro patterns and idiom patterns [36][37].   

The core of the PTIDEJ tool is the PADL Meta-model (Pattern and 

Abstract Level Description Language). PADL involves a parser to generate 

a model of the subject system and to build an Application Object Library 

(AOL). PTIDEJ comprises four key tools: 

• Software Architectural Defects (SAD) which can automatically detect 

the architectural defects and correct them by applying refactoring 

techniques at the design level. 

• Efficient Patterns Identification (EPI) which is used to detect design 

pattern occurrences in the source code. EPI uses constraint-based 

programming to find exact and approximate occurrences of design 

patterns. 

• Dynamic Relational Adjacency Matrix (DRAM) which is mainly used to 

visualize the dynamic relationships between classes.  

• ASPECTS which computes certain metrics based on the generated 

aspect-oriented abstraction.  

The architecture of PTIDEJ appears in Figure 2.4 

 

 

 

 

 

 

Figure 2.4: PTIDEJ architecture 

 

Design solutions provided by design patterns are described in PTIDEJ 

using design motifs which are prototypical micro architectures. PTIDEJ 

recovered design patterns by finding all micro architectures that are similar 
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to design motifs (i.e. finding all classes and interfaces that have structures 

similar to design motifs). Candidate design motifs are assessed qualitatively 

using quantitative signatures. In addition, the metric values of classes, which 

are playing roles in design motifs, are computed and sent to a rule learner 

algorithm.  

Classes that are playing roles in design motif are evaluated using 

external class characteristics, such as size, filiation, cohesion and coupling. 

Since two or more classes may have identical external attributes and roles, 

fingerprinting cannot be used to detect design motifs. However, it can be 

used to reduce the search space for the candidate classes. 

PTIDEJ considers design pattern detection as a constraint 

satisfaction problem (CSP) in which decisions were made during the variable 

assignment phase. Specifically, the explanation was used to explain the 

differences between the expected and the observed behavior for a given 

problem. In addition, the explanation was used to determine the constraint 

effects on the domain of variables. In the context of design pattern 

identification, explanation-based constraints can explain why no solution is 

found for a given problem. Moreover, relaxing a constraint allows the 

discovery of new solutions. The PTIDEJ detection process can be 

summarized as follows:  

• Modelling design patterns as a constraint satisfaction problem (CSP). 

Design pattern participant classes are modelled as a set of constraints. 

An integer variable is associated with each participant class. 

Relationships between classes are represented as constraints over 

variables.  

• Modelling the source code. Only the information needed to apply the 

constraints is kept, such as class names and relationships between 

classes.  

• Finding the distorted solutions. When all real solutions of CSP are 

found, the user can guide the search process dynamically to find the 

distorted solutions. PTIDEJ has built a library of constraints to express 

the relationships between classes. The constraints library stores:  
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• Strict inheritance relationship. An inheritance relationship is 

expressed by “Strict Inheritance Constraint”. If B inherits from A, 

then the constraint is expressed as A<B. 

• Knowledge (if a method in class A invokes a method in class B). The 

knowledge is expressed by the constraint 

“RelatedClassesConstraint”, expressed as A →B. 

• Non-Knowledge (class A must know about class B). This relation is 

expressed by the constraint “UnRelatedClassesConstraint”. 

• Composition relationship (class A defines one or more fields of class 

B). This relation is expressed by the constraint “composition”, 

expressed as A Ↄ B. 

• Field type (to ensure that a field f of class A is of type B). This relation 

is expressed by the constraint “PropertyTypeConstraint”, expressed 

by as A.f=B.  

For example, PTIDEJ modelled the Composite design pattern by 

associating each participant class with a variable. Variable values are 

constructed based on the relationships between classes. Specifically, 

composite < component, leaf < component and composite Ↄ component. 

PTIDEJ used the explanation-based constraint solver, PALM, to extract a 

similar set of classes from the source code. 

PTIDEJ has been applied on two packages of the Java class libraries: 

Java AWT and Java.NET. As reported by PTIDEJ, all Composite and 

Façade design instances were identified correctly. However, the accuracy of 

PTIDEJ is not reported.  

2.2.4.3 CrocoPat 

CrocoPat is a tool for design pattern detection developed at the Technical 

University of Cottbus [38]. It represents the software metamodel in terms of 

relations.  Design patterns are described by relational expressions. The main 

motivation for building CrocoPat is to handle the performance problem of the 

previous detection tools. The metamodel presented by CrocoPat divides the 

object-oriented program into packages, classes, methods and attributes.  
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CrocoPat automatically analyzes the object-oriented program and the 

user is able to define new patterns. Moreover, CrocoPat is able to analyze 

large, object-oriented programs in an acceptable time. In terms of graph 

theory, CrocoPat does sub-graph search. In terms of relational algebra, 

CrocoPat searches for tuples fulfilling a given predictive expression. 

CrocoPat represented all system relationships using a Binary Decision 

Diagram (BDD).  

CrocoPat Detection Methodology 

 CrocoPat recovers design pattern instances using three main steps:  

• Recovering source code data using a program analysis tool (sotograp). 

The recovered data will be stored in a relation file. 

• Creation of pattern definitions using pattern specification language. The 

CrocoPat’s language uses relational algebra expressions to express 

the pattern definitions. The syntax and semantics of the expressions 

are also defined. Specifically, CrocoPat defines U (Universe) as a set 

of all values and X as a finite set of all attributes. A tuple t of X is a total 

function t: X U. Val (X) is the set of all tuples of X.   

• Recovering of the call, inherit and contain relationships. 

CrocoPat Evaluation  

CrocoPat has been applied on three open source systems: Mozilla, JWAM, 

and wxWindows. For example, to describe the Composite design pattern, 

CrocoPat used the expression Call Λ Inherits [x/y] Λ contains [x/z] Λ (inherits 

[x/L] Λ ʳ (contains [x/L]) where x is the client class, y is the component class, 

z is the composite class and L is the leaf class. Moreover, CrocoPat 

recovered some design analysis structures, such as classes in circles (class 

x is used by other classes including itself) and the role of identity (two classes 

use the same classes).  

CrocoPat is only evaluated in terms of performance. The reported 

results only show the detection of the Composite and Mediator instances in 

Mozilla, JWAM and wxWindows. The recovery performance for the detection 
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of all Composite instances in the three subject systems was 23 seconds for 

Mozilla, 3.1 seconds for JWAM and 1.0 seconds for wxWindows.  

2.2.4.4 SPQR 

System for Pattern Query and Recognition (SPQR) is a tool-set for elemental 

design pattern detection in C++ source code, developed at the University of 

Carolina [39]. SPQR uses a logical inference system to encode rules, which 

will be combined later to form patterns using reliance operators, and to 

encode the structural/behavioral relationships between classes and objects 

using rho-calculus. SPQR components are presented in Figure 2.5. 

 

 

 

 

 

 

Figure 2.5: SPQR components 

 

SPQR analyses C++ source code for a particular syntactic structure 

which matches the P-calculus concepts. SPQR uses a “gcc” tool to generate 

an abstract syntax tree representation of the source code. A “gcctree2oml” 

tool has been developed by SPQR to read the abstract syntax tree and to 

generate an XML representation of the object structure. Furthermore, the 

“oml2otter” tool reads the object’s XML file and produces a feature rule file 

(otter input) which will be used by the automated theorem prover (OTTER) 

to find design pattern instances. Finally, a “proof2pattern” tool analyses the 

OTTER proof and produces a final pattern report.  

SPQR is only applied to Killer Widget Application and the Decorator 

design pattern is recovered. SPQR results were only validated in terms of 

efficiency (CPU times and memory consumption). 
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2.2.4.5 PINOT 

Pattern Inference and Recovery Tool (PINOT) reclassifies the catalog of 

design patterns by intent [40]. PINOT was built from Jikes, an open source 

Java compiler, and focuses on the detection of common design patterns 

used in practice. To capture program intent, PINOT used static program 

analysis techniques to recover design pattern instances from four open 

source projects: Java AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and 

Apache Ant v1.6. PINOT reclassifies GoF design patterns, based on their 

structural and behavioral similarities, into five groups: Language-provided 

patterns, Structural driven patterns, Behavioral driven patterns, Domain-

specific patterns and Generic concepts. 

Language-driven patterns concern the patterns already implemented 

by programming languages, such as the Iterator and the Prototype design 

patterns, where they are implemented in Java using the libraries 

Java.util.Iterator and Java.lang.Object respectively. Structural driven 

patterns describe the inter-class relationships (generalization, association 

and delegation). These patterns are Bridge, Composite, Adapter, Façade, 

Proxy, Template method and Visitor. Behavioral driven patterns encode all 

pattern behaviors inside their method bodies. These patterns are Singleton, 

Abstract Factory, Factory method, Flyweight, Chain of responsibility, 

Decorator, Strategy, State, Observer and Mediator. Interpreter and 

Command design patterns are classified as Domain-specific patterns. 

PINOT claims that the Interpreter design pattern uses the structure of the 

Composite design pattern and the behavior of the Visitor design pattern. 

Generic concept patterns involve Memento and Builder design patterns 

since they have a lack of structural and behavioral aspects. PINOT focuses 

on the detection of structural and behavioral patterns. Language provided, 

Domain-specific and Generic concepts patterns are excluded from the 

detection process. 

Structural driven patterns are detected based on the relationships 

between classes. In addition, the virtual delegations, call dependencies, 

context interfaces, associations, aggregations, Factory interfaces and 
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Singleton class structures are identified. PINOT used data flow analysis on 

Abstract Syntax Trees (ASTs), in terms of blocks, to detect the behavioral 

driven patterns. Method bodies are represented as a Control Flow Graph 

(CFG) which is scanned later to determine method behaviors. Figure 2.6 

shows the CFG used by PINOT to represent the “getInstance” method, used 

to determine whether a class has only one instance (the intent of Singleton 

design pattern) [40].  

 

 

 

 

 

 

 

Figure 2.6: CFG of getInstance 

  

PINOT was tested against the demo pattern source codes from the 

applied Java patterns. PINOT defined a pattern instance as a set of pattern 

participants’ classes. PINOT successfully detected the following patterns: 

Abstract Factory, Factory Method, Singleton, Adapter, Bridge, Composite, 

Decorator, Façade, Flyweight, Proxy, Chain of Responsibility, Mediator, 

Observer, State, Strategy, Template Method and Visitor.  

PINOT has been run on a Linux machine using a 3GHz Intel 

processor with 1 G RAM. PINOT reported only the CPU times required to 

detect the structural and behavioral driven patterns in four open source 

projects (ANT, AWT, JHotDraw and Swing). CPU times for each subject 

system are presented in Table 2.1. PINOT results were validated against an 

authoritative discussion board and a developer documentation and also 

manually.  
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Table 2.2: CPU times of PINOT’s subject systems 

 

2.2.4.6 DeMIMA 

DeMIMA (Design Motif Identification: Multilayered Approach) is a semi-

automatic tool, developed at the University of Montreal, that identifies micro 

architectures similar to design motifs in the source code [41]. DeMIMA 

involves three layers: two layers to generate the source code abstract model 

and class relationships and one layer to recognize design patterns from the 

generated abstract model. 

  DeMIMA uses the term “design motif identification” to describe the 

detection process. In addition, it defines microarchitecture as a set of 

classes, methods and relationships having a structure similar to one or more 

design motifs (patterns).  

The DeMIMA detection process can be summarized as follows: 

• Identifying micro architecture (mA) similar to a set of pattern motifs. 

Source code (S) will be analyzed to search for a set of design motifs.  

• Contextualizing microarchitecture. This is done by storing design 

pattern motifs using external data.  

• Understanding source code by representing it as a class diagram to 

describe design motifs.  

DeMIMA provides an automation tool to implement the first task. 

Since the second and third task rely on human experience and system 

domain, they are not implemented. DeMIMA uses three layers to identify 

design motifs in source code: source code model, idiom level model and 

design level model. The traceability link between layers from source code up 

Subject system CPU Times (seconds) 

Ant 12.52 

AWT 10.68 

JHotDraw 8.98 

Swing 66.79 
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to the identified micro architecture appears in Figure 2.7. Moreover, DeMIMA 

defines a Meta-model, PADL (Pattern and Abstract Level Description 

Language), to express the characteristics of the class diagram.  

 

 

 

 

 

 

Figure 2.7: DeMIMA tractability link between layers 

 

DeMIMA First Layer (Source Code Model)  

DeMIMA first layer uses a parser to model the subject source code. The first 

layer includes all information found directly in Java source code, such as 

classes, methods and relationships. DeMIMA provides a Meta-model to 

describe the source code in terms of two parts:  

• A class entity which describes the system as a set of classes. 

• The class element which describes the methods inside each class.  

A UML-like diagram is used to describe the source code model. A 

code example and its UML representation, as presented by DeMIMA, 

appears in Figure 2.8 [41]:  

 

 

 

 

 

 

 

 

Figure 2.8: DeMIMA source code model example 
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DeMIMA Second Layer (Idiom Level Model) 

DeMIMA second layer provides a high-level abstraction view of the subject 

source code. Idioms specify the binary relationships between classes. 

DeMIMA focuses on the use, association, aggregation and composition of 

unidirectional class relationships. Four language-independent properties 

were used to define each relationship: 

• Exclusivity property (EX): An instance of class B involved at a given 

time with an instance of class A may also participate in other 

relationships at the same time. 

• Type of Receiver (RT): class A instances involved in a relationship send 

a message to class B instances. Message receivers can be fields, 

parameters, or local variables.  

• Lifetime property (LT) which constrains the lifetime for all class B 

instances with respect to the lifetime of class A instances. LT relates 

the time of destruction between two instances of class A and class B. 

In object-oriented programming, garbage collection is used to control 

instances’ lifetime. 

• Multiplicity property (MU) which is the number of instances of class B 

allowed in a relationship.  

Based on the above properties, DeMIMA formalizes the aggregation, 

composition and association relationships. Exclusivity and receiver type are 

considered static properties. In contrast, lifetime and multiplicity are 

considered dynamic properties. DeMIMA recovered the following 

relationships from the source code of Figure 2.8: Association (c1, c2) = 

False, Aggregation (c1, c2) = True and Composition (c1, c2) = False. 

 

DeMIMA Third Layer (Design Level Model) 

DeMIMA layer three models the design motifs as a set of participant classes.  

For example, Figure 2.9 shows a UML-like diagram representation of the 

source code of Figure 2.8. 
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Figure 2.9: DeMIMA design motif of the source code example 

 

DeMIMA uses explanation-based constraint programming to handle 

the constraint satisfaction problem. DeMIMA identifies micro-architectures 

similar to the design motifs by transforming them into constraints that reflect 

the relationships between the pattern’s participant classes. The used 

constraints are inheritance constraint, strict transitive inheritance constraint, 

transitive inheritance constraint, use constraint, ignorance constraint and 

creation constraint. For each constraint, a weight is assigned, which is an 

integer value ranging from 1 to 100, to reflect the importance of the 

constraint. DeMIMA uses constraint relaxation to replace the constraints that 

lead to conflicts with semantically weaker constraints.  

DeMIMA Implementation  

DeMIMA was implemented using Java programming language on the top of 

the PTIDEJ framework [36][37].  DeMIMA uses the following PTIDEJ 

components: 

• PADL (Pattern and Abstraction Level Description Language) to 

describe the models of source code, idiom and design.  

• PADL class file creator to parse the Java source code files. 

• Relationship static analyzer, used to compute the receiver type values 

and multiplicity values.  

• CAFFINE, used to perform the dynamic analysis of the subject system 

by calculating lifetime and exclusivity. 
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• PTIDEJ user interface, used to visualize the model. 

• PTIDEJ solver, used to produce microarchitectures. 

Furthermore, DeMIMA detected twelve design motifs: Adapter, 

Command, Composite, Decorator, Factory Method, Observer, Prototype, 

Singleton, State, Strategy, Template Method and Visitor. 

Recall and precision were used to assess the effectiveness of 

DeMIMA. The experiments have been applied on JHotDraw v5.1, JRefactory 

v2.6.34, JUnit v3.7, MapperXML v1.9.7, QuickUML v2001 and 33 

components. DeMIMA observed precision of 34% for the 12 design motifs 

considered and achieved 100% recall for the five open source systems. Due 

to confidentiality reasons, precision and recall were not reported for the 

industrial components.  

2.2.4.7 DPRE 

Design Patterns Recovery Environment (DPRE) is a design pattern recovery 

prototype developed at the University of Salerno [42]. DPRE uses a two-

phase approach to recover structural design patterns from object-oriented 

code. Figure 2.10 shows the DPRE recovery process. DPRE phase one 

provides a coarse-grained level where design pattern candidates are 

identified by analyzing class diagram information recovered during the 

preliminary analysis. Class diagram information, such as name, type, 

inheritance relationships and association relationships, are parsed using a 

visual language technique. All information is stored in a repository for later 

use during the structural analysis phase. Method invocations and 

declarations are also stored.  
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Figure 2.10: DPRE recovery process 

In the second phase, codes of classes that participate in design 

pattern identification were examined to check their compliance with the 

corresponding GoF patterns’ source code. The DPRE visual parser analyses 

the attribute-based representation of the pattern’s class diagram, which is 

represented as a textual sentence to describe its classes and their 

relationships. DPRE representation of the Adapter design pattern appears in 

Figure 2.11 [42]. The generated textual representation of the Adapter design 

pattern is [CLASS Link1,2 inheritance Link 1,1 CLASS’ Link 1,1 Association 

Link 2,1class"]. 

 

 

 

 

Figure 2.11: DPRE representation of the Adapter design pattern 

DPRE examined six open source Java projects: JHotDraw v5.1, 

Apache Ant v1.6.2, JHotDraw v6.0b1, QuickUML 2001, Swing and Eclipse 

JDT components (Core v3.3.3 and User Interface v3.3.2).  The effectiveness 

of DPRE is characterized by precision ranging from 62% to 97%. However, 

disparity in the results for the detected pattern instances is noticed. 
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2.2.4.8 MARPLE 

Zanoni introduced an Eclipse plug-in called MARPLE (Metrics and 

Architecture Reconstruction Plug-in for Eclipse) which supports the detection 

of both design pattern instances and software architecture reconstruction 

activities [43]. MARPLE tries to handle the variant problems of design pattern 

detection through the detection of sub-components called “basic elements”. 

The architecture of MARPLE involves five main modules that interact with 

each other through XML data transfer. These modules are:  

• The Information Detector Engine module which uses the AST 

representation of the subject system to collect basic class elements and 

metrics.  

• The Joiner module which recovers all design pattern candidates. 

Furthermore, it also represents the subject system as an Attributed 

Relational Graph (ARG). ARG has a set of vertices that correspond to 

a set of types and a set of edges that correspond to a set of basic 

elements which connects the types with each other.  

• The classifier which tries to detect the possible false positives identified 

by the Joiner. 

• The Software Architecture Reconstruction module which obtains 

abstractions from the subject system based on the metrics and the 

basic elements recovered by the Information Detector Engine. 

• The Output Generation module which views the system analysis 

results. 

The Information Detector Engine tries to extract architectures that 

match the target structure defined in terms of Joiner rules. The basic 

elements were recovered by visitors that parse the AST representation of 

the subject system source code. The instances of the basic elements that 

have been found inside a subject system are stored in an XML file. MARPLE 

constructs all the possible valid mappings, {(R1, C1), (R2, C2)… (Rn, Cn)}, 

for each pattern instance (Ci is a class that is supposed to play a role Ri 

inside the pattern). 
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2.2.4.9 Sempatrec 

The approach presented by Alnusair et al [44] - henceforth Sempatrec - uses 

ontology formalism to represent the conceptual knowledge of the source 

code and semantic rules to capture the structure and behavior of design 

patterns.  

A tool named Sempatrec (SEMantic PATtern RECovery) has been 

developed as a plug-in for the Eclipse IDE to implement the approach. 

Sempatrec processes the Java bytecode of the subject system, generates 

an RDF (Resource Description Framework) ontology and stores the ontology 

locally in a pool.  

Specifically, Sempatrec generates a Source Code Representation 

Ontology (SCRO) to provide an explicit representation of the conceptual 

knowledge structure found in the source code. In addition, the developed 

SCRO serves as a basis for design pattern recovery where a design pattern 

ontology sub-model will be created. This sub-model extends the SCRO’s 

vocabularies and involves an upper design pattern ontology that is further 

extended with a specific ontology for each design pattern. 

Sempatrec utilized the Web Ontology Language (OWL), Resource 

Description Framework (RDF), Semantic Web Rule Language (SWRL), 

SPARQL protocol and a query language. OWL-DL is a sub-language of OWL 

which is based on the Description Logic (DL). More specifically, Sempatrec 

used OWL-DL and RDF to obtain a precise formal representation of various 

source code artifacts.  

The Sempatrec recovery process focuses on four main relationships: 

aggregation, use, inheritance and realization. The object property "hasPart" 

and its inverse "isPartof" were used to represent the aggregation 

relationship. The "hasPart" property, which is a sub-property of the use 

object property, describes the “use” relationship.   

 Furthermore, Sempatrec has developed a knowledge generator sub-

system that automatically extracts knowledge from Java bytecode. The 

proposed sub-system performs a comprehensive parsing of the Java class 
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files and captures every SCRO element. In addition, the sub-system 

generates a set of instances for all ontological properties defined in SCRO.  

The semantic instances, generated by the knowledge generator sub-

system, are serialized using RDF and linked to SCRO or any other OWL 

ontology via OWL re-use mechanisms. In addition, the knowledge generator 

parses the subject system and extracts its structural descriptions. These 

descriptions are used to generate a separate RDF ontology which is 

represented using the Notation3 (N3). 

To detect design patterns, Sempatrec defines a set of SCRO and 

SWRL rules to describe the pattern’s structure and behavior. Moreover, an 

OWL-DL reasoner computes the entailments from a set of facts and SWRL 

rules defined in the ontologies. The detection process relies on a logical 

inference engine which requires a rule-based reasoner capable of 

processing the SWRL rules. After processing the rules, the reasoner will 

recover pattern instances by matching semantic constraints, specified in the 

rules, to the source code descriptions found in the knowledge base that 

represents the subject system.  

 SWRL rules have been written for 11 design patterns: Singleton, 

Factory Method, Abstract Factory, Composite, Adapter, Decorator, Template 

Method, Observer, Visitor and State/Strategy. Sempatrec automatically 

loads the required ontologies, calls the reasoner, executes the rules and runs 

built-in SPARQL queries to capture and display the recovered pattern 

instances.  

Sempatrec has been applied to three open source systems: 

JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7. Precision and recall were 

used to assess the accuracy of Sempatrec which achieved an average of 

82% and 90% for precision and recall respectively for the detection of 

Singleton, Factory Method, Abstract Factory, Composite, Adapter and 

Decorator design patterns. For the detection of the behavioral patterns, 

Template Method, Observer, Visitor and State/Strategy, Sempatrec 

achieved an average precision of 61% and an average recall of 88%.  
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Moreover, Sempatrec spent three seconds, four seconds, and 13.5 

seconds parsing the framework, processing the ontologies and preparing the 

knowledge base from JUnit, JHotDraw and JRefactory respectively. On the 

other hand, the runtime that the reasoner spent executing the SWRL rules 

for all patterns was 28 seconds for JUnit, 3.6 minutes for JHotDraw, and 11.3 

minutes for JRefactory.  

In fact, it is not clear how Sempatrec formed the design pattern 

instances, although some instances are formed based on a certain role in 

the pattern. For example, a decorator instance only represents the decorator 

class and the roles of "Component", "ConcreteComponent" and 

"ConcreteDecorator" are ignored. Other disadvantages of Sempatrec can be 

noticed, such as its inability to establish the scalability of the reasoner’s 

performance and the possible variations of the SWRL rules which may affect 

the precision and recall and the runtime performance. In addition, the built-

in rules can only be edited using a specialized ontology editor. The main 

advantage of Sempatrec is the use of a pure ontology-based knowledge 

representation mechanism which ensures a consistent and formal functional 

representation of design patterns. Sempatrec is precise, practical and 

extensible. 

Table 2.3 summarizes the whole spectrum of design pattern detection 

approaches. Some of the miscellaneous approaches are listed in the table 

and do not appear in this section (Pat [35], KT [45], DP++ [46], Kim and 

Boldyreff [47], Heuzeroth et al. [48], Philippow et al. [49], HEDGEHOG [50], 

and Kaczor et al. [51]). However, ALL table approaches are involved in the 

statistical analysis of this section. In addition, Table 2.3 presents the analysis 

style conducted by each detection approach where pattern detection 

approaches are classified into structural analysis approaches, behavioral 

analysis approaches and semantic analysis approaches. 

Structural analysis approaches detect the instances of design 

patterns based on the static parts of the subject system. They explore inter-

class relationships, method invocations and data types.  
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Behavioral analysis approaches consider the execution behavior of 

the program. The behavioral aspects of a program are recovered using static 

and dynamic analysis techniques. Behavioral analysis is useful since the 

structure of design patterns is not enough to provide a fingerprint inside the 

source code. For example, State and Strategy patterns have similar 

structures. Similarly, Chain of Responsibility, Proxy and Decorator patterns 

have identical structures. However, the possible variants of the same 

implemented behavior can increase the number of false positive instances.  

Semantic analysis complements the structural and behavioral 

aspects to reduce the number of false positive instances. Naming 

conventions and annotations were used to retrieve the role information. 

Semantic information is important to distinguish between design patterns 

that have identical structural and behavioral aspects, such as State, Strategy 

and Bridge.  
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Table 2.3: Summary of detection approaches based on their detection 
methodology and analysis style 

 

Detection 
Methodology 

Tool/ Author Year Analysis Style R 

 
 

Database Query 
Approaches 

 

Rasool et al. 2010 ST, SE [18] 

D3 2008 ST, BE [19] 

Marek Vokac 2006 ST [20] 

SPOOL 1999 ST [22] 

 
 

Metrics-Based 
Approaches 

 

MAISA 2000 ST [23] 

FUJAPA 2002 ST,BE [24] 

Antoniol et al. 1998 ST,BE [25] 

Detten and Becker 2011 ST [26] 

Uchiyama et al. 2014 ST,BE [27] 
 
 

UML Structure, 
Graph and 

Matrix Based 
Approaches 

 

Seemann and Gudenberg 1998 ST,SE [28] 

DEPAIC++ 2002 ST [29] 

Columbus 2002 ST [30] 

SSA 2006 ST [31] 

DP-Miner 2007 ST,BE,SE [32] 

Dongjin et al. 2015 ST,BE [33] 

 
 
 
 
 
 
 

Miscellaneous 
Approaches 

 

Pat 1996 ST [35] 

PTIDEJ 2001 
2004 

ST [36][37] 

CrocoPat 2003 ST [38] 

SPQR 2003 ST [39] 

PINOT 2006 ST,BE [40] 

DeMIMA 2008 ST [41] 

DPRE 2009 ST [42] 

MARPLE 2012 ST,BE [43] 

Sempatrec 2014 ST,SE [44] 

KT 1996 ST [45] 

  DP++ 1998 ST [46] 

Kim and Boldyreff 2000 ST [47] 

Heuzeroth et al. 2003 ST,BE [48] 

Philippow et al. 2005 ST [49] 

HEDGEHOG 2005 ST,BE,SE [50] 

Kaczor et al. 2006 ST [51] 

Note:  ST: Structural Analysis        BE: Behavioral  Analysis    
           SE: Semantic Analysis         R:   Reference 
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.2 3 Analysis and Discussion 

Design patterns are flexible design templates that may have several 

implementations. However, design patterns are described informally, which 

may cause misunderstanding. With the trend of applying new technologies, 

new approaches and tools are continuously being proposed. This section 

aims to provide a comprehensive comparison between all design pattern 

detection approaches in terms of subject system representation, subject 

systems, recovered design patterns and evaluation criteria.  

 

2.3.1 Intermediate Representation of the Source Code  

To the best of our knowledge, all detection approaches in the literature are 

targeting the source code of the subject system and avoiding targeting the 

system’s design model to extract the instances of design patterns. The 

design model does not provide any runtime data necessary for the design 

patterns’ recovery (for example, the association relationships). Usually, the 

design documents are inconsistent with the source code.  Furthermore, most 

of the design models are not publicly available. All these reasons made the 

source code a better choice than the design model for recovering the 

instances of design patterns.  

Most design pattern detection approaches use Abstract Syntax Tree 

(AST) representation to generate a source code model. The source code 

model should hold all the required information to recover design pattern 

instances. Table 2.4 lists the intermediate representation used by different 

detection approaches.  

Some approaches used their own defined representation, such as 

[36], [41] and [51]. These approaches defined PADL, Pattern and Abstract 

Level Description Language to recover the source code information. Two 

approaches did not generate an intermediate representation of the source 

code, [43] and [47]. Rather, these approaches used software metrics to 

gather source code information. However, each detection approach may use 

a certain representation in a different format. For example, DPRE [42] uses 
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AST representation to generate a graph to represent class diagrams of a 

subject system. On the other hand, Heuzeroth et al. [48] use AST 

representation to define the static aspects of the patterns and the Temporal 

Logic Actions (TLA) to represent their dynamic aspects. 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4: The intermediate representation used by existing approaches 

 

2.3.2 Subject Systems 

The majority of detection approaches targeted open source codes that have 

been programmed using Java or C++. Two approaches, MAISA [23] and DP-

Miner [32], targeted UML and XML open source systems. KT [45] applied its 

detection methodology to Smalltalk programs. Only one approach, CrocoPat 

[38], conducted its experiments on both Java and C++ open source systems. 

Figure 2.12 shows the programming languages used to program the subject 

systems. In fact, most of the detection approaches that have been introduced 

after 2008 applied their experiments to Java open source programs.  

 

System 
Representation 

Author(s)/Tool 

AST (Abstract 
Syntax Tree) 

Antoniol et al. [25], Detten and Becker [26],  
PINOT [40], DPRE [42], MARPLE [43], KT [45],  
Heuzeroth et al. [48], HEDGEHOG [50] 

ASG (Abstract 
Syntax Graph) 

FUJABA [24] 
Columbus [30] 
 

UML, Graph SPOOL [22], Seemann and Gudenberg [28], 
Dongjin et al. [33], DP++ [46], Philippow et al. 
[49]. 

Matrix SSA [31] 
DP-Miner [32] 

Prolog MAISA [23] 
Pat [35] 

PADL  PTIDEJ [36][37], DeMIMA [41], Kaczor et al. [51] 
Metadata  D3 [19] 

Marek Vokac [20] 
Other 
representations  

Canonical form (DEPAIC++ [29])  
Annotations (Rasool et al. [18]) 
BDDs (CrocoPat [38]) 
OTTER (SPQR [39]) 
SCRO (Sempatrec [44]) 

No representation  Uchiyama et al. [27], Kim and Boldyreff [47] 
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Figure 2.12: Programming languages used to program the subject systems 

Furthermore, the detection approaches used different open source 

systems to evaluate their methodologies. The most commonly used open 

source systems are JHotDraw v5.1, JRefactory v2.6.24, JUnit v3.7 and 

QuickUML 2001. The selection of these approaches was made because:    

• They used some well-known design patterns. 

• The authors and the relevant literature indicate explicitly the 

implemented design patterns in the documentation. 

• They are open source and their codes are publicly available. 

• They vary in size. 

Table 2.5 lists the subject systems used by different detection 

approaches to evaluate their detection methodology. It is clear that there is 

no common agreement in the literature on the appropriate subject systems 

for evaluating any new detection approach. In addition, the number of 

required subject systems is not clear. For example, some approaches apply 

their experiments to more than five subject systems while other approaches 

only apply their experiments to two subject systems. DeMIMA [41] applied 

its methodology to 33 industrial components, but there is no information 

about them. 

 

 

0 5 10 15 20

Java

C++

Java and C++

Smalltalk, UML, or XML

Number of Approaches
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Table 2.5: Summary of the subject systems used by detection approaches 
 

Tool/ Author Subject systems 
Rasool et al. [18] JHotDraw v6.1.2 and Apache Ant v1.6.2 

D3 [19] Applied Java Patterns and JHotDraw v6.0.b1 

Marek Vokac [20] Customer Relationship Management system 

SPOOL [22] ET++ and two telecommunication systems  

MAISA [23] Nokia DX200 switching system 

FUJAPA [24] Java AWT 
Antoniol et al. [25] LEDA, Libg++, Galib, Mec, Socket and 8 small-size industrial 

systems 

Detten and Becker [26] Common Component Modelling Example  

Uchiyama et al. [27] Java library v1.6.0, JUnit v4.5 and Spring v2.5 

Seemann and 
Gudenberg [28],  
DEPAIC++ [29] 

Not mentioned 

Columbus [30] IBM Jikes compiler, LEDA graph library and Star office writer 

SSA [31] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7 

DP-Miner [32] Java AWT 

Dongjin et al. [33] Java AWT v5.0, JHotDraw v5.1, JUnit v3.8, Dom4J v1.6.1, 
Lizzy v1.1.1, Hodoku v2.1.1, Barcode4j v2.1.0, RstpProxy v3.0 
and Teamcenter  

Pat [35] NME, LEDA and zApp 

PTIDEJ [36][37] Java AWT, Java.net packages, JHotDraw v5.1, JRefactory 
v2.6.24, JUnit v3.7, Lexi v0.0.1α, Netbeans v1.0.x and 
QuickUML 2001 

CrocoPat [38] Mozilla, JWAM and wxWindows 

SPQR [39] Killer Widget Application 

PINOT [40] Java AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and Apache 
Ant v1.6 

DeMIMA [41] JHotDraw v5.1, JRefactory v2.6.34, JUnit v3.7, MapperXML 
v1.9.7, QuickUML 2001 and 33 industrial components 

DPRE [42] JHotDraw v5.1, Apache Ant v1.6.2, JHotDraw v6.0b1, 
QuickUML 2001, Swing and Eclipse JDT components (Core 
v3.3.3 and User Interface v3.3.2) 

MARPLE [43] 30 open source projects 

Sempatrec [44] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7 

KT [45] KT and three Smalltalk programs 

DP++ [46] DTK library  
Kim and Boldyreff [47] Three systems (no information about them) 

Heuzeroth  et al. [48] Java swing 
Philippow et al. [49] Students’ projects 

HEDGEHOG [50] AJP code example, pattern box and Java language (v1.1 and 
v1.2) 

Kaczor et al. [51] JHotDraw v5.1, QuickUML 2001 and Juzzle 
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2.3.3 Recovered Design Patterns 

Figure 2.13 shows a summary of the recovered design patterns detected by 

different detection approaches. Most approaches successfully detect the 

Composite design pattern because its structure is easy to detect. On the 

other hand, the Memento and Interpreter design patterns are only detected 

by three approaches, since they require dynamic analysis capabilities to 

detect them. However, most detection approaches focused on a specific set 

of design patterns. 

Moreover, as Figure 2.13 illustrates, only three approaches 

successfully detect all GoF design patterns. Specifically, Kim and Boldyreff 

[47] recovered all GoF design patterns from three systems, programmed 

using C++. Unfortunately, there is no information on these systems. In 

addition, Philippow et al. [49] recovered all GoF design patterns from student 

projects, also programmed using C++. The main disadvantage of the 

previous two approaches is their results validation in the sense that the 

authors did not report how the detected design instances were validated. 

The third approach that recovers all GoF design patterns is presented by 

Dongjin et al. [33]. This approach recovers design patterns from Java open 

source projects using sub-patterns and method signatures. The Dongjin et 

al. approach used the repository of Perceron [34] as a reference benchmark 

to validate the detected instances. However, contradictions in the 

experimental results were noticed.  
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Figure 2.13: Summary of design patterns recovered by detection 

approaches 

 

2.3.4 Evaluation Criteria   

Precision and recall metrics have been used by most detection approaches 

to evaluate their accuracy. A few approaches reported the F-measure which 

provides the harmonic means of recall and precision. Accuracy varies from 

one approach to another since some approaches recovered a few patterns 

and achieved high precision. The validation method, pattern definitions and 

pattern variants could also affect the detection accuracy. The precision, 

recall and F-measure have been calculated as follows [52]: 

Precision = [True Positives / (True Positives + False Positives)] %      

Recall = [True Positives / (True Positives + False Negatives)] %        

F-measure = 2 × [(Precision × Recall) / (Precision + Recall)] %                          
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Where: 

True positives: the number of instances which are correctly detected. 

False positives: the number of instances which are incorrectly detected.  

False negatives: the number of instances which are incorrectly rejected. 

The reported accuracy for the majority of detection approaches in the 

literature is presented in Table 2.6.  

As Table 2.6 illustrates, the reported accuracy for most of the 

detection approaches is not balanced (i.e. high precision and low recall or 

vice-versa). The main reason for this would be the large differences between 

the number of correctly detected instances and the number of rejected 

instances. Specifically, the unbalanced accuracy suggests that there are no 

trade-offs between the number of correctly detected instances and the 

number of rejected instances (missed instances).  

Some approaches only reported the number of true positives and true 

negatives, such as D3 [19], Marek Vokac [20] and Heuzeroth et al. [48]. On 

the other hand, some approaches used CPU times, such as Rasool et al. 

[18], DP-Miner [32], CrocoPat [38], SPQR [39] and PINOT [40], to evaluate 

their detection efficiency. For example, PINOT spent 66.79 seconds, 8.98 

seconds, 10.68 seconds and 12.58 seconds detecting design pattern 

instances from Swing, JHotDraw, Java AWT and Ant respectively.  

Furthermore, some detection approaches validated their results 

based on manual tracing of the source code and these achieved high 

accuracy. On the other hand, only two approaches, Dongjin et al. [33] and 

Sempatrec [44], validated their results based on design pattern repositories, 

such as the repository of Perceron [34]. Consequently, different accuracy 

values were achieved by different approaches since there is no standard 

benchmark to validate the recovered design pattern instances. 
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Table 2.6: Summary of reported accuracy by detection approaches 
 

 

2.4 Reported Impact of Design Patterns 

Many factors influence the quality of software systems. One of these factors 

is the implementation of design patterns. However, since their introduction 

in 1995, design patterns’ impact on software quality is not well investigated. 

Some studies claim that the implementation of certain design patterns has a 

positive impact on the quality of software systems. In contrast, other studies 

claim that the implementation of the same design patterns has a negative 

impact on software quality. 

Tool/ Author Precision % Recall % 

Rasool et al. [18] 94 92 

Antoniol et al. [25] 30 Not 
Mentioned 

Uchiyama et al. [27] 63 76 

SSA [31] 100 66.7-100 

Dongjin et al. [33] 68-100 73-100 

Pat [35] 14-50 Not 
Mentioned 

DeMIMA [41] 34 100 

DPRE [42] 62-67 Not 
Mentioned 

MARPLE [43] 76 63 

Sempatrec [44] 61-82 88-90 

Kim and Boldyreff [47] 43 Not 
Mentioned 

HEDGEHOG [50] 100 85 

D3 [19],  Marek Vokac [20],  SPOOL [22],   
MAISA [23],   FUJAPA [24],  Detten and 
Becker [26],   Seemann and Gudenberg [28],  
DEPAIC++ [29],  Columbus [30],  DP-Miner 
[32],  PTIDEJ [36][37],  CrocoPat [38],  
SPQR [39],  PINOT [40],   KT [45],   DP++ 
[46],  Heuzeroth et al. [48],    Philippow et al. 
[49],   Kaczor et al. [51] 

Not 
Mentioned 

Not 
Mentioned 
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One of the first studies to investigate the impacts of design patterns 

on software quality was conducted by Lange and Nakamura [53]. They 

concluded that design patterns enhance program understandability since 

they can serve as a guide in program exploration and thus make the process 

of understanding more efficient. Lange and Nakamura showed that design 

patterns can help in two different ways: recognized at a certain point in the 

process of understandability, they can fill in the blanks and they can act as 

starting points for exploring a given system. Lange and Nakamura's study 

was limited to a single quality attribute and to a few patterns. The study 

concluded that the informal and semantically rich nature of design patterns 

prohibits the creation of the exact description required for automation. 

The study presented by Wendorff [54] reports on a large commercial 

project where the uncontrolled use of design patterns has contributed to 

maintenance problems. By using qualitative arguments, Wendorff’s study 

showed that design patterns affect different quality attributes and that the 

application of design patterns may, for example, result in a desirable 

increase of flexibility at the cost of an undesirable increase in complexity. 

Wendorff suggests that a design pattern will usually add to a particular 

aspect of flexibility, but cannot provide universal flexibility. If a pattern is 

applied to enhance the flexibility of a software design, careful judgment is 

required to ensure that the pattern promotes the desired aspect of flexibility. 

Hence, it can make economic sense to remove an inappropriate design 

pattern from a source code. Wendorff found two categories of inappropriately 

applied design patterns in the subject system. The first category involves 

patterns misused by software developers who did not understand the 

rationale behind the patterns. The second category is the patterns that do 

not fall into the first category, but which do not match the system’s 

requirements. Wendorff presented a procedure of seven steps to identify, 

assess and remove design patterns. This procedure has led to more 

objective, well-documented and economically decisions during 

reengineering activities.  

Wydaeghe et al. [55] presented a study of the development of OMT 

editor using Observer, Visitor, Module-View-Controller, Iterator, Facade, 
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Bridge and Chain of Responsibility patterns. They discussed the impact of 

these patterns on modularity, reusability, flexibility and understandability. 

The impact was reported as either positive or negative or as having no 

impact. Wydaeghe and the research team concluded that not all design 

patterns had a positive impact on quality attributes. For example, the 

Wydaeghe study claims that structural design patterns make the OMT editor 

more modular, while behavioral design patterns do not affect this property. 

Concerning understandability, structural design patterns increase the 

understandability of the OMT editor, while behavioral design patterns make 

the application less understandable. Furthermore, all the implemented 

design patterns increase the flexibility of the OMT editor. However, the 

Wydaeghe et al. study can hardly be generalized to another context of 

development.  

McNatt and Bieman examine the notation of patterns coupling to 

classify how design patterns may include coupled patterns [56]. They 

classified the set of connected patterns in terms of loose and tight coupling. 

In addition, McNatt and Bieman classified three types of patterns interaction: 

intersection, composite and embedded. They showed that, when patterns 

are loosely coupled and abstracted, maintainability, factorability and 

reusability are well supported by the patterns. The study concluded that there 

was a need for more studies to investigate the effects of software design 

patterns on quality. 

The study presented by Ellis et al. [57] shows that creating objects 

from factories used in Application Programming Interfaces (APIs) is 

significantly more time-consuming than creating objects from constructors, 

regardless of the context or the level of experience of the programmer using 

the API. The key goal of the Ellis et al. study is to provide quantitative 

measurements of the differences in usability between factories and 

constructors.  The results are collected after asking a number of participants 

to perform certain tasks. The study concluded that the Factory pattern 

erodes the usability of APIs in which it is used. 
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The experiment presented by Hannemann and Kiczales develops and 

compares Java and AspectJ implementations for the 23 GoF design patterns 

[58]. AspectJ is a seamless, aspect-oriented extension to Java, which means 

that programming in AspectJ is effectively programming in Java plus 

aspects.  The results show that using AspectJ improves the implementation 

of many GoF design patterns. For each of the 23 GoF design patterns, 

Hannemann and Kiczales created a small example that makes use of the 

pattern and then implemented the example in both Java and AspectJ. For a 

number of patterns, the AspectJ implementations show several closely 

related modularity benefits, such as locality, reusability, dependency 

inversion, transparent composability and unplugability. The AspectJ 

implementations of 17 of the 23 GoF design patterns were localized. The 

improvement in the AspectJ implementations are due to the inverting 

dependencies, so that the pattern code depends on the participants. 

Specifically, in AspectJ implementation, all codes related to a particular 

pattern instance are contained in a single module. Reusable pattern 

implementations have been developed by generalizing the roles, pattern 

code, communication protocols and relevant conceptual operations in 

abstract reusable aspects. The experiment concluded that the improvement 

using AspectJ in pattern implementations is directly correlated to the 

presence of cross-cutting structures in the patterns. This cross-cutting 

structure arises in patterns that superimpose behavior on their participants 

(superimposed roles are often interfaces that define behavior and 

responsibilities). 

The study presented by Jeanmart and Guéhéneuc aims to determine 

whether the use of the Visitor design pattern is useful for maintenance 

through comprehension and modification tasks [59]. The study compared the 

developer’s efforts in the presence or not of the Visitor design pattern when 

performing comprehension and modification tasks and when using different 

layouts of the Visitor design pattern. The experiments have been conducted 

to collect data with which to compare the developers’ efforts when 

performing comprehension and modification tasks using different 

semantically equivalent UML class diagrams. Effort function was defined as 



72 
 

the amount of attention that developers must spend to perform the tasks: 

less attention and less time means less effort. Jeanmart and Guéhéneuc 

captured the developers’ attention using the data collected with an eye-

tracker to decide whether a class diagram decreased their efforts with 

respect to the others. Data were collected for JHotDraw, JRefactory, PADL 

and 24 developers. For comprehension tasks, the results show that no 

significant difference exists between class diagrams with or without the 

Visitor design pattern and with a modified representation of the Visitor design 

pattern. For modification tasks, the results found that developers performed 

with significantly less effort on diagrams where the Visitor is represented in 

its standard structural format presented by GoF [11]. 

In [60], the use of two design patterns, Visitor and Decorator, to 

automate the validation of class invariants in C++ applications is described. 

An invariant on class C is a set of Boolean conditions that every instance of 

C will satisfy after instantiation and before and after every method invocation 

by another object. Class variants, expressed in Object Constraint Language 

(OCL), were used to ensure that the operations performed on instances of 

the class maintained the integrity constraints of that class. These constraints 

were described in terms of the member functions and data attributes of the 

class. A case study is presented of invariant validation in Keystone which is 

a parser and front-end for C++. Quantitative results are presented to 

measure the impact of these approaches on the case study. The results 

show that the use of Visitor and Decorator design patterns provide flexibility 

in terms of the frequency and level of granularity of validation of the class 

invariants. 

Ampatzoglou and Chatzigeorgiou [61] performed a qualitative and 

quantitative evaluation of two open source projects to evaluate the use of 

design patterns in game development. For the quantitative evaluation, the 

projects are being analyzed by reverse engineering techniques and software 

metrics such as Lines of Code (LOC), Number Of Classes (NOC), Attribute 

Complexity (AC), Weighted Methods per Class (WMPC), Coupling Factor 

(CF) and Lack of Cohesion Of Methods (LCOM). The results indicate that 

design patterns can be beneficial with respect to maintainability. The game 
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version that includes the subject pattern has reduced complexity and 

coupling compared with a version without the pattern. Furthermore, the 

implementation of design patterns tends to increase the cohesion of the 

software. In contrast, the size of the subject system has increased in the 

pattern version.   

Aversano et al. [62] report and discuss results from an empirical study 

aimed at analyzing how design patterns change during a software system’s 

lifetime and to what extent such changes cause modifications to other 

classes that are not part of the design pattern. The study has been performed 

on three Java open source systems, JHotDraw, ArgoUML and Eclipse-JDT. 

Design pattern instances have been detected from the three systems using 

SSA [31]. Then, changes from Concurrent Versioning System (CVS) have 

been mined to identify when a pattern changed, what kind of change was 

performed, which classes co-changed with the pattern, whether these 

classes had a dependency to or from the pattern and what the relationship 

was between the type of change made and the resulting co-change. Results 

indicate that the pattern change frequency and the amount of co-change do 

not depend on the pattern type, but rather on the role played by the pattern 

to support the application features.  

Bieman et al. [63] studied five systems, three proprietary systems and 

two open source systems, to identify the observable effects of the use of 

design patterns on changes that occurred as the system evolved. In 

particular, the study was aimed at determining whether software with design 

patterns tended to be adapted by creating new concrete classes that were 

extensions of existing pattern classes, interfaces, or abstract classes, or by 

modifying existing pattern classes. Furthermore, the study looked at the 

relationship between design structure and software changes. The design 

structure was characterized by class-size and class participation in 

inheritance relationships and design patterns. Changes were measured in 

terms of a count of the number of times that a class was modified over a 

period of time. Bieman et al. quantified the design structure of an early 

version of each system and studied the relationship between design 

attributes of this version and future system changes. The results showed that 
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classes playing certain roles in some design patterns were more change 

prone than other classes in the subject system. An informal analysis 

suggests that pattern- participant classes provide a key functionality to the 

system, which may explain why these classes tend to be modified relatively 

often.  

An empirical study presented by Di Penta et al. [64] aims to 

understand whether there are design pattern roles that are more change-

prone than others and whether there are changes that are more likely to 

occur to certain roles. The investigated changes are changes to method 

implementation, method addition/removal, attribute addition/removal and 

extension by sub-classing. The results on three open source systems, 

JHotDraw, Xerces-J and Eclipse-JDT, show that classes playing certain 

roles in design patterns are more change prone than are other classes. For 

example, in the Adapter design pattern, classes playing the role of Adapter 

are more change prone than other Adapter participant classes. In addition, 

the obtained results suggest to carefully design roles that are more subjects 

to changes, since their change proneness can make other parts of the 

system less robust to changes.  

In a replication of the Bieman et al. study [63], Gatrell et al. [65] 

examined a commercial C# consisting of 7439 classes. This system had 

been subject to 19054 changes over a two-year period and these changes 

were caused by both enhancements and fault fixing. The pattern 

participation characteristics were compared with the change history of the 

classes to determine any relationships. Each modification in the version-

control system, whether for a fault-fix or an enhancement, resulted in a new 

version of the class and each version was counted as a single change. 

Results were found to support the earlier study: classes participating in 

design patterns were found to have changed more frequently than other 

classes in the system. In addition, the study went further to show that the 

Adapter, Template method, Proxy, Singleton, State, Strategy and Visitor 

patterns caused the highest rate of change. On the other hand, classes 

participating in the Command and Creator design patterns had a relatively 

lower rate of change. 
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The study presented by Baudry et al. [66] explains how the use of 

design patterns can provide a way to limit the complexity of testing for 

conflicts, and to limit design pattern effects to the classes involved in the 

pattern. The study focused on testing problems that appeared at system 

level as a result of interactions among classes and also of polymorphism. 

The study suggests that the pattern-refined design is more testable than the 

“classical” design since the complex hierarchical control structure of the 

classical design has been removed.  

The contribution of the Baudry et al. study in [67] concerns both a 

given metric and the practical way to apply it in the usual object-oriented 

design process. The study aims to show how to integrate testability 

improvements into the usual design process. In addition, the study 

addresses two configurations of object-oriented anti-patterns that can 

weaken its testability. It shows how testing risks might be avoided using two 

risk mitigation techniques: a guideline on the risk for applying a pattern, 

called the testability grid, and also design refinement constraining.  

Elish in [68] discusses with examples the impact of four structural 

design patterns (Adapter, Bridge, Composite and Façade) on the stability of 

class diagrams; its resistance to the propagation of changes. The examples 

used were adapted from examples provided by Design Patterns in Java: 

Reference and Example Site [69]. Modifications made to one class can have 

ripple effects on other classes in the diagram. A good class diagram, from 

standpoint of stability, should localize changes as much as possible, 

confining them to those classes where changes are made. The examples 

presented show that the Adapter design pattern has a positive impact on the 

stability of class diagrams as it enables the client and the adaptee participant 

classes to be completely decoupled from each other. Changes will be 

localized to the adapter class and will not propagate to other classes in the 

diagram. Furthermore, the examples presented show that the Bridge design 

pattern enhances the stability of class diagrams, since the abstraction and 

implementor hierarchies can be extended independently, and also shows 

that modifying an implementation class does not require the recompiling of 

the abstraction class. Concerning the Composite design pattern, the client 
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participant class uses composite and leaf classes uniformly, which permits 

the adding of new kinds of composite and leaf classes to the hierarchy 

without affecting the client participant class. The client does not need to be 

changed for new composite and leaf classes. Finally, the Façade design 

pattern supports the stability of software since changes made to one of the 

sub-system classes cannot be propagated beyond the Façade class. Hence, 

changes are localized within the sub-system. The study concluded that 

Adapter, Bridge, Composite and Façade have a positive impact on the 

stability of class diagrams. However, an empirical evaluation is still needed 

to confirm the achieved results. 

Khomh and Guéhéneuc [70] studied the impact of design patterns on 

quality attributes in the context of software maintenance and evolution. An 

empirical study using a questionnaire was conducted. The quality attributes 

addressed were Expandability, Simplicity, Reusability, Learnability, 

Understandability, Modularity, Generality, Modularity at runtime, Scalability 

and Robustness. Each quality attribute was evaluated using a six-point Likert 

scale: A - Very Positive, B - Positive, C - Not Significant, D - Negative, E - 

Very Negative and F - Not Applicable. The questionnaires of 20 software 

engineers were selected for evaluation since they had verifiable experience 

in the use of design patterns in software development and maintenance. The 

respondents considered that, although design patterns were useful for 

solving design problems, they did not always improve the quality of systems 

in which they were applied. Most respondents considered that design 

patterns decreased simplicity, learnability and understandability. In addition, 

the study showed that design patterns negatively affected several quality 

attributes. It concluded that design patterns should be used with caution 

during the development process since they impeded maintenance and 

evolution. 

The experiments of Prechelt et al. [71] investigated software 

maintenance scenarios that employed various design patterns and 

compared them with other, simpler designs. Professional software engineers 

were used as subjects. The design patterns addressed were Visitor, 

Observer, Abstract Factory and Decorator. The maintenance tasks were 
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applied on Stock Ticker, Boolean Formulas, Communication Channels and 

Graphics Library. In most of the nine maintenance tasks tested, design 

patterns had a positive impact. 

Research by Vokac et al. [72] investigates when, and how, using 

design patterns is beneficial and whether some design patterns are more 

difficult to use than others. The experiments were conducted to test whether 

design pattern P does, or does not, improve the performance of subjects 

doing maintenance-work task X on program A (containing P) when 

compared with subjects doing the same task X on an alternative program A’ 

(not containing P). The design patterns addressed are Visitor, Decorator, 

Observer and Abstract Factory. The study concluded that design patterns 

were not universally good or bad, but must be used in a way that matched 

the problem. The Observer and Decorator design patterns were understood 

by subjects with little or no previous pattern knowledge.  

Kouskouras et al. [73] investigated the behavior of an object-oriented 

software application at a specific extension scenario, following three 

implementation alternatives with regard to a certain design problem relevant 

to the extension. These implementations were a simplistic implementation, 

a design pattern implementation and Aspect-Oriented implementation. The 

study identified the additional design implementations needed to perform the 

extension and evaluated the effect of the extension on several quality 

attributes. Each implementation was assessed by exploring qualitative 

aspects, supported by observations of the design implications, and also 

quantitative aspects, supported by specific metrics values before and after 

extension. The metrics were calculated at both class level and package level. 

An emulator was developed to allow the user to configure it with commands 

and to perform simple traffic cases. The design pattern implementation 

showed that the coupling metrics on the class level for the relevant classes 

were increased. In contrast, these couplings did not have any significant 

effect on the inter-package dependencies 

In [74], a concurrent design pattern framework has been presented to 

unify program design for modularity with program design for concurrency.  
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The concurrent design pattern framework provided enhanced versions of 

GoF patterns for Java programs. The study addressed all 23 GoF design 

patterns and found that, for 18 patterns, synergy between modularity goals 

and concurrency goals was achievable. The presented framework relied on 

Java’s existing type system and libraries to enforce concurrency and 

synchronization discipline. The study concluded with an understanding that 

a sophisticated runtime system as a back-end would be necessary to 

abstract completely from the concurrency concern. In addition, performance 

evaluation of several design patterns suggested the need to support load-

balancing in the developed framework.  

Most previous studies in the literature used experiment [57], [58], [59] 

and [60], case studies [56], [60], [61], [62] and [63], conceptual analysis [64], 

[65] and [66] and survey [70] to assess the impact of design patterns on 

software quality attributes. We believe that these methods lead to 

controversial results since most are based on human intervention and lack 

accuracy. Table 2.7 summarizes the reported impact, to the best of our 

knowledge, of GoF design patterns on software understandability and 

maintainability.  

As Table 2.7 demonstrates, 18 out of 23 design patterns have been 

reported to have a positive impact on software maintainability. More 

specifically, creational and structural design patterns positively affect 

software maintainability, while the impact of behavioral patterns is 

controversial. Concerning understandability, the results are controversial for 

all pattern categories. 
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Table 2.7: Reported impact of design patterns on understandability and 

maintainability   

 

2.5 Lessons Learned  

This chapter presented a comprehensive comparison between different 

design pattern detection approaches and the reported impact of design 

patterns. The lessons learned can be summarized as follows: 

• Design patterns are described from different perspectives by different 

approaches, such as structural aspects, behavioral aspects, and 

semantic aspects. 

• Current detection approaches use different tools to get the intermediate 

representation of the subject source code. This will directly affect the 

recovery process. 

 Patterns/Quality 
Attributes 

Understandability Maintainability 

C
re

at
io

na
l Singleton +[53],+[56], +[70] -[70],-[72] 

Prototype +[53], +[56], +[70] +[70],+[74] 
AbstractFactory +[53], +[56], -[57], -[70],-[72] +[70],+[74] 
Factory method +[53], +[56], -[70] +[70],+[74] 
Builder +[53], +[56], +[70] +[70],+[74] 

St
ru

ct
ur

al
 

Adapter +[53], +[56], -[70] +[70],+[74] 
Bridge +[53], +[56], +[70] +[61],+[70],-[74] 
Composite +[53], +[56], +[70],+[72] +[70],+[74] 
Decorator +[53], +[56], -[55],  

-[70],+[71], +[72] 
+[70],+[54],+[71],+[55],+[72] 

Façade +[53], +[56], +[70] +[70],+[74] 
Flyweight +[53], +[56], -[70] -[70],-[74] 
Proxy +[53], +[54], +[56],-[70] -[54], -[70],+[73],+[74] 

B
eh

av
io

ur
al

 

CoR +[53], +[56], +[70] +[70] 
Command +[53], +[56], -[70] +[70],+[74] 
Interpreter +[53], +[56], +[70] +[70], +[74] 
Iterator +[53], +[56], +[70] +[70],+[74] 
Mediator +[53], +[56], +[70] +[70],+[74] 
Memento +[53], +[56], -[70] -[70],-[74] 
Observer +[53], +[56], -[70],-[71],+[72] +[70], +[74] 
State/Strategy +[53], +[56], +[70] +[61], +[70],-[74] 
Visitor ,[48],-[51],+[53], +[56], +[70], 

-[72] 
+[59], +[70],+[54], +[71],+[74], 
-[48],-[51],-[72] 

Template Method +[53], +[56], -[70] +[70],+[74] 
 +[RX]: Reference X claims that the pattern positively affects the corresponding 

quality 
-[RX]: Reference X claims that the pattern negatively affects the corresponding 
quality 
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• The discovery tool of each approach only supports the discovery of 

specific patterns. Only a few approaches successfully detected all GoF 

design patterns. 

• Different approaches conduct experiments on different open source 

systems.  

• Recall and precision were used to evaluate the accuracy of the 

detection process. Only a few approaches reported F-measure, such 

as Dongjin et al. [33] and Sempatrec [44]. In addition, some approaches 

measured the CPU times and memory consumptions to evaluate their 

detection efficiency. 

• There is no standard benchmark to validate the recovered design 

pattern instances. The available benchmarks, to the best of our 

knowledge, are the repository of Perceron [34], the Design Pattern 

Detection tools benchmark platform [75], P-MARt [76] and BEFRIEND 

[77]. 

• Design patterns’ impact on software quality is not well investigated. 

Most previous studies in the literature used experiment, case studies, 

conceptual analysis and survey to assess the impact of design patterns 

on software quality attributes. 

 

2.6 Summary 

This chapter presented the current state of the art of design pattern detection 

approaches and the current reported impact of design patterns. Specifically, 

we presented a comparative study on design pattern detection approaches 

in terms of detection methodology, analysis style, system representation, 

subject systems, recovered design patterns and evaluation criteria. The key 

contribution of this chapter is the necessity to address all detection 

approaches and tools. This will guide future researchers in developing more 

accurate detection tools. In addition, this chapter will facilitate the 

comparison between different detection approaches and any new detection 
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approach, since there is no trusted benchmark to evaluate the recovered 

design pattern instances. Most design pattern detection approaches target 

open source systems that do not have proper documentation. It could be 

worthwhile to conduct the experiments on industrial and commercial 

applications. In addition, disparity among the results is noticed. The main 

reason could be the missing roles and the implementation variants of design 

patterns. Precision and recall were used to evaluate the accuracy of the 

detection process. However, the reported accuracy is not balanced (i.e. high 

precision and low recall or vice versa). One possible solution is to use the 

common formalized definition of GoF patterns. All detection approaches are 

working independently without any ability to integrate them together. The 

research community should make efforts to build new approaches which 

may be integrated with other existing approaches.  

Finally, some studies claim that the implementation of certain design 

patterns has a positive impact on the quality. In contrast, other studies claim 

that the implementation of the same design patterns has a negative impact. 

Hence, the current reported impact of design patterns is controversial.  
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hapter Three 
Methodological Approach  
The detection of design patterns is a reverse 

engineering activity where design patterns are 

recovered depending on certain criteria. This chapter presents a 

Multiple Levels Detection Approach (MLDA) to recover the 

instances of GoF design patterns from the Java source code. MLDA 

aims to recover design pattern instances with reasonable detection 

accuracy. Moreover, MLDA introduces a rule-based approach to 

filter the candidate design instances by matching the method 

signatures of the candidate design instances to that of the subject 

system.  

 

3.1 Introduction 

Design patterns provide template solutions for certain design problems. The 

occurrence of design pattern instances in the source code reflects the 

earliest set of design decisions. Each design pattern has its own structural 

and behavioral aspects. The structural aspects concern the static 

arrangement of classes and interfaces. On the other hand, the behavioral 

aspects are concerned with the dynamic interactions between classes and 

interfaces.  

Recovering design pattern instances from the source code requires 

representing it in one of the parsing formats, searching for all possible pattern 

structures and trying to fingerprint each structure with a certain behavior. The 

possible variants of a design pattern can complicate the detection process. 

These variants, non-standard implementations of design patterns, are 

difficult to capture since there is no reference benchmark to decide whether 

the recovered variant is a correct instance or not.   

C 
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Design pattern information helps the system analyst, software 

engineer and software architect to capture design and code information and 

enhance the program understanding. In addition, design pattern information 

improves software documentations, captures expert knowledge and design 

trade-offs and helps in re-structuring the systems. 

Current design pattern detection approaches only recover a specific 

pattern, or a few sets of patterns. Only three approaches, [33], [47] and [49], 

recovered all GoF design patterns. Furthermore, only one approach, the sub-

patterns approach [33], uses the method signatures of the candidate design 

instances to detect design patterns. The sub-pattern approach did not 

explain how the matching of the method signatures of the candidate instance 

to that of the subject system is performed.  

This chapter presents a Multiple Levels Detection Approach (MLDA) 

to recover the instances of design patterns from the Java source code. MLDA 

involves three levels: a parsing level, a searching level and a method 

signatures matching level. Each level performs certain tasks to collect the 

required information to recover GoF design pattern instances. This 

information consists of: 

• Pattern participant classes 

• Relationships between participant classes 

• Methods inside each participant class  

• Method calls between participant classes  

More specifically, MLDA uses static analysis capabilities to recover 

instances of GoF design patterns using structural and method signature 

features. MLDA’s static analysis capabilities can record objects’ creation by 

recovering association and aggregation relationships. Dynamic and 

semantic analysis both require more sophisticated implementation of certain 

packages and record message interactions between classes during runtime. 

MLDA will recover instances of design patterns by building the structure of 
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each design pattern and then matching the method signatures of the 

candidate instances to that of the subject system.  

 

3.2 Research Methodology  

The research methodology adopted in this thesis consists of three main 

steps. We followed these step to come up with our proposed methodology. 

These steps are representing the subject system and GoF design patterns, 

matching criteria and filtering criteria. Each step is described below. 

The first step to recover the instances of design patterns is to 

represent the subject system and GoF design patterns in one of the parsing 

formats (such as abstract syntax graph or abstract syntax tree). These 

formats should store the structural aspects of the subject systems and GoF 

design patterns. Different structural aspects can be recovered such as the 

connecting relationships between classes and interfaces, abstract classes, 

concrete classes, attributes and methods. Hence, the recovering 

methodology should recover all or some of these structural aspects to 

recover the structures that are similar to that of GoF design patterns. 

As a result, we modified a Javaparser in such way it can recover the 

five key relationships (Realization, Inheritance, Aggregation, Association 

and Dependency) that may occur between classes and interfaces inside any 

object-oriented program.  

The second step to recover the instances of design patterns is to 

adopt a matching criteria between the representation of GoF design patterns 

and the representation of the subject system. The matching criteria should 

search for all the possible structures that are similar to that of GoF (i.e. 

searching for all possible arrangements of classes and interfaces that are 

similar to that of GoF). Consequently, the proposed methodology in this 

thesis introduces a Structural Search Model (SSM) which is able to recover 

the instances of design patterns based on the generated class level 

representation of the Java source code. Moreover, the SSM builds the 

structure of each design pattern incrementally. The SSM recovers the 
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instances of design patterns based on the five key relationships that may 

occur between classes and interfaces inside any object-oriented program: 

Aggregation, Association, Dependency, Inheritance and Realization.  

Finally, the recovering methodology should match the behavioral 

aspects of GoF design patterns to that of the subject system. These 

behavioral aspects consist of the required interactions between pattern 

participant classes (such as messages between participant classes and 

method signatures). This thesis focuses on the method signatures of GoF 

design patterns to reflect the required behavioral aspects of GoF Design 

patterns. The proposed methodology in this thesis introduces a rule-based 

approach to filter the candidate design pattern instances detected by the 

SSM. The rule-based approach matches the method signatures of the 

candidate design instances to that of the subject system.  

 

3.3 The Catalog of Design Patterns  

The catalog of design patterns presented by GoF involves 23 design 

patterns. Each design pattern has its own intent, structure and participant 

classes (roles) and provides a solution to a specific design problem. Pattern 

participant classes may implement one or more methods and may call on 

other methods implemented in other participant classes.   

3.3.1 Design Pattern Elements  

GoF suggested four essential elements for a design pattern: 

• Pattern name, selected in such way that it provides a real indication of 

the intent and the goal of the pattern.   

• The problem, describing a specific design problem and when to apply 

the pattern. This part may also suggest certain conditions that must be 

met before applying the pattern.  

• The solution, describing the participant classes that build up a design 

pattern.  
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• The consequences, presenting the results and the trade-offs that come 

from applying the pattern. The consequences of applying a design 

pattern often concern time trade-offs and implementation issues and 

pattern’s effect on the system’s quality attributes. 

3.3.2 Design Patterns Classification 

Based on the intent behind the use of design patterns, GoF have classified 

them into three groups: creational patterns which concern the initialization of 

classes and objects; structural patterns which concern the composition of 

classes and objects; and behavioral patterns which concern the dynamic 

interaction between classes and objects. Another classification of design 

patterns is also presented by GoF, based on the scope of the pattern where 

design patterns have been classified into class patterns and object patterns.  

Furthermore, each design pattern has been represented using a UML 

class diagram. Table 3.1 presents the catalog of GoF design patterns and 

their intents [11]. UML class diagrams for all GoF design patterns are 

presented in Appendix A. 

The catalog of GoF design patterns presents a unique intent for each 

pattern. The intent can be achieved by implementing the required static 

arrangement of pattern participant classes. In addition, the behavior of the 

pattern participant classes should be implemented. Most GoF design 

patterns require method interactions between their participant classes. Each 

participant class must implement specific method(s) with certain signatures.  

An instance of a design pattern is said to be a complete instance if it 

implements all the required participant classes in addition to all methods. 

This thesis focuses on the detection of a complete structure of design 

patterns presented by GoF (standard implementation of design patterns). 

The level of abstractions varies between design patterns. Some 

design patterns require three levels of class hierarchies, such as the 

Composite design pattern, to achieve its intent. In contrast, other design 

patterns require two levels of class hierarchies, such as the Template 

method, to achieve their intent. However, GoF’s catalog does not suggest 
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that design patterns are finished designs. More specifically, design patterns 

should be implemented as an integral part of the whole system design. 

 Table 3.1: The catalog of GoF design patterns 

 

3.4 MLDA Architecture 

Java programming language is the fundamental backbone of MLDA. The 

selection of Java was made because:  

• Java provides many libraries and packages that are easy to import and 

modify. Importing Java packages and libraries provides quick solutions 

to common programming problems 

• Java is a platform-independent language 

• Java is a robust, secure, portable and high-performance language  

Type Pattern Name Intent 
C

re
at

io
na

l 
Pa

tte
rn

s 
Singleton Ensuring that each class has one instance 
Factory Method Method in a derived class creates associates 
Abstract Factory Factory for building related objects 
Builder Building complex objects incrementally 
Prototype Cloning new instances from a prototype 

St
ru

ct
ur

al
 

Pa
tte

rn
s 

Adapter Translator that adapts a server interface for a client 
Bridge Abstraction for binding one of many implementations 
Composite Structure for building recursive aggregations 
Decorator Extending an object transparently 
Façade Simplifies the interface for a subsystem 
Flyweight Many fine-grained objects shared efficiently 
Proxy One object approximates another 

B
eh

av
io

ra
l  

Pa
tte

rn
s 

Chain of 
Responsibility 

Request delegated to the responsible service provider 

Command Request or Action is a first-class object, hence re-storable 
Iterator Aggregate and access elements sequentially 
Interpreter Language interpreter for a small grammar 
Mediator Coordinating interactions between its associates 
Memento Snapshot that captures and restores object states privately 
Observer Dependents update automatically when the subject changes 
State An object whose behavior depends on its state 
Strategy Abstraction for selecting one of many algorithms 
Template 
Method 

Algorithm with some steps supplied by a derived class 

Visitor Operations applied to elements of a heterogeneous object 
structure 
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Moreover, most of the detection approaches in the literature have 

been implemented in Java. Hence, the selection of Java to implement MLDA 

will facilitate the comparison with other existing approaches. However, 

implementing MLDA using other object-oriented programming languages 

may show a few differences in terms of accuracy and efficiency, since most 

object-oriented programming languages share similar properties. For 

example, the inheritance, association and aggregation relationships have 

the same intent in Java, C sharp and C++. Recovering design patterns 

requires a subject system representation, a design patterns library and 

matching criteria between the GoF catalog and the subject system’s 

representation. MLDA uses the standard structural codes of design patterns 

presented by GoF to build a library representation for each design pattern. 

In addition, MLDA targeted the source code of the subject system since the 

design model does not provide any runtime data and most of the design 

models are not publically available. MLDA involves three levels: a parsing 

level, a searching level and a method signatures matching level. These 

levels work in a consistent and dependent manner. Figure 3.1 shows the 

architecture of MLDA. 

 

 

 

 

 

 

 

 

 

Figure 3.1: The architecture of the proposed MLDA 

 

MLDA aims to recover all GoF design patterns with reasonable 

detection accuracy in terms of precision and recall. Moreover, MLDA uses a 
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rule-based approach to filter the candidate design instances by matching 

their method signatures to that of the subject system. MLDA recovers design 

pattern information from the source code of the subject system. This 

information concerns relationships between classes and their method 

signatures.  

The parsing level aims to recover source code information and to 

generate a source code model. Specifically, the MLDA parser aims to 

recover the five key relationships that may occur between classes and 

objects inside any object-oriented program. These relationships are 

inheritance, aggregation, association, dependency and realization. In fact, 

MLDA provides a clear distinction between the aggregation relationship and 

the association relationship. In the aggregation relationship, the creation of 

the objects will occur during the compile time, while in the association 

relationship the creation of the objects will occur during the runtime. 

According to the GoF’s catalog, the inheritance relationship is the main 

building unit of the structural design patterns. On the other hand, the 

association and aggregation relationships are the main building unit of the 

behavioral and creational design patterns. The searching level of MLDA aims 

to examine the source code model that has been generated during the 

parsing level and tries to match it with the GoF’s catalog. Specifically, MLDA 

introduces a Structural Search Model (SSM) which involves a searching 

algorithm for each design pattern. MLDA works on the principle of building 

the pattern structure incrementally based on the connecting relationships.     

The third level of MLDA is the method signatures matching level. The method 

signatures of the subject system are represented as a set of facts. On the 

other hand, the required method signatures of the candidate design 

instances are represented as a set of rules. CLIPS (C Language Integrated 

Production System) [78], an expert system tool, has been used to match the 

generated facts and rules.  

3.4.1 Parsing Level 

Parsing is "the process of analyzing a string of symbols, either in natural 

language or in computer languages, conforming to the rules of a formal 
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grammar" [79]. MLDA’s parsing level relies on the packages of the 

Javaparser version 1.0.11 which has been developed by Júlio Vilmar Gesser 

and is available online [80]. The Javaparser is an open source project and 

can be used under the terms of the LGPL licence. In fact, the Javaparser 

involves a number of useful packages, such as Japa.parser, Japa.parser.ast, 

Japa.parser.ast.expr and Japa.parser.ast.visitor. The motivation of importing 

the packages of Javaparser is their ability to generate an Abstract Syntax 

Tree (AST) that can record the source code structure. AST is a tree that 

represents the syntactic behavior of the source code, where its elements are 

mapped into tree nodes. The parsing level of MLDA aims to recover all the 

possible relationships between classes in the Java source code. Table 3.2 

presents the relationships syntax which MLDA relies on to parse the source 

code of the subject system. The syntax of the relationships has been written 

based on the syntax presented in [81-86].  
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Table 3.2: The relationships and their common syntax 

 

Relationships  between 
class Cs and class Cd 

Common Java Syntax 

 
 
R (Cs, Cd) = {Inheritance} 

public class Cs { 
... 
} // end Cs 
….. 
public class Cd extends  Cs  { 
 
} //end  Cd 

 
 
R (Cs, Cd) = {Dependency} 

public class Cs { 
... 
public void doSomething ( Cd  b) {    } 
… 
 
} // end Cs 

 
 
R (Cs, Cd) = {Aggregation} 

public class Cs { 
… 
private  Cd  _b; 
public void setB( Cd  b) { _b = b; } 
… 
 }//  class Cs 

 

 

 

 

R (Cs, Cd) = {Association} 

public class Cs { 
… 
private  Cd  _b = new  Cd (); 
 
… 
}//end  Cs 

public class Cs { 
… 
private  Cd  _b; 
public void doSomethingUniqueToCd() 
{ 
if (null == _b) {   _b = new  Cd (); } 
return _b.doSomething(); 
 } // doSomethingUniqueToCd() 
… 
 }// class Cs 

public class Cs { 
… 
private  Cd  _b; 
public  Cs () { 
_b = new  Cd (); 
} // default constructor 
 } //end Cs 

 

R (Cs, Cd) = {Realization} 

public interface  Cs  { 
... 
} // interface  Cs 
public class Cd implements  Cs  { 
 
} // end interface Cd 
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The output of the parsing level is a model of the source code and a 

library of design patterns. The source code of the subject system is modelled 

in the form: source class, destination class and relationship type. The same 

structure is also applied to represent the catalog of GoF. The source code 

model generated by MLDA’s parsing level is presented in Figure 3.2. This 

model will be exported into an SQL table which will be examined by the SSM 

in order to recover the candidate instances of design patterns. The library 

stores a representation of each design pattern. This representation is similar 

in its structure to that of the source code model (i.e. the representation of 

each design pattern in the library involves three columns: source class, 

destination class and relationship type). 

 

 

 

 

 

 

 

Figure 3.2: The source code model generated by MLDA 

To explain how MLDA represents each design pattern in the library, 

the Command design pattern representation is presented in Figure 3.3. 

MLDA has successfully recovered two aggregation relationships and one 

inheritance relationship. One aggregation relationship is connecting the 

"Invoker" class to the "Command" class and the other is connecting the 

"ConcreteCommand" class to the "Receiver" class. Furthermore, the 

inheritance relationship between the "Command" class and the 

"ConcreteCommand" class is also recovered. However, MLDA has excluded 

the role of the "Client" class since it represents the role of the main program 
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inside the source code. This will not affect how the Command participant 

classes are connected, or how they communicate together.  

 

 

 

 

Figure 3.3: The representation of the Command design pattern in the 
library 

 

3.4.2 Searching Level 

The searching level of MLDA aims to build the design pattern structure 

incrementally from the source code model based on its representation in the 

library. In addition, the searching level of MLDA introduces what is called the 

SSM which involves a searching algorithm for each GoF design pattern. 

Each part of the SSM involves two participant classes (i.e. source and 

destination classes). Specifically, the searching algorithm tries to build the 

pattern structure from the source code model by checking the relationship 

connecting the source class to the destination class. If the search process 

finds one of the required relationships of the pattern, it will continue 

searching for the remaining relationships until it can form a complete pattern 

structure similar to the pattern representation in the library. When the pattern 

structure has been found in the source code model, all pattern participant 

classes are exported from the source code model to an SQL table. MySQL 

Workbench version 6.3 CE was used to create the tables. Since MLDA is 

able to distinguish between the aggregation and association relationships 

and records all the object creations and the dynamic interactions between 

classes, it is expected to recover all behavioral design patterns.  
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To explain how the searching level works, the searching algorithms of 

the Builder, Proxy and Command design patterns are presented. Figure 3.4 

shows the SSM of the Builder design pattern.  

 

 

 

 

 

 

 

 

Figure 3.4: The structural search model of the Builder design pattern 

MLDA will examine the source code model of the subject system and 

start the searching process by trying to find source and destination classes 

that are connected together by an association relationship (building the first 

part of the Builder design pattern). If the first part is successfully formed, 

MLDA will continue searching for the second part which needs a realization 

relationship between its participant classes. When a realization relationship 

is encountered, MLDA will try to combine the first and second parts together. 

The Builder class is acting as a connecting class (i.e. the first and second 

parts are combined together when the destination class of the first part is the 

same destination of the second part).  

MLDA will continue searching for the remaining relationships.  

However, if MLDA is unable to combine the two parts together, the search 

process will terminate and MLDA moves to the next record in the table to 

start a new searching attempt. Finally, to form the Builder design pattern, 

MLDA will search for two participant classes that connect together via an 

association relationship and which differ from the participant classes of the 
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first part.  MLDA will combine the merged parts and the third part together if 

they have the same source classes. Each record of the source code model 

will be visited more than once as MLDA tries to build the parts incrementally. 

Figure 3.5 shows the SSM of the Proxy design pattern. The recovery 

of Proxy instances is based on its representation in the library. MLDA will 

search for two participant classes that have a realization relationship. The 

retrieved classes are stored temporally for later use. Then MLDA will 

continue searching in the table, which represents the source code model, for 

another two classes that are also connected together by a realization 

relationship. MLDA will combine the two recovered parts together if they 

have the same superclass (root) and different subclasses.  

If MLDA has successfully combined the two recovered parts, the 

process will continue searching for another two classes that are connected 

together using an association relationship. All classes form an instance of 

the Proxy design pattern if the role of the third part’s source class is similar 

to that of the merged part’s source class. In addition, the role of the 

destination class of the third part must be similar to the role of the source 

class of the first part. These conditions have been checked by SSM using 

nested IF-THEN statements. All the recovered instances and their participant 

classes will be exported to the SQL table.  

Figure 3.6 presents the searching attempts to recover the instances 

of the Command design pattern.  The Command design pattern involves four 

main roles: Invoker, Command, ConcreteCommand and Receiver. MLDA 

will start searching for two classes that are connected using an aggregation 

relationship (searching attempt one). The next searching attempt aims to 

recover another two classes connected together using an inheritance 

relationship (searching attempt two). MLDA will combine the parts of 

searching attempt one and searching attempt two together if they have the 

same destination class, consequently forming the "Merged A" part. Finally, 

MLDA will search for another two participant classes connected using an 

aggregation relationship and which differ from the classes recovered during 

the third searching attempt. If the second and third searching attempts have 
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the same source class, then all classes together form an instance of the 

Command design pattern. The design pattern library generated by MLDA 

and the structural search model and its pseudocode for all GoF design 

patterns are presented in Appendices A, B and C respectively.  

 

 

 

 

 

 

 

 

Figure 3.5: The structural search model of the Proxy design pattern 

 

 

 

 

 

 

 

 

Figure 3.6: The structural search model of the Command design pattern 
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3.4.3 Method Signatures Matching Level 

The candidate design pattern instances that have been detected by SSM will 

be filtered by applying a rule-based approach which aims to remove the false 

positive instances by matching the method signatures of the candidate 

design instances to that of the subject system. The MLDA parser will parse 

the subject system and recover all method signatures from each 

class/interface. The recovered signatures are access modifier, is_static, 

returntype and call_to.  On the other hand, a rules template for GoF method 

signatures has been created to reflect the required method signatures for 

each design pattern. The created rules template relies on the standard 

structural definitions of design patterns presented by GoF [11].  

In addition, the so-called MLDA rules/facts generator is developed, 

which is a simple Java program able to write a set of rules and facts based 

on the method signatures representation of the candidate design instances 

and subject system. Specifically, the MLDA rules/facts generator will 

generate a list of rules to reflect the required method signatures and method 

calls between candidate instance participant classes. On the other hand, the 

MLDA rules/facts generator will generate a list of facts to represent 

interactions between methods inside the subject system.  

A rule based-system contains IF-THEN rules, facts and an inference 

engine that controls the application of the rules. Our main motivation behind 

the use of a rule-based approach is the ability to represent the method 

signatures of the candidate design instances as an independent piece of 

knowledge, which can be transformed into a set of rules. In addition, the 

method signatures of GoF design patterns have a uniform structure which 

facilitates their representation as a set of rules. In addition, the comparison 

process performed by the inference engine allows an effective match 

between the set of rules and the facts. MLDA uses CLIPS v6.3, an expert 

system tool, to process the generated facts and rules and to remove the false 

positive instances. Further details on MLDA’s level three are presented in 

Chapter 5 and Chapter 6. 
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3.5 Summary  
This chapter presented a Multiple Levels Detection Approach (MLDA) to 

recover design pattern instances from the Java source code. 

MLDA works on three levels to recover the instances of GoF design 

patterns: a parsing level, a searching level and a method signatures 

matching level. The parsing level aims to generate a source code model 

which records all objects, classes and methods interaction of the subject 

system. Furthermore, the parsing level generates a library of design patterns 

that has the form of source class, destination class and relation type for all 

GoF design patterns. On the other hand, the searching level introduces the 

so-called structural search model (SSM) which involves a searching 

algorithm for each design pattern. The searching algorithm tries to build the 

pattern structure incrementally, based on the generated source code model. 

The third level of MLDA uses a CLIPS inference engine to match the method 

signatures of the candidate design instances to that of the subject system. 

Level four introduces a metrics-based approach to assess the impact of 

design patterns on software maintainability and understandability. This 

approach relies on software metrics and design pattern occurrences.  

 

 

 

 

 

 

 

 

 

 

 

 



99 
 

 

hapter Four 
Structural Search Model Evaluation 

To evaluate the effectiveness of MLDA in recovering the 

instances of design patterns, it has been applied to eight open 

source software systems that are widely used as benchmarks 

for design pattern recovery. This chapter presents the experimental results 

of recovering instances of design patterns using the structural search model.  

 

4.1 Introduction  

Each design pattern has its own structure which requires a certain 

arrangement of classes. Each arrangement is connected using two or more 

relationships. This level of structural information can be used as a starting 

point to recover instances of design patterns. More specifically, recovering 

instances of design patterns should search for all possible structures similar 

to that of GoF. Existing recovery approaches, as presented in Chapter Two, 

use different searching techniques and library representations to recover 

instances of design patterns. However, the recovery process should try all 

the possible structures that are similar to that of GoF design patterns. 

This chapter presents the experimental results of applying the 

structural search model (SSM). The SSM tries to build the structure of each 

design pattern incrementally, based on the class-level representation of a 

subject system. The MLDA parser will generate the required class-level 

representation and store it in an SQL table. The SSM involves a searching 

algorithm for each design pattern, which tries all the possible combinations 

between classes until a pattern structure has been found. The classes’ 

combination process relies on the five key relationships. All classes that 

participate and play a role in the matched structure will be exported into an 

SQL table. The SSM and its Pseudocode are presented in Appendix B and 

Appendix C respectively. 

C 
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The experiments in this chapter aim to address whether the SSM is 

able to recover instances of design patterns with reasonable detection 

accuracy. The accuracy in terms of precision and recall and the efficiency in 

terms of searching time will be used to evaluate the SSM.  

 

4.2 Experiments Setup  

MLDA was implemented in Java using NetBeans Integrated Development 

Environment version 8.1. The recovered instances of design patterns are 

stored in tables, constructed using MySQL Workbench version 6.3 CE. 

These systems are open source and implement design patterns in their 

source codes. Moreover, the selection of these systems was made to 

facilitate comparison with other existing approaches. All the experiments 

have been run on Windows 7 with Intel Core i5-2400 CPU. 

4.2.1 Subject Systems  

MLDA has been applied on JHotDraw, JRefactory, JUnit, QuickUML, Lexi, 

MapperXML, Nutch and PMD. The selection of these subject systems was 

made based on their results which are detailed enough to compare. The 

recovered design pattern instances will be validated based on all publicly 

published results in the available literature. 

JHotDraw is a Java GUI framework for technical and structured 

graphics. It has been developed as a "design exercise". The design of 

JHotDraw relies heavily on some well-known design patterns. JHotDraw is a 

well-designed and flexible framework [87].  

JRefactory is a software tool that allows the user to perform different 

refactoring activities, such as move class between packages, remove empty 

class, move method and rename parameter. JRefactory tool has the 

powerful feature of being able to insert the appropriate “Javadoc” comments 

so that the “Javadoc” program does not generate error messages for missing 

fields [88]. 
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JUnit is a unit testing framework for the Java programming language. 

JUnit plays a key role in the development of test-driven development. JUnit 

is linked as a "JAR" file at compile-time. It resides under the 

package “junit.framework” for JUnit 3.8 and earlier and under the 

package “org.junit” for JUnit 4 and later [89].  

QuickUML is a UML design tool that supports a highly integrated core 

set of UML models. It contains advanced features for multiple language 

projects, design namespaces, UML stereotype extensions, flexible color 

support, custom detail fields and automated generation of class models from 

the dictionary [90].  

Lexi is a Java-based word processor. It currently edits plain text and 

RTF files, with HTML and Open Document Format support planned [91].  

MapperXML is a presentation framework for web applications. Its 

framework uses components to build applications. The components follow 

the Model-View-Controller pattern. MapperXML is extensible for other 

presentation applications (reporting, data exchange etc) by extending and 

implementing appropriate containers, components and sub-components 

[92].  

Nutch is a ready web crawler. It enables fine-grained configuration, 

relying on “Apache Hadoop” data structures which are used for batch 

processing. In addition, Nutch provides extensible interfaces, such as Parse, 

Index and Scoring Filters, for custom implementations. Nutch is scalable and 

robust and can run on a cluster of up to 100 machines. It allows developers 

to create plug-ins for media-type parsing, data retrieval, querying and 

clustering [93]. 

PMD is a source code analyzer. It finds common programming flaws, 

such as unused variables, empty catch blocks, duplicate code and 

unnecessary object creation. PMD includes a set of built-in rules and 

supports the ability to write custom rules [94].  

The characteristics of the eight subject systems appear in Table 4.1.  

https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/JAR_(file_format)
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Table 4.1: The characteristics of the systems used in the experiments 

 

4.2.2 Effectiveness Evaluation 

The effectiveness of MLDA has been evaluated in terms of accuracy and 

searching time. To evaluate the accuracy, two well-known metrics are used, 

namely precision and recall. The F-measure, which represents the harmonic 

mean of recall and precision, is calculated as well. The previous metrics can 

be calculated as follows [52]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 % 

𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 % 

𝐹𝐹 −𝑚𝑚𝑃𝑃𝐹𝐹𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 = 2 ∗   
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

 % 

Where: 

True Positives are the number of instances correctly detected by 

MLDA; 

False Positives are the number of instances incorrectly detected by 

MLDA; 

Project Category Version Files Size (MB) 

JHotDraw Graphics User 
Interface 5.1 155 2.98 

JRefactory Graphics User 
Interface 2.6.24 549 4.0 

JUnit Unit Testing 3.7 71 2.66 

QuickUML Design Tool 2001 150 1.76 

Lexi Text 
Processing 0.1.1 alpha 24 0.84 

MapperXML Presentation 
Framework 1.9.7 217 2.5 

Nutch Web Crawler 0.4 165 3.0 

PMD Code Analyzer 1.8 446 7.0 
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False Negatives are the number of instances incorrectly rejected by 

MLDA (missed instances). 

4.2.3 Results Validation 

To validate the number of true positives, false positives and false negatives, 

we refer to all publicly published results in the available literature. In fact, we 

investigated the results of [31], [33], [37], [41], [42] and [43]. In addition, we 

used the repository of Perceron [34], the design pattern detection tools 

benchmark platform [75] and P-MARt [76] as the main benchmarks to 

validate our results. In doing this, more accurate validation will be conducted. 

Consequently, after the recovery of all design pattern instances and 

comparing them with all public results in the available literature, all classes 

that are playing roles and participating in GoF design patterns can be 

identified. Moreover, a reference benchmark for all design pattern instances 

in the investigated subject systems can be generated. 

 

4.3 Recovering Design Pattern Instances 

The subject systems have been parsed by the MLDA parser and the SSM 

model is applied to the generated source code model in attempts to recover 

the candidate instances of design patterns.  

4.3.1 Parsing and Source Code Model Generation 

The results of the parsing of the subject systems are presented in Table 4.2.  

MLDA recovered, in total, 2406 classes and 176 interfaces from the subject 

systems. The parsing level of MLDA represents each subject system as a 

set of classes and interfaces and the relationships between them. The MLDA 

parser exports the generated source code model into an SQL table which 

has three columns: source class, destination class and relationship type. 

This SQL table will be examined by SSM to recover instances of design 

patterns. All relationships have been recovered based on the syntax 

presented in Table 3.2.   
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MLDA made a distinction between the inheritance relationship and 

the realization relationship, in which the realization relationship is an 

inheritance relationship that has an interface super class. Moreover, MLDA 

records the object creations inside each class/interface, henceforth class, by 

distinguishing between the aggregation relationship and the association 

relationship. Hence, the static analysis conducted by MLDA is acting as a 

dynamic analysis, since all objects created at the compile time and runtime 

were recorded.  

Table 4.2: The results of the parsing of the subject systems using MLDA 

As Table 4.2 illustrates, MLDA recovered all the possible relationships 

that may occur between any two classes inside the Java source code.  MLDA 

is quite fast in parsing the subject systems, taking 497 seconds to parse 

1777 files. However, MLDA spent most of the time parsing PMD since it is 

the largest subject system. This parsing time depends on the size of the 

subject system and the number of implemented classes. The dependency 

relationship is the main building relationship for all subject systems. In 

contrast, the realization relationship is the least implemented relationship. 

The number of association and aggregation relationships gives an 

indication of whether the behavioral design patterns are implemented or are 

not inside the subject system. MLDA will try to make all the possible 

Recovered 
features/ 
Subject 
Systems C
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es
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ea
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ns
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he
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tio
ns

 

A
ss
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Ti
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e 
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ec
on

ds
) 

 

JHotDraw 183 18 25 97 110 96 40 39 
JRefactory 577 35 89 535 782 439 54 135 

JUnit 104 8 13 50 110 31 25 17 
QuickUML 126 19 33 105 157 99 118 40 

Lexi 151 19 45 64 80 62 43 21 
MapperXML 346 28 44 220 175 227 171 55 

Nutch 374 24 70 266 455 449 191 40 
PMD 545 25 75 464 436 343 155 150 

Total 2406 176 394 1801 2305 1746 797 497 
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arrangements between classes and interfaces to form a pattern structure 

consistent with the GoF structure presented in the generated library. To 

explain how MLDA represents the subject systems, a screenshot of the 

generated source code model of JHotDraw is presented in Figure 4.1. 

 

 

 

 

 

 

 

 

 

Figure 4.1: A screenshot for the source code model of JHotDraw 

generated by MLDA 

The generated source code model reflects the static behavior of the 

subject system. Other information can be recovered from the source code, 

such as abstract classes, concretes classes and fields. However, since SSM 

relies on the classes arrangements, only the classes and their relationships 

were recovered. 

 The SSM will examine each record of the source code model, try to 

find the required relationships for each pattern and try to form a complete 

pattern structure.   

All the searching algorithms are working in the same manner. The ad-

hoc nature of GoF design patterns makes SSM suitable enough for 

recovering their instances (i.e. the structure and behavior of GoF design 

patterns has not changed since their introduction in 1995). The SSM was 
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constructed using a series of IF-THEN and FOR statements in such a way 

that all the possible arrangements of classes and interfaces could be 

checked. Once a pattern structure is encountered, all pattern participant 

classes are exported into the corresponding design instances table. The 

export process is done using an SQL INSERT statement. The inserting 

process is quite fast, MLDA spending a few seconds inserting the participant 

classes into the corresponding tables. Each design pattern instances are 

stored in a separate tables to ease the validation process.   

The search time spent by SSM depends on the number of classes 

involved and on the structure of each design pattern. SSM will search for a 

complete pattern structure inside the source code model of the subject 

system. However, some design patterns may be partially implemented in the 

subject system and considered as a complete design pattern instance. 

These instances increase the number of false negative instances and are 

considered as missed instances. One possible solution to allow SSM to 

recover the instances partially implemented is the exporting of pattern 

participant classes when a certain number of required relationships is 

encountered. However, there is no common agreement in the literature on 

the required number of relationships to recover the partially implemented 

instances. This motivates us to focus on the standard complete structure of 

design patterns presented by GoF.  

The Pseudocode of the SSM for the Proxy design pattern is presented 

in Figure 4.2 which shows that all the possible arrangements of classes will 

be checked until a complete Proxy structure can be formed.   

MLDA will try all possible combinations of classes and interfaces until 

a complete Proxy structure can be formed. The order in which the search 

attempts are performed is not important since this will not affect the detection 

accuracy.  
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Figure 4.2: The Pseudocode of the SSM for the Proxy design pattern 

 

4.3.2 Recovering Accuracy  

Tables 4.3 and 4.4 present the detailed experimental results of recovering 

23 GoF design patterns from the subject systems. An instance of a design 

pattern is said to be a candidate instance if it has a structure similar to that 

of GoF. As the experimental results illustrate, the SSM is performing quite 

well, recovering 2994 candidate instances within 551 seconds. However, 

SSM spent a longer time recovering the instances of the Memento and 

Abstract Factory design patterns since they have more complicated 

structures than do other design patterns. 

In terms of accuracy, SSM detected most of the instances that are 

consistent with standard structural definitions presented by GoF. However, 

some instances have a structure similar to that of the GoF design patterns 

yet are not design patterns. These instances increase the number of false 

positive instances and affect SSM’s accuracy. As the number of required 

relationships for each instance increases, the chances of that instance being 

a true positive instance increases.  

SSM missed only those instances that are partially implemented in 

the source code. For example, it rejected one Visitor instance since the roles 

of "ObjectStructure", "Element" and "ConcreteVisitor" were not implemented 

in the source code of JRefactory. The partly implemented instances affect 
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the recall rate of SSM which is unable to distinguish between the State and 

Strategy design patterns since both have a similar structure and require 

dynamic analysis capabilities to distinguish between their instances. 

The most commonly implemented design patterns are Singleton and 

Façade which are implemented in all subject systems. In general, most 

software systems rely heavily on Singleton and Façade design patterns 

since their intents help these systems to fulfill their functionality. In contrast, 

the Interpreter design pattern is not implemented in any of the subject 

systems.  

As the experimental results show, the relationships matching is not 

enough to detect GoF design patterns. Although all five major relationships 

are recovered from the subject systems, the structure of the candidate 

instances results in too many false positive instances. However, SSM 

detects all the Singleton instances correctly and only two instances are 

missed in PMD. Furthermore, SSM is unable to detect instances of the 

Template design pattern since its structure relies only on the inheritance 

relationship (SSM will search for two participant classes, Abstract and 

Concrete, that are connected together using an inheritance relationship). 

Hence, too many false positive instances will be detected. 

In some cases, where the number of implemented design pattern 

instances in a subject system is zero, the corresponding precision cannot be 

calculated and its value is set to NA (Not Applicable). In addition, the recall 

is set to NA when there is no benchmark reports the correct instances in a 

subject system. Hence, the number of missed instances cannot be 

determined. However, this case only happened when we tried to validate 

JRefactory instances. 
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Table 4.5 presents the average precision, recall and F-measure of 

SSM for recovering all GoF design patterns and for recovering all GoF design 

patterns excluding the Template Method design pattern.  

Table 4.5: The average accuracy of SSM 

The accuracy of SSM increased when excluding the Template 

Method design pattern from the pattern detection list. However, the accuracy 

is still not reasonable since too many false positive instances are recovered. 

SSM achieved its highest precision when recovering instances of QuickUML. 

In contrast, SSM shows the lowest accuracy when recovering instances of 

JRefactory. This is mainly due to the instances’ nature inside these systems. 

Most JRefactory instances are partly implemented and have a structure 

similar to that of GoF, yet they are not GoF. SSM achieved an average recall 

of 79% for all GoF design patterns, which indicates the ability of SSM to 

recover most of the instances that have a complete GoF structure. 

The structure of a design pattern is not enough to detect its instances 

from the source code. To enhance the detection process, which relies on the 

relationships matching, the third level of MLDA has been developed. The 

new level is aimed at reducing the number of false positive instances (i.e. 

 

All GoF design patterns 

 All GoF design patterns 
except Template Method 
design pattern 

Subject Systems 
CI TP FP FN 

 
CI TP FP FN 

JHotDraw 195 42 153 8  100 38 62 8 
JRefactory 723 142 581 20  188 138 50 20 
JUnit 68 12 56 9  18 11 7 9 
QuickUML 185 75 110 16  80 72 8 16 
Lexi 216 22 194 22  152 22 130 22 
MapperXML 319 116 203 64  99 60 39 64 
Nutch 487 201 286 7  227 194 33 7 
PMD 801 207 594 77  337 99 238 77 
Total 2994 817 2177 223  1201 634 567 223 
 
Average precision 27%  53% 
Average recall 79%  74% 
Average F-measure 41%  62% 
 
Note:   
CI: Candidate Instances after applying Structural Search Model (level two)  
TP: True Positives     FP: False Positives           FN: False Negatives   
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the instances that have a structure similar to that of GoF, but are not design 

patterns).  

Design patterns are not only about the structure and the specific 

arrangement of classes. GoF illustrates that a design pattern should 

implement certain method signatures, such as whether a method is static or 

not, method return type and method access modifier. Furthermore, some 

pattern participant classes should implement one or more methods that call 

a method, implemented in another participant class. The third level of MLDA 

tries to match the required method signatures of the candidate design pattern 

instances to that of the subject system to reduce the number of false positive 

instances. In the next two chapters, a rule-based approach will be presented 

and evaluated to match the method signatures of the candidate design 

instances generated by SSM. 

 

4.4 Results Comparison  

The accuracy of the Structural Search Model (SSM) has been compared to 

four approaches, as presented in Tables 4.6 and 4.7. The selection of these 

approaches was made based on their results which were detailed enough to 

compare and were applied to the same subject systems (JHotDraw version 

5.1 and JUnit version 3.7).  However, the comparison among design pattern 

detection approaches is challenging. This is due to the fact that there is no 

standard benchmark to validate the results of each approach. In fact, each 

approach has its limitations, patterns representation, subject systems and 

validation method.  Tables 4.6 and 4.7 show the results of the design 

patterns recovery of SSM, Sempatrec [44], DeMIMA [41], Sub-patterns [33] 

and SSA [31] for JHotDraw and JUnit respectively. However, SSM missed 

the instances partly implemented in the source code, since SSM relies on 

the standard definition of GoF. On the other hand, the lack of dynamic and 

runtime information explains the existence of false positives. It must be noted 

that we only compare the results that DeMIMA, SSA, Sempatrec, and Sub-

patterns revealed. 
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Table 4.6: Comparison of the results of SSM and that of other approaches 

for JHotDraw 

 

 

 

 

 

 

 

Table 4.7: Comparison of the results of SSM and that of other approaches 

for JUnit 

4.5 Threats to Validity  

Threats to internal validity concern factors that could affect the results. In this 

dissertation, this is mainly due to the variants of design patterns. Design 

pattern instances are recovered based on the standard structural format 

presented by GoF [11]. Moreover, the way in which the results are validated 

could affect precision and recall. To validate the number of true positives, 

 

DPs SS 
SSM DeMIMA SSA Sempatrec Sub-patterns 

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% 

AD JD 35 100 52 4 100 8 44 100 61 45     100 NA NA 

DE JD 100 33 50 8 100 15 33 33 33 50 33 40 100 NA NA 

CO JD 100 100 100 33 100 50 100 100 100 100 100 100 100 NA NA 

FM JD NA 0 NA 2 100 4 100 67 80 100 100 100 100 NA NA 

SI JD 100 100 100 100 100 100 100 100 100 100 100 100 100 NA NA 

OB JD NA 0 NA 25 100 40 50 40 44 50 40 44 100 NA NA 

TM JD 4 100 8 7 100 13 20 100 33 50 100 67 100 NA NA 

VI JD 100 50 67   100   100 100 100       100 NA NA 

  
Average % 73 60 63 26 100 33 68 80 69 71 79 75 100 NA NA 
Note:  
AD: Adapter             DE: Decorator           CO: Command     FM: Factory Method        SI: Singleton        OB: Observer     TM: Template Method       
VI: Visitor                 SS: Subject Systems  JD: JHotDraw      JU: JUnit                          P:Prescion           R: Recall            F: F-measure 
Blank: Not  revealed      NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances  

 

 

DPs SS 
SSM DeMIMA SSA Sempatrec Sub-patterns 

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% 

AD JU 71 45 55 0     17 100 29 100 100 100 100 100 100 

DE JU 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

CO JU NA 0 NA 100 100 100 100 100 100 100 100 100 100 100 100 

FM JU 100 100 100   100               100 100 100 

SI JU NA NA NA                   100 100 100 

OB JU NA 0 NA 25 100 40 100 100 100 100 100 100 100 50 67 

TM JU 2 100 4 0     100 100 100 100 100 100 100 100 100 

VI JU NA NA NA   100                 100 100 

  
Average % 68 58 65 45 100 80 83 100 86 100 100 100 100 94 96 
Note:  
AD: Adapter             DE: Decorator            CO: Command    FM: Factory Method        SI: Singleton        OB: Observer     TM: Template Method       
VI: Visitor                 SS: Subject Systems  JD: JHotDraw      JU: JUnit                           P:Prescion           R: Recall             F: F-measure 
Blank:  Not  Revealed         NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances  
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false positives and false negatives, we refer to all publicly published results 

in the available literature. In fact, we investigated the results of [31], [33], 

[37], [41], [42] and [43]. In addition, we used the repository of Perceron [34], 

the design pattern detection tools benchmark platform [75] and P-MARt [76] 

as the main benchmarks for validating our results. In doing this, a more 

accurate validation is performed. In total, we validated 2994 candidate 

instances based on all public results presented by other approaches. 

Threats to external validity concern the generalization of the results. 

In fact, this thesis focuses on Java programming language. It could be 

worthwhile to conduct the evaluation on other projects having different 

languages.  

 

4.6 Summary 

This chapter presented the experimental results of recovering design pattern 

instances from eight subject systems using the structural search model. 

Specifically, the parsing level and the searching levels of MLDA are applied 

on JHotDraw, JRefactory, JUnit, QuickUML, Lexi, MapperXML, Nutch and 

PMD.  

The Parsing level recovered the five key relationships that may occur 

between all classes and interfaces inside any object-oriented program. The 

MLDA parser is quite fast, recovering 2582 classes and interfaces within 497 

seconds. The output of the parsing level is a source code model that has the 

form of source class, destination class and relationship type. 

SSM has been applied to the generated source code model to recover 

the design pattern instances that have a complete GoF structure. SSM 

cannot recover instances that are partly implemented in the source code.  

As the experimental results illustrate, the relationship matching is not 

enough to recover the instances of GoF design patterns. SSM produces too 

many false positive instances since too many instances have a structure 

similar to that of GoF design patterns, but they are not design patterns. 



115 
 

However, SSM achieved an average recall of 79% since it only missed the 

partially implemented instances.
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hapter Five 
Method Signatures Matching 
The Structural Search Model (SSM) of MLDA detected the 

instances of design patterns based on the connecting 

relationships between pattern participant classes. However, the structure of 

each design pattern is not enough to detect all the instances correctly and 

produces too many false positives. This chapter presents the third level of 

MLDA, which applies a rule-based approach to enhance the detection 

accuracy achieved by SSM. 

MLDA applies a rule-based system to filter the candidate design 

pattern instances detected by SSM. The rule-based system tries to match 

the method signatures of the candidate design pattern instances to that of 

the subject system. A rules template for the method signatures of GoF design 

patterns has been created. Specifically, the method signatures of the 

candidate design pattern instances were represented as a list of rules. Based 

on the rules template, the MLDA rules/facts generator will generate a list of 

rules to reflect the required method signatures and method calls between 

participant classes of the candidate instances. On the other hand, the MLDA 

rules/facts generator will generate a list of facts to represent the interactions 

between methods inside the subject system. MLDA uses CLIPS, an expert 

system tool, to process the generated facts and rules and to remove the false 

positive instances. The generated rules are consistent with the required 

method signatures presented by GoF [11]. 

 

5.1 Rule-Based Systems  

Rule-based systems use expert knowledge to solve real-world problems that 

would normally require human intelligence. A rule-based system contains IF-

THEN rules, facts and an inference engine that controls the application of 

the rules. Specifically, rule-based systems represent knowledge in terms of 

C 
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a bunch of rules that inform the knowledge engineer what to conclude in 

different situations. The term “rule” can be defined as an IF-THEN structure 

that relates given facts in the IF part to some action in the THEN part. An 

important advantage of rule-based systems is that, within the domain of the 

knowledge base, a different problem can be solved using the same program 

without reprogramming efforts. Rules can represent relations, 

recommendations, directives, strategies and heuristics. When the condition 

part of a rule is satisfied, the rule is said to fire and the action part is executed.  

A typical rule-based system consists of the following components [95]: 

• A knowledge base which contains the rules that represent expert 

knowledge about the problem domain. Knowledge acquisition is a key 

element in the development of expert systems. Knowledge could be 

obtained by learning and experience. 

• The database, a working memory, which contains the set of known facts 

about the problem used to match against the IF (condition) parts of rules 

stored in the knowledge base.  

• An inference engine which links (compares) rules stored in the 

knowledge base with known facts provided in the database to reach a 

conclusion. The matching of the rule IF parts to the facts produces 

inference chains. The inference chain indicates how the expert system 

applies the rules to reach a conclusion.  

• Explanation facilities which provide information to the user about the 

reasoning steps. 

• A user interface which allows interactions between the user and the 

system. 

The architecture of a rule-based system appears in Figure 5.1: 
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Figure 5.1: The basic architecture of a rule-based system 

 

Rule-based systems have high-quality performance, employ symbolic 

reasoning when solving a problem and apply a heuristic to guide the 

reasoning. Thus, the search area for a solution is reduced. There are two 

kinds of inference engines used in rule-based systems: forward chaining and 

backward chaining.  

In forward chaining systems, the initial facts are processed first and 

rules are used to draw new conclusions given those facts. Forward chaining 

is useful when no specific goal is being explored. It is appropriate in 

situations where data are expensive to collect, but few in quantity. 

Furthermore, forward chaining is data-driven in that each time only the 

topmost rule is executed. Any rule can be executed only once. The match-

fire cycle stops when no further rules can be fired. However, forward chaining 

would not be efficient when the goal is to infer only one particular fact (if the 

system needs to gather some information and then tries to infer from them 

whatever can be inferred, forward chaining is the best choice). 

In backward chaining systems, the hypothesis (goal, solution) is 

processed first and keeps looking for the rules that would allow a conclusion 

to the hypothesis. It is goal-driven reasoning. Backward chaining is useful in 

situations where the quantity of data is potentially very large and where some 

specific characteristics of the system under consideration are of interest. If 
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the system begins with a hypothetical solution and then attempts to find facts 

to prove it, backward chaining is the appropriate choice. The same set of 

rules can be used for both forward and backward chaining. 

One of the key concepts in rule-based systems is conflict resolution. 

Conflict resolution can be defined as the method of choosing a rule to fire 

when more than one rule can be fired in a given cycle. Some approaches 

are used to handle conflict resolution, such as:  

• Firing the rule with the highest priority. The priority can be established 

by placing the rules in an appropriate order in the knowledge base. 

Hence, the topmost rule will be fired first. 

• Firing the most specific rule (also known as the longest matching 

strategy). This is based on the assumption that a specific rule 

processes information more than a general one does. 

• Firing the rule that uses the data most recently entered in the database. 

The inference engine first fires the rules whose condition uses the data 

most recently added to the database. Tags can be attached to each fact 

in the database.  

Rule-based systems are developed using specialized software tools 

called shells. These shells come equipped with an inference mechanism 

(forward chaining, backward chaining, or both). The shell provides the key 

components of a rule-based system. The knowledge is entered based on a 

specific format. Examples of shells are JESS, CLIPS, Drools, rules engine 

and e2glite. The inference process used in a rule-based system is deductive 

inference. This means that the rules of logic are used to deduce new 

knowledge from existing rules and knowledge. CLIPS is one of the most 

popular shells, widely used through the industry and in academia [78]. CLIPS 

is written in C and supports three programming paradigms: object-oriented, 

rule-based and procedural. CLIPS uses forward chaining and provides a 

language for representing facts and rules. The language is based on the 

artificial intelligence language LISP. CLIPS inference engine does the 

required matching between facts and rules using the “Rete algorithm” [96].  
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5.1.1 Motivation  

The method signatures of GoF design patterns share common 

characteristics and features, such as methods overriding, methods call and 

level of abstraction. Rule-based systems use human experience in a specific 

field to build an intelligent system that mimics human behavior.  

Our manual attempts to match the method signatures of the candidate 

design pattern instances to that of the subject system produces a set of IF-

THEN statements. Rule-based systems provide a separation of knowledge 

from system processing. Specifically, the structure of the rule-based systems 

provides an effective separation of the knowledge base from the inference 

engine.  

In fact, our main motivation behind the use of a rule-based system to 

match the method signatures of the candidate design instances to that of the 

subject system is the ability to represent the method signatures of the 

candidate design instances as an independent piece of knowledge, which 

can be transformed into a set of rules. In addition, the method signatures of 

GoF design patterns have a uniform structure which facilitates their 

representation as a set of rules. On the other hand, the comparison process 

that the inference engine can perform allows the effective matching of the 

set of rules to the facts. Rule-based systems can deal with uncertain and 

incomplete knowledge. Specifically, part of the method signatures can be 

used to generate a set of rules.  

However, rule-based systems are unable to learn. Thus, the matching 

process is trying to match “exactly” the method signatures of the candidate 

design instances to that of the subject system. In addition, a rule-based 

system cannot automatically modify its knowledge base, adjust existing 

rules, or add new ones. In the case of method signatures matching, there is 

no need to modify the existing rules. All rules will be generated based on the 

created template of GoF method signatures. The structure and method 

signatures of GoF design patterns did not change over time since their 

introduction in 1995.  
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The use of object-oriented programming languages to implement the 

matching process between facts and rules leads to too many nested IF-

THEN statements, too many loops, and complicated matching structure. This 

leads to an inefficient, inaccurate and hard-coded matching process. 

The use of a rule-based system aims to remove the false positive 

instances detected by SSM. The fundamental hypothesis that we want to 

explore is as follows: representing the method signatures of the candidate 

design instances and subject systems using a rule-based system is effective 

in improving the precision of recovering design pattern information which 

relies on relationships matching. CLIPS, an expert system tool, will be used 

to process the facts and rules that represent the method signatures of the 

subject system and the candidate design instances respectively. CLIPS 

supports forward chaining and is widely used in academia and industry.  

5.1.2 Rule-Based Systems and Design Patterns  

The use of rule-based systems is not widely adopted in the area of design 

pattern detection. Only two approaches adopted the idea of using rules and 

method signatures to detect instances of design patterns. The approach 

presented by Alnusair et al. [44], Sempatrec, uses ontology formalism to 

represent the conceptual knowledge of the source code and semantic rules 

to capture the structures and behaviors of design patterns in the subject 

system. Sempatrec presents an ontology model that includes a Source Code 

Representation Ontology (SCRO) which explicitly represents the 

conceptual-knowledge structure found in the source code. SCRO captures 

the key concepts and features of object-oriented programs, such as methods 

overriding, method signatures and invocations, aggregation between objects 

and control structures (repetition, sequence controls and selection). SCRO’s 

knowledge is represented using the Web Ontology Language (OWL-DL), a 

sub-language of OWL, based on Description Logic (DL). 

Various object properties and data properties are defined within 

SCRO to represent the relationship between concepts by linking individuals 

from different OWL classes. For example, “hasOutputType” is an object-

functional property defined for the return type of a method. A system, the 
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knowledge generator, has been built to extract knowledge automatically from 

Java bytecode. It captures every SCRO concept that represents a source-

code element. Moreover, the knowledge generator generates instances for 

all ontological properties defined in SCRO. The semantic instances 

generated by the knowledge generator subsystem are serialized using 

Resource Description Framework (RDF) and linked to SCRO or any other 

OWL ontology. Figure 5.2 shows part of the knowledge base and an RDF 

description of JHotDraw generated by the Sempatrec knowledge generator. 

 

 

 

 

 

 

 

Figure 5.2: Part of Sempatrec’s knowledge base representation of 

JHotDraw 

Sempatrec applies a rule-based approach to detect instances of 

design patterns. Specifically, the OWL-DL inference engine computes the 

entailments from a set of facts and Semantic Web Rule Language (SWRL) 

rules defined in the ontologies. The detection process is based on the logical 

inference that requires a rule-based reasoner capable of processing the 

SWRL rules.  

The inference engine will recover pattern instances based on a 

matching between the semantic constraints specified in the rules and the 

source code descriptions found in the knowledge base representing the 

subject system. Further details on the Sempatrec recovery process were 

presented in Chapter Two.  

The idea of using method signatures matching was adopted by 

Dongjin et al. where they presented a sub-pattern representation for 23 GoF 

scro: hasAccessControl scro: public; 
scro: hasSuperType 
<#org. jhotdraw.util.Storable >; 
scro: use <#org. jhotdraw. framework. Connector >; 
scro: hasAbstractMethod 
<#org. jhotdraw. framework. Figure . draw [. . . .] > ; 
. . . . 
. . . . 
<#org. jhotdraw. framework. Figure. draw [. . . .] > 
rdf: type scro: AbstractMethod; 
scro: hasOutputType <#void >; 
scro: hasInputType <#java. awt. Graphics >; 
scro: hasSignature 
” org. jhotdraw . framework. Figure.draw [ . . .]”; 
scro: hasAccessControl scro: public. 
. . . . 
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design patterns (a sub-patterns approach) [33]. The recovery process of the 

sub-patterns approach was presented in detail in Chapter Two. The sub-

patterns approach detected the instances of design patterns by the matching 

sub-graphs of the class-relationships directed graph that represents the 

subject system. The method signatures of the candidate design instance are 

analyzed and matched to a predefined template to achieve the final 

instances. However, it is not clear how the matching process is performed. 

The sub-patterns approach did not explain how the method signatures of the 

candidate instances are matched to that of the subject system. We tried to 

contact the authors, but unfortunately, there was no response. 

We used the concepts of method signatures and rule-based systems 

to filter the candidate design instances and enhance SSM’s recovery 

accuracy. The method signatures provide more concrete behavior of pattern 

participant classes. The MLDA rules/facts generator has been developed to 

generate the required rules and facts. On the other hand, the inference 

engine of CLIPS will be used to match the generated set of rules and facts. 

 

5.2 CLIPS 

The 'C' Language Integrated Production System (CLIPS) is a rule-based 

programming language useful for creating expert systems. It attempts to 

match the patterns of rules against the facts in the rule list. CLIPS is also 

useful for creating other programs where a heuristic solution is easier to 

implement than an algorithmic solution. CLIPS was developed at NASA's 

Johnson Space Center from 1985 to 1996 and, since then, it has been 

available as a public domain software [78]. 

CLIPS has been designed in a way to facilitate the development of 

software that model human knowledge or experience. CLIPS provides two 

ways to model the knowledge: 

• Rules that are mainly designed to support heuristic knowledge based 

on experience; 
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• Deffunctions, generic functions and object-oriented that are mainly 

intended for procedural knowledge.  

The rule-based system can be developed using only rules, only 

objects, or a mixture of rules and objects. The CLIPS shell provides the basic 

elements of an expert system: 

• A fact-list which contains all the facts about the problem. Facts are 

stored in short-term memory. 

• A knowledge-base which contains all the rules. Rules are stored in the 

knowledge base (database). 

• An inference engine which controls the overall execution of the rules. 

In procedural languages, such as C, Ada and BASIC, the execution 

can proceed without data. In contrast, data are required to cause the 

execution of rules in CLIPS which is a forward chaining system, starting from 

the facts to develop a solution. The CLIPS inference engine uses “Rete 

algorithm” for rules and facts matching.  

5.2.1 Rete Algorithm  

Rete algorithm is a pattern matching algorithm for implementing expert 

systems, designed by Charles L Forgy in 1974 [96]. It is used to determine 

which rule the inference engine should fire. Rete algorithm aims to speed up 

the pattern matching process. It is a directed acyclic graph that represents 

higher level rule sets.  

A Rete-based expert system builds a network of nodes where each 

node, except the root node, corresponds to the condition part of the rule. A 

complete rule left-hand side can be defined by tracing the path from the root 

node to a leaf node. The new inserted facts are propagated along the 

network, causing nodes to be annotated when that fact matches the pattern. 

When a leaf node is reached, this indicates that all the conditions (patterns) 

for a given rule are satisfied. Thus, the corresponding rule is fired. Rete 

algorithm stores information about matches in a network structure.  
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Rete becomes the basis for many expert system shells, including 

Jess, Drools, BizTalk, Rule engine, Soar and Sparkling Logic SMARTS and 

CLIPS. 

Rete algorithm uses node sharing to reduce a certain type of 

redundancy. The ability of Rete algorithm to store partial matches allows the 

production system to avoid complete re-evaluation of all facts each time 

changes are made. However, Rete algorithm is theoretically independent of 

the number of rules in the system [96].  

When facts are asserted to the working memory, the inference engine 

creates Working Memory Elements (WMEs) for each fact. Each WME enters 

the Rete network at a single root node. It may then be propagated through 

the network until it arrives at a terminal node. Rete algorithm constructs a 

matching network from the conditions of a set of rules. The inputs of Rete 

algorithm are a set of facts and the outputs are activation records that 

indicate how rules match against facts. Rete algorithm avoids redundant 

matching and shares matching across rules with common conditions.  

Figure 5.3 shows a simple example to illustrate how Rete algorithm 

matches the set of facts against rule conditions. For a single rule’s condition, 

Rete algorithm will construct a single-input node for each fact-value test. The 

combination of the first two single-input nodes produces a so-called dual-

input node which outputs facts that match both tests. Another dual-input 

node is constructed from the previous dual-input node and the next single-

input node. This step is repeated until all tests in the rule’s conditions are 

plugged into the chain of dual-input nodes.  

For a second rule condition, Rete algorithm re-uses single-input 

nodes. If Rete algorithm does not already construct a single-input node for a 

fact-value test in the second rule’s condition, it will construct a new one. 

Furthermore, Rete algorithm re-uses dual-input nodes when the fact-value 

tests appear in the same order in the second rule’s condition as in the first. 

However, a different set of dual-input nodes will be constructed if the tests 

are in a different order in the second rule’s conditions. 
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5.2.2 Rules and Facts Matching in CLIPS 

CLIPS attempts to match the patterns (conditions) of rules against the facts 

in the rule list. When all patterns of a rule match the facts, the rule is activated 

and put on the agenda (i.e. the action part will be executed when the rule’s 

condition part matches fact(s) in the working memory). Hence, the rule fires. 

The term “fire” means that CLIPS has selected a certain rule for execution 

from the agenda. 

The agenda is a collection of activations which are rules that match 

pattern entities. Zero or more activations may be on the agenda.  

However, when multiple activations are on the agenda, CLIPS 

automatically determines which activation is appropriate to fire. The 

activations are ordered by CLIPS in terms of increasing priority. Specifically, 

the CLIPS inference engine sorts the activations according to their salience, 

i.e. the topmost rule will be fired first. This sorting process, as illustrated in 

the previous section, is called conflict resolution because it eliminates the 

conflict of deciding which rule should be fired next. The “run” command will 

fire all rules in the agenda.  
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Figure 5.3: A simple Rete algorithm example 
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5.3 Methodology  

The candidate design pattern instances that have been detected by MLDA’s 

Structural Search Model (SSM) will be filtered by applying a rule-based 

approach. The rule-based approach aims to remove the false positive 

instances by matching the method signatures of the candidate design 

instances to that of the subject system. A rules template for GoF method 

signatures has been created to reflect the required method signatures for 

each design pattern. In addition, we introduce what is the so-called MLDA 

rules/facts generator, a simple Java program that is able to write a set of 

rules and facts based on the method signatures representation of the 

candidate design instances and subject system. Figure 5.4 shows the 

architecture of MLDA’s level three.  

 

 

 

 

 

 

 

 

 

Figure 5.4: The architecture of MLDA’s level three 

The hybrid system architecture illustrates the relationship between 

SSM, the MLDA rules/facts generator, the rules template and CLIPS. In fact, 

this architecture is an enhancement of the initial MLDA architecture 

presented in Chapter Three. As Figure 5.4 illustrates, the MLDA rules/facts 

generator make access to two tables: the candidate instances table 

recovered by SSM and the method signatures of the subject system.  
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Furthermore, the outputs of the MLDA rules/facts generator are two 

files (.txt files) that store the generated set of rules and facts. These files will 

be loaded into CLIPS where its inference engine will do the required 

processing and the matching between facts and rules. The output of the 

inference engine is a print message indicating that a candidate instance is a 

true positive. The hybrid system uses the MLDA parser to parse the subject 

system and to recover its method signatures from each class/interface. The 

MLDA parser, as presented in Chapter Three, is developed based on 

Javaparser version 1.0.11 [80] which generates an Abstract Syntax Tree 

(AST) representation of the static behavior of the subject system. 

The MLDA parser recovers all methods that are implemented inside 

each class/interface, with the following signatures: 

• Access modifier signature which can be public, private, or protected. 

• Return type signature which can be void, data type, or another class. 

• Is_static signature which indicates whether the method is static or not. 

This table field is set to YES or NO.  

• Call_to signature which indicates if the method makes a call to another 

method. This table field is kept blank if the method does not call another 

method. 

Consequently, the outputs of the MLDA parser are method 

signatures, a source code model and a design patterns library. The method 

signatures template acts as a basis for generating the rules. The template 

involves a rule template for each design pattern. The template aims to 

represent the key method characteristics between the pattern participant 

classes, such as method overriding (superclass and subclass implement the 

same method), method calls (a method in one class calls a method in 

another class), method return type (some design pattern methods require a 

certain return type). In expert systems, there is no standard syntax for a rule. 

Rules can be created based on the experience of the knowledge engineer in 

a specific problem domain. However, rules should have machine 

processable representation. In addition, rules representation should be 
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directive, readable and consistent. Rules and facts should be written in such 

a way that they can be matched by the inference engine. 

5.3.1 Rules Template for Method Signatures of Design Patterns  

A rules template has been created to reflect the required method signatures 

between pattern participant classes. We used readable and consistent rule 

syntax consistent with CLIPS rules syntax. In addition, we tried to represent 

the required method signatures of pattern participant classes. Table 5.1 

shows the created rule syntax and its corresponding significance. The 

template has been created in such way that it complements the structure of 

each design pattern.  

Table 5.1: The created rules template syntax and its significance 

 

As Table 5.1 illustrates, all the required method signatures between 

pattern participant classes are represented by the rules template. Each rule 

has its condition and action parts. All the required method signatures are 

included in the condition parts. On the other hand, the action part indicates 

whether the instance is a true positive or a false positive. Some design 

patterns require methods call and methods overriding between participant 

classes, such as Adapter and Proxy. Other design patterns require methods 

return types, such as Prototype and Builder. The static signature (Is_static) 

has been used only once to filter the Singleton candidate instances. The 

Singleton design pattern requires a class to implement one static method 

with a Singleton return data type. The rules template is stored in the design 

patterns library to complement the structure representation of each design 

Rule Syntax  Significance 
Class A  has method m Method m implemented inside class A 
method m returntype Class A Method m returns an object of type 

Class A 
method m Is_static YES/NO Method m is static or not 
test (=(str-compare m1 m2)0) To check whether m1 and m2 are the 

same methods (for overriding 
purposes) 

test (neq m1  m2 )      To check whether m1 and m2 are two 
different methods  

method m1 call_to method m2 The implementation of method m1 
involves a call to method m2 
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pattern. The MLDA rules/facts generator will generate the rules for the 

candidate instances based on the rules template. All template rules are 

consistent with the standard definition of design patterns presented by GoF.  

Table 5.2 presents the created rules template for GoF design 

patterns. This table uses the rules syntax of Table 5.1. Each rule has title, 

condition and action parts. Each rule/action is enclosed in a parenthesis. 

Comments can be added when necessary after a semicolon. The rules 

template is consistent with CLIPS syntax. Hence, the generated rules can 

be loaded directly into CLIPS for processing. 

Singleton_Rule 
1. (defrule Singleton_rule 
2. IF 
3. (Singleton has method ?x) 
4. (method ?x returntype Singleton) 
5. (method ?x Is_static YES) 
6. THEN 
7. (Singleton_instance is true positive) 
8. ) End Singleton Rule 

Prototype_Rule  
1. (defrule Prototype_rule  
2. IF 
3. (ConcretePrototype has method ?x) 
4. (Prototype has method ?y) 
5. (test (=(str-compare ?x ?y)0)) 
6. (method ?x returntype Prototype) 
7. THEN 
8. (Prototype_instance is true positive) 
9. ) End Prototype rule 

AbstractFactory_Rule 
1. (defrule AbstractFactory_rule 
2. IF 
3. (AbstractFactory has method ?x) 
4. (AbstractFactory has method ?y) 
5. (( test(neq ?x  ?y ))            
6. (ConcreteFactory has method ?x2) 
7. (ConcreteFactory has method ?y2) 
8. (( test(neq ?x2  ?y2 ))  
9. (test ( = ( str-compare ?x ?x2)0 ))          
10. (test ( = ( str-compare ?y ?y2)0 ))          
11. THEN 
12. (AbstractFactory_instance is true 

positive) 
13. ) End AbstractFactory rule 

Factory_Rule 
1. (defrule Factory_rule  
2. IF 
3. (Creator has method ?x) 
4. (ConcreteCreator has method ?y) 
5. (test (= (str-compare ?x ?y) 0 )) 
6. (method ?x returntype Product) 
7. THEN 
8. (Factory_instance is true positive) 
9. ) End Factory rule 

 

Builder_rule 
1. (defrule Builder_rule  
2. IF 
3. (Builder has method ?x) 
4. (ConcreteBuilder has method ?y) 
5. (test (= (str-compare ?x ?y) 0 )) 
6. (method ?x returntype Product) 
7. THEN 
8. (Builder_instance is true positive) 
9. ) End Builder rule 
 
 
 
 
 
 

Adapter_rule  
1. (defrule Adapter_rule  
2. IF 
3. (Target has method ?x ) 
4. (Adapter has method ?y) 
5. (test (=(str-compare ?x ?y) 0 ))                   
6. (Adaptee has method ?z) 
7. (method ?y call_to method ?z) 
8. THEN 
9. (Adapter_instance  is true positive)  
10. ) End Adapter rule 
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Bridge_rule  
1. (defrule Bridge_rule 
2. IF 
3. (ConcreteImplementor has method 

?y) 
4. (Implementor has method ?x) 
5. (test ( = (str-compare ?x ?y) 0 ))   
6. (Abstraction has method ?z ) 
7. (method ?z Call_to method ?x) 
8. THEN 
9. (Bridge_instance is true positive) 
10. ) End Bridge rule 

 

Composite_rule  
1. (defrule Composite_rule  
2. (Leaf has method ?x) 
3. (Component has method ?y) 
4. (test ( =(str-compare ?x ?y) 0 ))                        
5. (Composite has method ?z) 
6. (test (=( str-compare ?x ?z)0 ))                          
7. THEN 
8. (Composite_instance is true positive) 
9. ) End composite rule  

Decorator_rule  
1. (defrule Decorator_rule  
2. (Component has method ?x) 
3. (Decorator has method ?y) 
4. (test (= (str-compare ?x ?y) 0 ))                            
5. (ConcreteDecorator has method ?z) 
6. (test ( = ( str-compare ?y ?z) 0 ))                          
7. (method ?y call_to method ?x) 
8. (method ?z call_to method ?y) 
9. (ConcreteComponent has method ?q) 
10. (test ( = ( str-compare ?z ?q) 0 ))                          
11. THEN 
12. (Decorator_instance is true positive) 
13. ) End Decorator rule 

 

Façade_rule  
1. (defrule Façade_rule  
2. IF 
3. (Façade has method ?x) 
4. THEN 
5. (Façade_instance is true positive) 
6. ) End of Facade rule 

 

Command_rule  
1. (defrule Command_Rule  
2. IF 
3. (Command has method ?x) 
4. (ConcreteCommand has method ?y) 
5. (test (= (str-compare ?x ?y)0 )) 
6. (Receiver has method ?z) 
7. (( test(neq ?y  ?z )) 
8. (method ?y call_to method ?z) 
9. THEN 
10. (command_instance is true positive) 
11. ) End command rule 

 

Interpreter_rule  
1. (defrule Interpreter_rule 
2. IF 
3. (AbstractExpression has method ?x) 
4. (NonTerminalExpression has method 

?y) 
5. (test (= ( str-compare ?x ?y) 0 ))                             
6. (method ?y call_to ?x) 
7. THEN 
8. (Interpreter_instance is true positive) 
9. ) End Interpreter rule 

 

Iterator_rule  
1. (defrule Iterator_rule  
2. IF 
3. (Iterator has method ?x) 
4. (Aggregate has method ?y) 
5. ((test(neq ?x  ?y ))                                                      

(ConcreteIterator has method ?z) 
6. (test (= ( str-compare ?x ?z) 0 ))                                
7. (ConcreteAggregate has method ?q) 
8. (test (= ( str-compare ?y ?q) 0 ))                                
9. (method ?y returntype Iterator) 
10. THEN 
11. (Iterator_instance is true positive) 
12. ) End Iterator instance 

Flyweight_rule 
1. (defrule Flyweight_rule  
2. IF 
3. (FlyweightFactory has method ?x) 
4. (Flyweight has method ?y) 
5. (method ?x returntype Flyweight) 
6. (( test(neq ?x  ?y ))               
7. (UnsharedConcreteFlyweight has 

method ?z) 
8. (test (= ( str-compare ?y ?z) 0 ))     
9. (ConcreteFlyweight has method ?q) 
10. (test (= ( str-compare ?z ?q) 0 ))         
11. THEN 
12. (flyweight_instance is true positive) 
13. ) End flyweight rule 
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Table 5.2: Rules template for the method signatures of GoF design 
patterns 

 

Proxy_rule  
1. (defrule Proxy_rule  
2. IF 
3. (Subject has method ?x) 
4. (Proxy has method ?y) 
5. (test (= ( str-compare ?x ?y) 0 ))                 
6. (RealSubject has method ?z) 
7. (test (= ( str-compare ?x ?z) 0 ))          
8. (method ?y call_to method ?z) 
9. THEN 
10. (Proxy_instance is true positive) 
11. ) End of proxy rule 
 

ChainOfResponsibility_rule 
1. (defrule CoR_rule 
2. IF 
3. (Handler has method ?x) 
4. (ConcreteHandler has method ?y) 
5. ( test (=(str-compare ?x ?y)0 ))                               
6. (method ?y call_to method ?x)  
7. THEN  
8. (CoR_instance is true positive) 
9. ) end of CoR rule 

 

State/Strategy_rule 
1. (defrule State/Strategy_Rule 
2. IF 
3. (Context has method ?x) 
4. (State has method ?y) 
5. ((test(neq ?x  ?y ))             
6. (ConcreteState has method ?z) 
7. (test (=(str-compare ?y ?z)0 ))                                  
8. (method ?x call_to method ?y) 
9. THEN 
10. ( State/Strategy_instance is true 

positive) 
11. ) End State/Strategy rule 

 

TemplateMethod_rule 
1. (defrule TemplateMethod_rule 
2. IF 
3. (ConcreteClass has method ?x) 
4. (AbstractClass has method ?y) 
5. (test (=(str-compare ?x ?y)0 ))                                   
6. THEN 
7. (TemplateMethod_instance is true 

positive) 
8. ) End TemplateMethod rule 

Visitor_rule 
1. (defrule Visitor_rule 
2. IF 
3. (Element has method ?x) 
4. (ConcreteElement has method ?y) 
5. ( test (=(str-compare ?x ?y)0 ))                                  
6. (Visitor has method ?z) 
7. (( test(neq ?y  ?z ))                
8. (method ?y call_to method ?z) 
9. THEN 
10. (Visitor_instance is true positive) 
11. ) End of Visitor rule 

 

Mediator_rule 
1. (defrule Mediator_rule  
2. IF 
3. (Colleague has method ?x) 
4. (method ?x returntype Mediator) 
5. THEN 
6. (Mediator_instance is true positive) 
7. ) End of mediator rule 

Memento_rule 
1. (defrule Memento_rule  
2. IF 
3. (Originator has method ?y) 
4. (Caretaker has method ?x) 
5. ((test(neq ?y  ?x ))                
6. (method ?x returntype Memento) 
7. (ConcreteMemento has method ?z) 
8. (test (=(str-compare ?y ?z)0 ))                                   
9. (method ?y call_to method ?z) 
10. THEN 
11. (Memento_instance is true positive) 
12. ) End memento rule 

 

Observer_rule 
1. (defrule Observer_rule  
2. IF 
3. (Subject has method ?x) 
4. (Observer has method ?y) 
5. (( test(neq ?x  ?y ))                
6. (ConcreteObserver has method ?z) 
7. ( test (=(str-compare ?y ?z)0 ))                                  
8. (method ?x call_to method ?y) 
9. THEN 
10. (Observer_instance is true positive) 
11. ) End observer rule 
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5.3.2 MLDA Rules/Facts Generator  

The MLDA rules/facts generator – henceforth the R/F generator – is a simple 

Java program, implemented as part of the MLDA project, which generates a 

set of rules and facts to represent the required method signatures of 

candidate design instances and subject system respectively. Specifically, the 

R/F generator constructs a connection to the SQL tables, which hold the 

candidate design instances and the method signatures of the subject 

system, and uses Java Stream Writer, which is a Java library, to write the 

set of rules and facts. The outputs of the R/F generator are two files: rules.txt 

and facts.txt. These two files will be loaded later into CLIPS for processing. 

5.3.2.1 Generating Rules 

The candidate design pattern instances of each design pattern are stored in 

an SQL table. In order to generate the rules, the R/F generator constructs a 

connection to the SQL table and makes an access to each record. Based on 

the rules template, the R/F generator will generate a rule for each candidate 

design instance. Specifically, the R/F generator will fill each template entry 

by its corresponding role in the SQL table. Java “OutputStreamWriter” has 

been used to write the rules into a text file.  

Figure 5.5 presents an example to illustrate how the R/F generator 

creates rules. The presented example shows the generated rules of the 

Proxy candidate instances. As Figure 5.5 illustrates, the R/F generator 

creates three rules to represent the required method signatures between 

Proxy participant classes (i.e. Subject, Proxy and RealSubject). Method IDs, 

titles and variables will be automatically incremented as new instances are 

inserted into the table. All the generated rules have a consistent syntax which 

can be loaded directly into CLIPS for processing. N candidate instances will 

be represented as N rules in the generated text file. 

5.3.2.2 Generating Facts 

The MLDA parser stores the retrieved method signatures from the subject 

system in an SQL table. The R/F generator represents each method 

signatures record as a set of facts. The generated facts are consistent with 

the rules syntax and conform to CLIPS syntax as well. The subject system 
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is represented as a set of classes/interfaces where each record stores the 

methods implemented inside that class/interface. In addition, each record 

stores the method access modifier, return type, static status and method 

calls. Figure 5.6 shows an example of how the R/F generator generates facts 

to represent the method signatures of a subject system. Facts are generated 

based on the created facts template which is consistent with the rules 

template in such a way that the rule conditions can be matched to the 

generated facts.  

The R/F generator is customizable. This means that the syntax of the 

generated rules and facts can be changed by modifying the template. 

 

 

 

 

 

 

 

 

Figure 5.5: An example of the MLDA R/F generator for Proxy candidate 
instances 

 

 

 

 

 

 

 

 

 

Figure 5.6: An example of the MLDA R/F generator for a subject system 
facts generation 
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5.3.3 Matching Rules and Facts 

The generated facts and rules will be loaded to CLIPS for processing. Facts 

will be stored in the working memory while the rules will be stored in the 

knowledge base. The CLIPS inference engine uses forward chaining which 

relies on Rete algorithm to fire the rules. If rule conditions match a set of 

facts, the rule will be inserted into the agenda for execution. At the end of the 

cycle, all the matched rules will be in agenda. The inference engine will fire 

the rules based on their order in the knowledge base. The topmost rule will 

be executed first. However, the order of the rules in the knowledge base is 

not important. This is mainly due to the way that the rules template was 

created. More specifically, the action part of each rule does not assert new 

facts to the working memory. The action part only prints a message indicating 

that the instance is a true positive. Hence, the order of the rules will not affect 

the rules execution. One cycle is required to fire all rules. The “run” command 

would run the inference engine of CLIPS. 

Rules that represent false positive instances should not be fired. 

These instances have a structure similar to that of GoF design patterns but 

they are not implementing the required method signatures of GoF design 

patterns. On the other hand, rules that represent true positive instances 

should be fired. However, some of the true positive instances are 

considered, by referring to the relevant literature, as true positive instances 

but are not implementing the required method signatures. Hence, these 

instances are partially implemented. 

 

5.4 Summary  

This chapter presented a rule-based approach to filter the false positive 

candidate instances detected by the MLDA’s structural search model. 

The use of a rule-based approach aims to enhance the detection 

accuracy that relies on the principle of relationship matching. Specifically, 

the fundamental hypothesis that we want to explore is “whether representing 

the method signatures of the candidate design instances and subject system 
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using a rule-based system is effective in improving the accuracy of design 

patterns recovery that relies on the relationship matching”.  

The method signatures of GoF design patterns have a uniform 

structure and can be represented as an independent piece of knowledge, 

facilitating their representation as a set of rules. 

Rules will represent the required method signatures between the 

participant classes of candidate instances. On the other hand, the method 

signatures of the subject system will be represented as a set of facts.  

A rules template has been created as a base template to generate the 

rules and this template is consistent with the required method signatures of 

GoF design patterns. The MLDA rules/facts generator has been developed 

to generate the set of rules and facts, which will be directly loaded into CLIPS 

for processing. CLIPS uses forward chaining which relies on Rete algorithm 

to match the rules and facts. 

Rules which represent the false positive instances should not be fired 

by the inference engine. This indicates that these instances have a structure 

similar to that of GoF design patterns but that they are not implementing the 

required method signatures such as method overriding and method calls. In 

contrast, rules which represent the true positive instances should be fired 

since they should implement the required method signatures. However, 

some of the true positive instances are partly implemented in the subject 

system and only they implement the required structure of design patterns. 
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hapter Six 
Applying a Rule-Based Approach 
The candidate design pattern instances that have been 

recovered from eight subject systems after applying SSM 

will be filtered using a rule-based approach. The MLDA rules/facts generator 

will generate the required rules and facts to represent the method signatures 

of the candidate design instances and subject systems respectively. In 

addition, the CLIPS inference engine will process the generated facts and 

rules. 

 

6.1 Introduction  

SSM recovered the instances that have a structure similar to that of GoF. 

However, these instances resulted in many false positive instances. This is 

mainly due to the nature of object-oriented programs where many structures 

might be implemented in a way that is similar to that of GoF design patterns. 

Applying a rule-based approach aims to distinguish between GoF design 

structures and other structures in a subject system. This requires a set of 

facts, a set of rules and an inference engine to do the required processing. 

The generated set of rules should reflect the required method 

signatures between pattern participant classes based on their standard 

definitions presented by GoF. On the other hand, the set of facts should 

reflect the existing method signatures inside the subject systems. However, 

applying a rule-based approach will cause an exact matching between the 

rule and fact sets. Exact matching indicates that an instance is said to be a 

true positive instance if its corresponding rule conditions can be met by a 

specific set of facts. The fact and rule templates have been constructed in 

such a way that they allow exact matching. The rules and facts template 

complements the generated library of design patterns. The Design patterns 

library reflects the structural features of design patterns, whereas the rules 

and facts template reflects their dynamic behavior. Hence, the required 

structural and behavioral features were considered. 

C 
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This chapter presents the experimental results of applying a rule-

based approach in attempts to enhance the accuracy of SSM.  

 

6.2 Method Signatures Representation 

The MLDA rules/facts generator (R/F generator) has been used to generate 

a set of rules and facts for each subject system and its recovered candidate 

instances. Once rule conditions are met by facts, a print message will be 

displayed to indicate that a candidate instance is a true positive. The number 

of generated facts and rules for all subject systems are presented in Table 

6.1. 

The number of generated facts depends on the number of 

implemented methods inside a subject system. As the number of 

implemented methods increases, the number of generated facts increases. 

On the other hand, the number of rules equals the number of candidate 

instances (i.e. each candidate instance is represented as one rule). The 

process of generating facts and rules is quite fast with the R/F generator 

spending only a few seconds on this. In addition, the MLDA parser spent 

around seven seconds recovering the methods from the subject systems. 

The R/F generator generates, in total, 43424 facts to represent the method 

signatures inside the subject systems and also generates, in total, 2994 rules 

to represent the required method signatures of the candidate design 

instances.  

PMD has the largest number of facts and rules since it implements 

more methods than other subject systems and has too many structures 

similar to those of GoF design patterns. In contrast, JUnit and Lexi have the 

lowest number of facts and rules. In addition, the rules and facts generation 

time relies on the number of candidate instances and on the number of 

implemented methods inside a subject system. 
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Table 6.1: The number of generated facts and rules 

Figure 6.1 shows a screenshot of the process of running the MLDA 

R/F generator. The generator makes a connection onto each table that 

stores the candidate design instances, using an SQL connection command. 

In addition, the generator makes an access to a table that stores subject 

system method signatures. Then, based on the rules and facts templates, 

two text files (rules.txt and facts.text) will be automatically placed in the 

working directory of the MLDA project. These two files hold the method 

signatures representation for the candidate design instances and subject 

systems. The syntax of these two files is consistent in such a way that they 

can be loaded directly into CLIPS for processing. 
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JHotDraw 4222 195 0.5 1.40 

JRefactory 9163 723 2.1 0.86 

JUnit 1981 68 0.4 0.43 

QuickUML 2397 185 0.4 0.54 

Lexi 1664 216 0.5 0.17 

MapperXML 6976 319 0.4 0.21 

Nutch 6853 487 0.4 0.95 

PMD 10168 801 0.7 2.2 

Total 43424 2994 5.4 6.76 
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Figure 6.1: A screenshot for the running of the MLDA R/F generator 

 

6.3 Rules and Facts Matching  

The generated rules and facts will be loaded into CLIPS for processing. The 

inference engine of CLIPS will do the required “exact” matching between the 

set of rules and facts. Rules which represent the true positive instances 

should be fired. In contrast, rules which represent the false positive instances 

should not be fired. 

6.3.1 CLIPS Processing  

After loading the rules and facts files, the “reset” command is used to insert 

the facts into the working memory of CLIPS. The rules are automatically 

inserted into the knowledge base of CLIPS. All the matched rules will be 

inserted into the Agenda for execution. The “run” command will run the 

inference engine of CLIPS and all the rules in the Agenda will be executed. 

The output of the inference engine is a message which indicates that the 

instance is a true positive. Figure 6.2 shows a screenshot of CLIPS after 

loading the facts and rules files of PMD.  
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Figure 6.2: A screenshot of CLIPS after loading the rules and facts of PMD 

  

6.3.2 A PMD Example  

To illustrate how CLIPS matches the set of facts and rules, the matching 

process for a Builder candidate instance, which is recovered from PMD, is 

presented. SSM recovered 16 Builder instances from PMD and these 

instances are true positive instances. Figure 6.3 shows a candidate Builder 

instance with its corresponding generated rule.  

The generated rule reflects the required method signatures between 

Builder participant classes (“AvoidDeeplyNestedIfStmtsRuleTest”, “Rule”, 

“MockRule”, and “Properties”). The rule suggests: 

• Class “Rule” should implement a method; 

• Class “MockRule” should implement the same method (overriding) that 

“Rule” implements; 

• The return type of that method should be of type class “Properties”. 

Hence, all the required method signatures are reflected in the 

generated rule. However, reducing the number of rule conditions will 

enhance its opportunity to be matched with the set of facts. This may 

increase the number of false positive instances.  



 

143 
 

 

 

 

 

  

 

 

 

 

 

Figure 6.3: A candidate Builder instance with its generated rule 

 

The inference engine of CLIPS will match the rule conditions of the 

candidate Builder instance against the generated set of PMD facts. Figure 

6.4 shows part of the generated facts of PMD after loading the facts file onto 

CLIPS. The presented facts are required to satisfy Builder rule conditions.  

The inference engine of CLIPS will fire the Builder rule which 

represents the candidate instance of Figure 6.3. This indicates that this 

instance has a structure consistent with the structure of GoF and that it 

implements the required method signatures.  

 

 

 

 

 

 

 

Figure 6.4: Part of the generated fact list of PMD 
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6.4 Accuracy Evaluation  

The rule-based system has been applied to the recovered candidate 

instances after applying SSM. Tables 6.2 and 6.3 show the experimental 

results of recovering 23 design patterns from subject systems after applying 

the rule-based system. 

6.4.1 Experiments and Results  

The experimental results show that the method signatures of GoF design 

patterns provide an appropriate fingerprint for the detection of design pattern 

instances from object-oriented programs. Moreover, the third level of MLDA 

allows the detection of the template method design pattern. Specifically, the 

template method design pattern requires an inheritance relationship 

between two different classes. These two classes should implement the 

same method. This condition has been checked by the rule-based system 

and most of the false positive instances have been removed.  

Furthermore, the experimental results show an enhancement in the 

detection accuracy for all subject systems. The recall rate did not affect this 

since it relies on the number of false negative instances. However, by 

referring to the relevant literature, some instances implement the required 

method signatures and these are not design patterns. MLDA recovered 61 

such design instances. This is mainly due to the way that these instances 

were implemented. For example, one Command instance in JHotDraw has 

been implemented using two aggregation relationships and one inheritance 

relationship and it implements the required method signatures presented by 

GoF. This instance is not considered a true positive instance in the literature. 
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6.4.2 Average Accuracy  

The average precision achieved by MLDA after applying the rule-based 

system for the recovery of 23 design patterns from all subject systems is 

93%. The rule-based approach removes most of the false positive instances 

detected by SSM. Table 6.4 shows a summary for the achieved detection 

accuracy after applying the hybrid structural rule-based approach. As the 

results illustrate, representing the method signatures of the candidate design 

instances and the subject system as a set of rules and facts enhances the 

detection accuracy of design patterns, which relies on the principle of 

relationship matching.  

 

 

 

 

 

 

 

 

 

 

  

Table 6.4: Summary of the average accuracy achieved after applying SSM 

and the rule-based approach 

 

6.5 Results Comparison  

The accuracy of MLDA has been compared to four approaches, as 

presented in Tables 6.5 and 6.6. The selection of these approaches was 

made based on their results which were detailed enough to compare and 

 

 After applying SSM  After applying the rule-based approach 

All GoF design patterns 

 All GoF design patterns 
Except Template method 

design pattern 

  
 

All GoF design patterns 
Subject 
Systems CI TP FP FN 

 
CI TP FP FN 

 
CI DI TP FP FN 

JHotDraw 195 42 153 8  100 38 62 8  195 48 42 6 8 
JRefactory 723 142 581 20  188 138 50 20  723 171 142 29 20 
JUnit 68 12 56 9  18 11 7 9  68 13 12 1 9 
QuickUML 185 75 110 16  80 72 8 16  185 85 75 10 16 
Lexi 216 22 194 22  152 22 130 22  216 33 33 0 22 
MapperXML 319 116 203 64  99 60 39 64  319 116 116 0 64 
Nutch 487 201 286 7  227 194 33 7  487 204 201 3 7 
PMD 801 207 594 77  337 99 238 77  801 219 207 12 77 
Total 2994 817 2177 223  1201 634 567 223  2994 889 828 61 223 
 
Average 
precision 27% 

 
53% 

  
93% 

Average 
recall 79% 

 
74% 

  
79% 

Average F-
measure 41% 

 
62% 

  
85% 

Note:   
CI: Candidate Instances after applying Structural Search Model (level two)  
DI: Detected Instances after applying a rule-based appraoch (level three) 
TP: True Positives     FP: False Positives           FN: False Negatives   
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were applied to the same subject systems (JHotDraw version 5.1 and JUnit 

version 3.7).  However, the comparison among design pattern detection 

approaches is challenging. This is due to the fact that there is no standard 

benchmark to validate the results of each approach. In fact, each approach 

has its limitations, patterns representation, subject systems and validation 

method.  Tables 6.5 and 6.6 show the results of the design patterns recovery 

of MLDA, Sempatrec [44], DeMIMA [41], Sub-patterns [33] and SSA [31] for 

JHotDraw and JUnit respectively. As illustrated, MLDA achieves reasonable 

detection accuracy in terms of precision for the detection of JHotDraw and 

JUnit instances.  

The positiveness of MLDA relies on its ability to build the structure of 

each design pattern, record all the object interactions and match the method 

signatures. Hence, increasing the number of true positive instances. More 

specifically, MLDA recovers the five key relationships that may occur 

between classes and interfaces inside an object-oriented program, tries all 

the possible combinations between the recovered classes and interfaces 

and matches these structures to that of GoF. In addition, MLDA matches the 

method signatures of the candidate design instances to that of the subject 

system. Representing the method signatures using a rule-based approach 

provides a fingerprint for design patterns inside the source code. Both the 

structure and the method signatures are required to detect accurately the 

instances of GoF design patterns. The rule-based system enhances the 

detection accuracy of design patterns, which relies on the relationship 

matching. 

However, MLDA missed the instances partly implemented in the 

source code, since SSM relies on the standard definition of GoF. On the 

other hand, the lack of dynamic and runtime information explains the 

existence of false positives. It must be noted that we only compare the results 

that DeMIMA, SSA, Sempatrec, and Sub-patterns revealed. 
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Table 6.5: Comparison of the results of MLDA and that of other 

approaches for JHotDraw 

 

 

 

 

 

 

 

Table 6.6: Comparison of the results of MLDA and that of other 

approaches for JUnit 

Furthermore, the accuracy of MLDA has been compared to the sub-

patterns approach for 23 design patterns since it is the only approach that 

recovers all GoF design patterns. Table 6.7 presents that comparison. The 

average accuracy of MLDA for JHotDraw and JUnit was 93% and 90% 

respectively. On the other hand, the average accuracy of the sub-patterns 

approach for JHotDraw and JUnit was 100% and 84% respectively.  

 

 

DPs SS 
MLDA DeMIMA SSA Sempatrec Sub-patterns 

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% 

AD JD 85 100 92 4 100 8 44 100 61 45     100 NA NA 

DE JD 100 33 50 8 100 15 33 33 33 50 33 40 100 NA NA 

CO JD 89 89 89 33 100 50 100 100 100 100 100 100 100 NA NA 

FM JD NA 0 NA 2 100 4 100 67 80 100 100 100 100 NA NA 

SI JD 100 100 100 100 100 100 100 100 100 100 100 100 100 NA NA 

OB JD NA 0 NA 25 100 40 50 40 44 50 40 44 100 NA NA 

TM JD 80 100 89 7 100 13 20 100 33 50 100 67 100 NA NA 

VI JD 100 50 67   100   100 100 100       100 NA NA 

  
Average % 92 63 81 34 100 47 74 88 75 83 87 85 100 NA NA 
Note:  
AD: Adapter             DE: Decorator            CO: Command    FM: Factory Method        SI: Singleton        OB: Observer     TM: Template Method       
VI: Visitor                 SS: Subject Systems  JD: JHotDraw      JU: JUnit                           P:Prescion           R: Recall             F: F-measure 
Blank:  Not  Revealed         NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances  

 

 

DPs SS 
MLDA DeMIMA SSA Sempatrec Sub-patterns 

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% 

AD JU 100 45 62 0     17 100 29 100 100 100 100 100 100 

DE JU 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

CO JU NA NA NA 100 100 100 100 100 100 100 100 100 100 100 100 

FM JU 100 100 100   100               100 100 100 

SI JU NA NA NA                   100 100 100 

OB JU NA 0 NA 25 100 40 100 100 100 100 100 100 100 50 67 

TM JU 50 100 67 0     100 100 100 100 100 100 100 100 100 

VI JU NA NA NA   100                 100 100 

  
Average % 88 69 82 45 100 80 83 100 86 100 100 100 100 94 96 
Note:  
AD: Adapter             DE: Decorator            CO: Command    FM: Factory Method        SI: Singleton        OB: Observer     TM: Template Method       
VI: Visitor                 SS: Subject Systems  JD: JHotDraw      JU: JUnit                           P:Prescion           R: Recall             F: F-measure 
Blank:  Not  Revealed         NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances  
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Table 6.7: Comparison of the results of MLDA and that of the sub-patterns 

approach for 23 design patterns 

 

6.6 Summary 

This chapter presented the experimental results of applying a rule-based 

system aimed at enhancing detection accuracy that relies on the 

relationships matching. The rule-based system provides a consistent format 

to represent the method signatures of the candidate design instances and 

the subject system. More specifically, the CLIPS inference engine has been 

used to match the set of rules and facts. Once all the rules’ conditions are 

met by subject system facts, a message indicates that this instance is a true 

positive instance and will be printed. 

As the experimental results illustrate, the rule-based system is able to 

reduce the number of false positive instances. These instances have a 

structure similar to that of GoF, but they fail to implement the required 

method signatures. 

 

 MLDA Sub-patterns 
 JHotDraw JUnit JHotDraw JUnit 

Design Patterns P% R% F% P% R% F% P% R% F% P% R% F% 
Singleton 100 100 100 NA NA NA 100 NA NA 100 100 100 
Prototype 100 100 100 NA NA NA 100 NA NA NA NA NA 

Abstract Factory NA NA NA NA NA NA NA NA NA NA NA NA 
Factory Method NA 0 NA 100 100 100 100 NA NA 100 100 100 

Builder NA NA NA NA NA NA NA NA NA NA NA NA 
Adapter 85 100 92 100 45 62 100 NA NA 100 100 100 
Bridge  80 100 89 NA NA NA 100 NA NA NA NA NA 

Composite 100 100 100 NA 0 NA 100 NA NA NA NA NA 
Decorator 100 33 50 100 100 100 100 NA NA 100 100 100 
Façade 100 100 100 NA NA NA 100 NA NA NA NA NA 

Flyweight 100 100 100 NA NA NA 100 NA NA NA NA NA 
Proxy NA NA NA NA NA NA 100 NA NA NA NA NA 

Chain of Responsibility  NA NA NA NA NA NA NA NA NA NA NA NA 
Command 89 89 89 NA NA NA 100 NA NA NA NA NA 
Interpreter NA NA NA NA NA NA NA NA NA NA NA NA 

Iterator NA NA NA NA 0 NA NA NA NA NA NA NA 
Mediator NA NA NA NA NA NA NA NA NA NA NA NA 
Memento NA NA NA NA 100 NA NA NA NA NA NA NA 
Observer NA 0 NA NA 0 NA 100 NA NA 50 50 50 

State_Strategy 86 100 93 100 100 100 100 NA NA 40 NA NA 
Visitor 100 50 67 NA NA NA 100 NA NA NA NA NA 

Template method 80 100 89 50 100 67 100 NA NA 100 100 100 
  

Average% 93 77 89 90 61 86 100 NA NA 84 92 92 
Note:                         
P:Prescion           R: Recall             F: F-measure              
NA: Not Applicable since the number of detected instances is zero or there is no reference to validate the instances     
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hapter Seven 
Design Patterns Impact 
The impact of GoF design patterns on software quality 

attributes provides a support for decision-making during 

software design and refactoring. Researchers attempted to investigate the 

impact of applying design patterns on software quality by empirical methods 

such as case studies, surveys and experiments. Unfortunately, safe 

conclusions could not be drawn since the reported results are controversial.  

The impact of design patterns on software quality is governed by a 

number of factors such as pattern variants, developer experience and quality 

that must be achieved by the pattern. In addition, the application of one 

pattern enhances certain quality attributes and simultaneously decreases 

others. The implementation of design patterns can vary across studies and 

these variants could be responsible for any differences observed in the 

reported results of the effects of design patterns on quality attributes. This 

chapter aims to assess quantitatively the impact of software design patterns 

on software maintainability and understandability using software metrics and 

design-pattern occurrences. Our use of these quality attributes relies on their 

definitions and features as they are presented by the ISO/IEC 9126 quality 

model [14]. ISO/IEC 9126 enjoys the benefits of being an international 

standard agreed by the software engineering community.  

 

7.1 Introduction 

Design patterns are the focus of many works studying their relevance, 

visualization and identification, with the hypothesis that their use improves 

quality. Gamma et al. claim in the preface of their book [11]: “You will have 

insight that makes your own designs more flexible, modular, reusable and 

understandable”.  

C 
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Gamma et al. [11] describe through discussions how design patterns 

support adaptability and are expected to promote software evolution; they 

easy maintenance tasks by explicitly identifying class roles and by localizing 

where extensions and change should occur. However, the authors do not 

demonstrate the benefits to real software development projects. One benefit, 

for example, is that design patterns promote adaptability by supporting 

modifications through specialization. Developers can adapt a system built 

using these patterns by creating new concrete classes with desired 

functionality rather than by direct modifications to existing classes.  

However, design patterns usually lead to an increased number of 

software artifacts, such as classes, associations and delegations, which 

increase the static complexity of a software system. Moreover, when the 

additional associations are instantiated at run-time, they result in additional 

links between objects which increase the dynamic complexity of a software 

system. A relevant benefit of design patterns is resilience to changes, 

avoiding that new requirement and, in general, any kind of system evolution 

causes major re-design. In addition, quality aspect advantages of design 

patterns include decoupling a request from specific operations (Chain of 

responsibility and Command), making a system independent from software 

and hardware platforms (Abstract Factory and Bridge), making a system 

independent of algorithmic solutions (Iterator, Strategy and Visitor) and 

avoiding modifying implementations (Adapter, Decorator and Visitor). Since 

design patterns influence the system structure and their implementations are 

influenced by it, pattern implementations are often tailored to the instance of 

use. This makes it hard to distinguish between the pattern, the concrete 

instance and the object model involved. In fact, the application of patterns 

involves the introduction of new classes/interfaces and the moving of 

methods and requires additional code. 

This chapter aims to address whether the classes playing roles in 

design patterns have better software metrics than do other classes in the 

system. Higher values of certain software metrics indicate good quality (e.g. 

cohesion). In contrast, higher values of other software metrics indicate bad 

quality (e.g. coupling between objects). This will provide an indication of how 
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the implementation of design pattern instances affects the quality of a subject 

system. The main motivation behind the use of software metrics to quantify 

the subject system is their ability to provide a static and stable representation 

of the subject system. Moreover, since MLDA uses a class-level 

representation of the subject system and the recovered design instances 

have been validated based on the all publicly available results in the 

literature, a list of classes playing roles in design patterns was generated for 

all subject systems. This will facilitate the use of class-level metrics to 

quantify each class in the subject system. Hence, software metrics can be 

calculated for classes playing roles in design patterns and can be compared 

with classes that don’t play roles in design patterns. Previous research 

studies which correlate class-level metrics to software quality might be used 

in attempts to address the impact of design patterns on software quality 

attributes. More specifically, we will examine the impact of design patterns 

on understandability and maintainability (whether they are positive or 

negative or whether they have no impact). The selection of these attributes 

was made since they are the most commonly investigated quality attributes, 

concerning design patterns’ impact, in the available literature.  

The remaining of this chapter is organized as follows: Section Two 

outlines a methodology to address the impact of design patterns, using 

software metrics and design pattern occurrences, on software maintainability 

and understandability. The experiments and results are presented in Section 

Three. Finally, threats to validity and conclusions are summarized in 

Sections Four and Five respectively. 

  

7.2 Methodology 

There is no formal theory that links design patterns to software quality 

concepts. However, it has been claimed that the use of design patterns 

provides several advantages, such as increased reusability and improved 

maintainability and comprehensibility of existing systems.  
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 The methodology presented relies on software metrics, which are 

useful measurements for characterizing software systems, in an attempt to 

assess the impact of design patterns on software maintainability and 

understandability. Based on their scope, software metrics can be divided into 

two categories [97]: 

• Project metrics: these metrics deal with the dynamics of a project and 

with what is needed to reach a certain point in the development life 

cycle. Project metrics provide a higher level of abstraction of the 

system. They can be used for estimation purposes such as estimating 

the number of required staff.  

• Design metrics: these metrics deal with assessing the size, quality and 

complexity of software systems. Design metrics use the source code as 

input to quantify the system design and are more locally and specifically 

focused.  

Software design metrics for all system classes, at the class level, will 

be calculated to investigate whether a safe conclusion can be drawn 

regarding the impact of design patterns on software maintainability and 

understandability. To calculate the required metrics, a Java metrics tool 

named JHawk has been used. We used the latest version of JHawk, v6.1.3, 

under the academic license granted from virtual machinery [98].  

7.2.1 JHawk Tool 

JHawk is a Java metrics tool that can evaluate the static behavior of the Java 

source code [98]. It collects metrics at four different levels. The lowest level 

is the method level, followed by the class level, the package level and the 

system level. More specifically, JHawk uses the source code of the subject 

system as input and calculates its metrics based on numerous aspects of 

the code, such as volume, complexity, relationships between class and 

packages and relationships within classes and packages. JHawk metrics 

could be used to capture poor design, poor coding practice, fault prediction, 

simple quantity measurements and overall code quality. JHawk classifies its 

metrics into three categories: quantitative metrics which measure the 
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quantity of the source code; complexity metrics which measure how complex 

the code is in terms of its functionality and readability complexity; and 

structural metrics which measure the contribution of individual code artifacts 

to the quality of the code. 

The selection of JHawk to calculate the required metrics was made 

since it has been used by a significant number of academic studies on Java 

metrics. In addition, JHawk provides around 103 different Java source code 

metrics at different levels (system, package, class and method). It has 

unrivaled accuracy and acceptable ranges can be set for particular metrics 

and for packages, methods and classes. Furthermore, JHawk allows new 

metrics to be created and added to its metric set. Reports can be output in 

HTML, CSV and XML formats.   

 

7.2.2 A Metrics-Based Approach   

Figure 7.1 presents a metrics-based approach to assess the impact of 

design pattern instances on software quality attributes. As mentioned above, 

all metrics will be calculated using JHawk at the class level.  

The steps of the metrics-based approach can be summarized as 

follows: 

1. Recover design pattern instances from each subject system. 

2. For each design instance, determine its participant classes. 

3. Classify system classes into two groups: classes that play roles in 

design patterns (henceforth pattern classes) and classes that do 

not (henceforth non-pattern classes).  

4. Calculate size, coupling and inheritance metrics for all system’s 

classes.  

5. For each class in the system, calculate the percentage of 

participation in the total metric value. 

6. Calculate the percentage of participation in the total value of each 

metric for both groups: pattern classes and non-pattern classes. 
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7. Correlate software metrics to quality attributes using previous 

research studies. 

 

 

 

 

 

 

 

 

Figure 7.1: A metrics-based approach to assess the impact of design 
patterns 

 

Based on the validated set of design pattern instances recovered 

using MLDA, all classes participating in design patterns were determined in 

eight subject systems. Furthermore, the following metrics will be calculated 

[99], [100]:  

• Number of methods (NOM): counts the total number of methods 

implemented inside a given class. 

• Lack of Cohesion of Methods (LCOM): counts the sets of methods in a 

given class that are not related through the sharing of some of the 

class's fields. 

• Total Response For Class (RFC):  measures the number of different 

methods that can be executed when an object of a given class receives 

a message (when a method is invoked for that object). 

• Coupling Between Objects (CBO): counts the number of classes 

coupled to a given class. This coupling can occur through method calls, 

field accesses, inheritance, arguments, return types and exceptions.  
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• Total Lines of Code (LOC): counts the total lines of code inside a given 

class (excluding comments and blanks). 

• Fan-IN (F-IN): counts the number of classes calling methods 

implemented in a given class. 

• Depth of Inheritance Tree (DIT): counts the maximum inheritance path 

from a given class to the root class in the inheritance hierarchy. 

• Cohesion (COH): counts the degree to which the elements inside 

a given class belong together. 

• Fan-out (FOUT): counts the number of classes called by methods 

implemented in a given class (i.e. the number of classes that a given 

class uses and not the classes it is used by). 

• Number of Children (NOC): counts the number of direct sub-classes of 

a given class. 

The selection of these metrics was made since they have a key role 

in characterizing the quality of software systems. More specifically, these 

metrics reflect the main aspects of any object-oriented program, i.e. size, 

coupling and inheritance [97], [99]. The input of the metrics-based approach 

is the source code of the subject system, whereas the output is the 

percentage of participation for both groups in the total metric value. The 

participation percentage of each individual class is calculated based on the 

total system metric value. For example, if the total system coupling was 1396 

and a class has a coupling value of 65, then its participation percentage in 

the total system coupling can be calculated as (65 / 1396) × 100% = 4.66%. 

Hence, the participation percentage for all classes in the system can be 

calculated.  

7.2.3 Correlation of Software Metrics to Quality Attributes 

The external behavior of software systems can be recognized based on its 

internal metrics. Several studies were presented in the literature to correlate 

the impact of calculated software metrics with quality attributes. This 

correlation was made based on certain statistical analysis and experiments. 
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The impact can be positive or negative, or there can be no impact at all. We 

are trying to address the impact of design patterns on software 

understandability and maintainability since they are the most commonly 

investigated quality attributes. Table 7.1 illustrates the correlated impact of 

NOM, LOC, RFC, CBO, LCOM, COH, F-IN, FOUT, DIT and NOC on 

software understandability and maintainability. This correlation was made 

based on the correlation presented by [101], [102], [103], [104] and [105]. 

These studies were selected since they have significant correlation levels. 

However, to the best of our knowledge, there are no studies that contradict 

the reported impact presented by the selected studies. 

Table 7.1: The correlation between software metrics and software 
understandability and maintainability 

 

The positive impact (▲) of a metric indicates that high values of that 

metric are desirable. On the other hand, a metric’s negative impact (▼) 

indicates that high values of that metric are not desirable. Table 7.1 

demonstrates that most of the selected metrics have a negative impact on 

software maintainability and understandability (i.e. high values of these 

metrics is a sign of bad quality). The cohesion metric has been reported to 

have a positive impact on understandability and maintainability efforts, 

whereas FOUT has no impact at all.  
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Understandability 

 
▼ ▼ ▼ ▼ ▼ ▲ ▼ ◄► ▼ ▼ 

 
Maintainability 

 
▼ ▼ ▼ ▼ ▼ ▲ ▼ ◄► ▼ ▼ 

▲:     Positive impact                             ▼:     Negative impact                ◄►:  No impact 
NOM: Number of Methods                     LOC: Lines Of Codes     
RFC: Response For Class                     CBO: Coupling Between Objects     
LCOM: Lack of Cohesion in Methods    COH: Cohesion                                 
F-IN: Fan-IN                                           FOUT: Fan-out         
DIT: Depth of Inheritance Tree               NOC: Number of Children    
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NOM inside a given class is a predictor of how much time and effort 

is required to understand and maintain the class. Classes with large numbers 

of methods are likely to be more application specific and, hence, more 

maintainability and understandability effort is required. In addition, the 

greater the number of methods in a class, the greater the potential impact 

on children, since children will inherit all the methods defined in the class. 

LOC physically measures the total number of Java statements, 

excluding comments and blanks, inside a given class. LOC is an estimation 

metric which gives an indication of the amount of effort required to develop 

a software. However, LOC can be hardly used to estimate the developers’ 

productivity and/or the functionality of a software, since skilled developers 

may be able to develop the same functionality with less code. In general, as 

the number of lines of codes increases, the maintainability and 

understandability efforts also increase. 

RFC is a set of methods that can potentially be executed in response 

to a message received by an object of a class. It is calculated by adding the 

number of methods in the class, not including inherited methods, plus the 

number of distinct method calls made by the methods in the class (each 

method call is counted only once even if it is called from different methods). 

This can be done by inspecting method calls within the class's method 

bodies. If a large number of methods can be invoked in response to a 

message, then the maintainability and understandability efforts become 

more complicated (i.e. the larger number of methods that can be invoked 

from a class, the greater the complexity of the class).  

CBO provides an indication of the strength of interconnections 

between system classes. Higher values of this metric indicate that more 

maintainability and understandability efforts are required. The tightly coupled 

system means that its classes are dependent on each other. In general, 

classes are tightly coupled if they use shared variables or if they exchange 

control information. A particular class in a tightly coupled system might be 

harder to reuse and test since dependent classes must be included. In 

contrast, loosely coupled systems mean that classes are independent and 
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can function completely without the presence of the others. However, it is 

difficult to find a system with classes that are completely independent. Low 

coupling is a sign of a good design and a well-structured system. 

LCOM measures the correlation between the methods and the local 

instance variables of a class. It is viewed as a measure of how well the 

methods of the class co-operate to achieve the aims of the class. LCOM is 

calculated as the ratio of methods in a class that do not access a specific 

data field, averaged over all data fields in the class. More specifically, LCOM 

is a count of the number of method pairs whose similarity is zero, minus the 

count of method pairs whose similarity is not zero. If none of the methods of 

a class display any instance behavior, i.e. they do not use any instance 

variables, then they have no similarity and the LCOM value for the class will 

be zero. Lower values of LCOM are desirable (the class is more cohesive).  

Higher values of LCOM indicate that the system needs greater 

maintainability and understandability efforts and that the classes should be 

split into two or more sub-classes. LCOM can be in the range of 0 to 2 with 

values over 1 viewed as being suggestive of poor design [100]. 

COH is used to indicate the degree to which a class has a single and 

well-focused purpose. It refers to the degree to which the elements inside a 

class belong together. A cohesive class performs one function. Lack of 

cohesion means that a class performs more than one function. High 

cohesion is desirable since it promotes a lesser maintainability and 

understandability effort. Cohesion is increased if the class methods carry out 

a small number of related activities. Cohesion is often contrasted with 

coupling (i.e. high cohesion often correlates with loose coupling and vice 

versa) [105]. 

F-IN measures the number of other classes that reference a given 

class. In contrast, FOUT measures the number of other classes referenced 

by a given class. A high F-IN indicates a heavily used class. Hence, more 

understandability and maintainability efforts are required. A high FOUT 

means that the class calls many other classes. However, the correlations 
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presented by [101], [102], [103], [104] and [105] claim that FOUT does not 

affect software maintainability and understandability.  

DIT measures the maximum length of a path from a class to a root 

class in the inheritance structure of a system. In fact, classes that are deep 

down in the classes’ hierarchy potentially inherit many methods from super-

classes, increasing the maintainability and understandability efforts. Hence, 

maintainability and understandability decline with increasing DIT. Moreover, 

deeper trees involve greater design complexity since more classes and 

methods are involved. On the other hand, the deeper a particular class is in 

the hierarchy, the greater the potential reuse of inherited methods. In Java 

programming language, where all classes inherit the class “Object”, the 

minimum value of DIT is 1. 

The NOC metric measures the number of direct sub-classes of a 

given class. It provides an indication of how a software reuses itself. Classes 

with a large number of children are considered difficult to modify and usually 

require greater maintainability and understandability effort since the effects 

of changes will propagate on to all children in the inheritance hierarchy. In 

addition, the greater the number of children, the greater the likelihood of 

improper abstraction of the parent class. Hence, a low NOC is desirable. 

NOC measures the breadth of a class hierarchy, whereas maximum DIT 

measures the depth.  

 

7.3 Experiments and Results 

All the experiments have been run on Windows 7 with Intel Core i5-2400 

CPU. JHawk calculated the required software metrics for all subject systems.  

The calculation process was quite fast with JHawk taking only a few seconds 

to generate the results. Furthermore, based on a validated set of design 

pattern instances recovered using our research prototype, MLDA, two sets 

of classes were created: pattern classes and non-pattern classes.  

 



 

162 
 

7.3.1 Recovered Design Instances  

Table 7.2 presents the number of design pattern instances implemented in 

all subject systems, as they are recovered by MLDA and as they are 

validated based on all publicly published results in the available literature. 

(i.e. the number of implemented design instances in a subject system is the 

number of true positive instances plus the number of false negative 

instances). Hence, all classes playing roles in design patterns were 

identified. As Table 7.2 demonstrates, 1051 design pattern instances were 

implemented in all subject systems. In addition, most creational, structural 

and behavioral instances were implemented in JRefactory, PMD and Nutch 

respectively. The Adapter and State/Strategy design patterns were 

implemented in all subject systems, whereas the interpreter design pattern 

was not implemented in any subject system. The maximum occurrence of a 

design pattern was for State/Strategy with 108 instances implemented in 

Nutch. Furthermore, as can be seen in Table 7.2, most implemented 

instances in PMD, MapperXML and Nutch are behavioral instances which 

require dynamic interactions between classes. Most JRefactory instances 

are creational instances which require initializations of classes. 
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Table 7.2: Total number of design instances implemented in subject 
systems 

 

7.3.2 Participation Percentage in the Total Metric Value  

After the identification of all design pattern instances in all subject systems, 

the number of classes playing roles in design patterns, the number of classes 

playing roles in structural, creational and behavioral instances and the 

number of classes playing more than one role have been identified. 

Table 7.3 presents the total number of classes playing roles in design 

patterns for all subject systems. A class may play more than one role and 

participate in two or more different design patterns. The percentage of design 

patterns in a subject system is the percentage of classes playing roles in 

design patterns to the total number of system classes. Around 40% of the 

subject systems’ classes participate and play roles in design patterns. Most 
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Abstract factory 0 0 0 1 0 0 2 2 
Factory method 2 87 2 18 0 5 32 22 

Builder 0 2 0 1 0 0 16 1 
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Adapter 11 16 11 29 30 44 87 41 
Bridge  4 0 0 1 0 0 1 0 

Composite 1 0 1 1 3 0 0 1 
Decorator 3 1 1 3 0 4 0 0 
Façade 1 2 0 1 1 1 1 1 

Flyweight 1 0 0 1 1 1 0 1 
Proxy 0 0 0 2 0 4 4 0 
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ChainofResponsibility  0 0 0 0 0 0 1 0 
Command 9 25 0 18 6 25 3 26 
Interpreter 0 0 0 0 0 0 0 0 

Iterator 0 0 1 0 0 1 0 0 
Mediator 0 0 0 0 0 0 0 0 
Memento 0 0 0 0 10 1 1 12 
Observer 2 0 1 1 0 0 1 3 

State/Strategy 6 11 3 10 1 113 21 11 
Visitor 2 2 0 0 0 0 1 0 

Template method 4 4 1 3 0 7 108 56 
 

 Total 50 162 21 91 55 208 284 180 



 

164 
 

QuickUML classes play roles in design patterns, whereas only 28% of 

JHotDraw classes play roles. 

Table 7.3: The number of classes playing roles in design patterns in all 
subject systems 

 

Table 7.4 illustrates the percentage of participation in the total metric 

value for both pattern classes and non-pattern classes in all subject systems. 

Consistent behavior can be noticed for size and inheritance metrics. These 

metrics negatively affect the maintainability and understandability of a 

subject system. More specifically, the calculated averages for size and 

inheritance metrics indicate that the participation of pattern classes, in the 

total metric value, is less than that of the other classes in the system. Hence, 

total system size and inheritance were shaped based on the non-pattern 

classes. 

On the other hand, the average participation of the pattern classes in 

the total coupling metrics, except RFC, is higher than that of the other 

classes in the system. Both groups, participate almost equally in the average 

RFC metric. The functionality of the system might be relying on the design 

pattern classes (i.e. design pattern classes provide key functionality to the 
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Total number of classes 201 612 112 145 170 398 570 374 
NCPR in creational 
instances 8 122 3 37 24 12 83 52 

NCPR in structural 
instances 35 35 30 66 43 100 112 79 

NCPR in behavioral 
instances 30 80 10 39 20 82 155 114 

Classes playing more 
than one role 17 48 5 37 25 54 133 76 

NCPR in all design 
pattern instances 56 189 38 105 62 140 217 169 

 
Percentage of design 
pattern classes to the 
total system classes  

28% 31% 34% 72% 36% 35% 38% 45% 

Note: 
NCPR: Number of Classes Playing Roles  
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system) which require interacting and collaboration between pattern classes 

and other classes in the system. This could explain why the participation of 

design pattern classes, in the total system coupling, is higher than that of 

other classes in the system. This is consistent with the results presented by 

[73] where design pattern implementations increased the coupling metrics 

on the class level for the relevant classes. 

Furthermore, total system cohesion was formulated based on the 

non-pattern classes, which contradicts the common belief that the 

implementation of design pattern enhances system cohesion, as suggested 

in [61]. 

Consequently, the participation of pattern classes in five out of nine 

metrics is less than that of other classes in the system. These metrics have 

a negative impact on software maintainability and understandability. In 

contrast to common beliefs, design pattern classes shaped the system 

coupling. The pattern participant classes provide the key functionality to the 

system, which may explain why these classes tend to couple and interact 

with other classes. In addition, the total system cohesion was formulated 

based on the non-pattern classes. High values of cohesion are desirable. 

Non-pattern classes implement more methods than do pattern 

classes in all subject systems, except in PMD and MapperXML. In addition, 

pattern classes of PMD and MapperXML have RFC, CBO and F-IN higher 

than non-pattern classes do. This could be explained by investigating the 

implemented design instances in these two systems where most of the 

implemented instances are behavioral instances. Behavioral instances are 

concerned with interaction between classes, which requires method calls 

and collaborations between classes. Hence, pattern classes tend to have 

more methods and coupling with other classes. Furthermore, in most subject 

systems, pattern classes have fewer cohesion values than do non-pattern 

classes. Consequently, total system cohesion relies on the non-pattern 

classes. This is a sign of the improper use of pattern classes where they 

perform more than a single purpose function.  
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Furthermore, inheritance metrics, depth of inheritance tree and 

number of children of pattern classes for all subject systems are all fewer 

than those of non-pattern classes. Hence, pattern classes require less 

maintainability and understandability effort. 

Pattern classes of FOUT metric, which has been reported to have no 

impact on software maintainability and understandability, have fewer metric 

values than non-pattern classes. Consistent with other coupling metrics, 

pattern classes of PMD and MapperXML have fewer FOUT metric values 

than other classes in the system since most of their design instances are 

behavioral instances.  

We noticed that total system coupling and cohesion was directly 

affected by the implementation of behavioral design instances. Classes 

playing roles and participating in behavioral patterns had higher coupling and 

lower cohesion than did other classes in the system.   
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7.4 Threats to Validity  

There are possible threats to the validity of the presented results in this 

chapter. To correlate the internal software metrics to the external quality 

attributes, the correlations presented by previous studies, [101], [102], [103], 

[104] and [105], have been used Hence, our findings are subject to the 

significance of the previous correlations.  

In addition, the calculated software metrics rely on the capabilities of 

the JHawk tool. Using other tools may show fewer differences in the 

calculated metrics. Finally, the design pattern occurrences and classes 

playing roles were recovered using our research prototype MLDA. To ensure 

more accurate validation, the recovered instances have been validated 

based on all publicly available results and repositories in the literature. 

Hence, using other tools to recover the design pattern instances may show 

some differences in terms of design instances and pattern classes. 

 

7.5 Summary 

This chapter presented a metrics-based approach to address the impact of 

design pattern instances on software maintainability and understandability.  

This approach classifies systems classes into two groups: classes that are 

playing roles in design patterns (pattern classes) and classes that are not 

playing roles in design patterns (non-pattern classes). Size, coupling and 

inheritance metrics were calculated for both groups using JHawk, a Java 

metrics tool. Furthermore, the participation percentage (for both groups) in 

the total metric value was calculated in attempts to address the degree of 

participation of pattern classes in the total system metric value. The 

correlation of metrics to software maintainability and understandability 

presented by previous research studies has been used. 

The experiment results illustrate that design pattern classes have 

fewer roles in size and inheritance metrics than do non-pattern classes, a 

sign that design pattern classes enhance software understandability and 
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maintainability. On the other hand, non-pattern classes have fewer roles in 

coupling metrics than do pattern classes, which contradicts the common 

beliefs that design patterns enhance system coupling and cohesion. Hence, 

no safe conclusion can be drawn regarding the impact of design patterns on 

software maintainability and understandability.  

The only conclusion that can be drawn is that design pattern classes 

have better size and inheritance metrics than non-pattern classes do. In 

addition, design pattern classes provide the key functionality of the system, 

which may explain why these classes tend to interact and why they are 

coupled with other classes in the system.  

  However, further investigations are required to reach a safe 

conclusion. One possible solution is to apply certain refactoring techniques 

to create two versions of a system: patterns and non-patterns versions. Then 

software metrics can be calculated and compared with both versions. 

 

 

 

 

 

 

 

 

 

 

 



 

170 
 

 

hapter Eight 
Conclusions and Future Directions 
This chapter concludes the thesis with a summary of the 

conducted work, revisits the research questions and 

presents the contribution of this thesis. The limitations of the work and future 

research directions are presented at the end of this chapter. 

 

8.1 Conclusions  

Design patterns have a key role in the software development process. They 

describe both the structure and behavior of classes and their relationships. 

Design patterns can improve software documentation, speed up the 

development process and enable large-scale reuse of software 

architectures.   

This thesis presented a hybrid structural rule-based approach to 

recover GoF design patterns from the Java source code. In addition, a 

metrics-based approach has been presented in attempts to investigate the 

impact of design pattern instances on software understandability and 

maintainability. 

The main research questions that this thesis aims to address are: 

1. Is the Structural Search Model (SSM), which relies on the 

relationships matching, able to recover instances of design patterns 

with a reasonable detection accuracy?  

2. Is the use of a rule-based system to match the method signatures of 

the candidate design instances to that of the subject system able to 

reduce the number of false positive candidate instances (i.e. 

enhancing the detection accuracy of design patterns, which relies on 

relationships matching)? 

C 
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3. Do classes playing roles in design patterns have better software 

metrics than other classes in the system (i.e. do design pattern 

instances enhance certain software quality attributes)?  

 

Concerning the first research question, SSM produces too many false 

positive instances. Hence, the structure of design patterns is not enough to 

recover their instances from the Java source code. Although SSM relies on 

five key relationships, uses a class-level representation of the subject 

system, builds the design pattern structure incrementally and tries all 

possible combinations of classes until a complete pattern structure is 

achieved, it produces too many false positive instances. Moreover, SSM is 

not able to recover instances of the Template design patterns since this 

pattern relies on one relationship (the inheritance relationship) and method 

recovery capabilities were required to recover its instances. 

For the second research question, we tried to enhance the detection 

accuracy of SSM by developing a rule-based system which matches the 

method signatures of the candidate design instances to that of the subject 

system. The rule-based system represented the method signatures of the 

candidate design instances as a set of rules, whereas the method signatures 

of the subject system are represented as a set of facts. The rules and facts 

have been created using the so-called MLDA rules/facts generator. Rules 

that represent the true positive instances should be fired. On the other hand, 

rules that represent the false negative instances should not be fired since 

they have the structure of design patterns and have failed to implement the 

required method signatures. The CLIPS inference engine has been used to 

match the set of rules and facts. 

As the experiments demonstrate, most of the false positive instances 

have been removed. Representing the method signatures using a rule-based 

approach provides a fingerprint for design patterns inside the source code. 

Both the structure and the method signatures are required to detect 

accurately the instances of GoF design patterns. The rule-based system 
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enhances the detection accuracy of design patterns, which relies on the 

relationship matching. 

Concerning the third research question, the metrics-based approach 

could not reach a safe conclusion regarding the impact of GoF design 

patterns on software understandability and maintainability. This approach 

classifies system classes into two groups: classes that are playing roles and 

participating in design patterns (pattern classes) and classes that are not 

playing roles or participating in design patterns (non-pattern classes). 

Specifically, a list of classes playing roles in design patterns was generated, 

based on our validated recovered design instances and using our research 

prototype MLDA, from eight subject systems. This motivates us to build the 

metrics based approach. The participation percentage in the total metric 

value has been calculated for both groups. 

 However, the metrics-based approach shows that classes that play 

roles in design patterns have better inheritance and size metrics than do non-

pattern classes. This gives a sign that design patterns enhance software 

understandability and maintainability. The total system inheritance and size 

metrics rely on the pattern classes. In contrast, non-pattern classes have 

better coupling metrics than do pattern classes where the total system 

coupling relies on the pattern classes, contradicting the common belief that 

design patterns enhance system coupling. 

The key observations can be summarized as follows: 

1. Design patterns can vary in their implementations inside the source 

code. To overcome this challenge, this thesis uses the standard 

format presented by GoF. 

2. There is no agreed reference benchmark to validate the recovered 

design pattern instances. In fact, we refer to all publicly available 

results and repositories in the literature. Consequently, an MLDA 

repository for design pattern instances in eight subject systems has 

been developed. This repository can be used by other researchers in 

the future to validate their recovered design instances.   
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3. The matching of the method signatures of the candidate design 

instances to that of the subject system using a rule-based system 

enhances the detection accuracy of design patterns, which relies on 

relationship matching. But relationship matching produces too many 

false positive instances and is not enough to recover design pattern 

instances. 

4. Classifying the system classes into pattern classes and non-pattern 

classes and calculating the participating percentage in the total metric 

value shows that pattern classes shape the total system inheritance 

and size and fail to play fewer roles than do non-pattern classes in the 

coupling metrics. This is mainly due to the fact that design patterns 

provide the key functionality to the system, which requires more 

interaction and coupling with other classes.  

 

This thesis has added to the body of software engineering real evidence that 

the applying of a rule-based approach enhances the detection accuracy of 

GoF design patterns, which relies on relationships matching. In addition, this 

thesis shows that classes playing roles in design patterns shape the total 

system inheritance and size metrics. 

 

8.2 Limitations 

There are some limitations of the work presented in this thesis. First of all, 

design pattern instances are recovered based on the standard structural 

format presented by GoF. Secondly, the way in which the results are 

validated could affect precision and recall. To validate the number of true 

positives, false positives and false negatives, we refer to all publicly 

published results in the available literature.  

Thirdly, this thesis focuses on Java programming language. It could 

be worthwhile to conduct the evaluation on other projects having different 

languages. 
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Finally, the proposed metrics-based approach relies on previous 

studies to correlate the internal software metrics to the external quality 

attributes. Hence, our findings, regarding the impact of GoF design patterns, 

are subject to the significance of the previous correlations.   

 

8.3 Future Directions 

MLDA relies on static analysis capabilities to recover the instances of design 

patterns. A dynamic analysis level could be added to record the dynamic 

behavior of pattern participant classes and record the messages interaction 

during the runtime. Thus, all false positive instances could be eliminated.  

Furthermore, since MLDA uses the standard format of design 

patterns, SSM could be enhanced to recover different variants of design 

pattern. This can be done by summarizing all the possible variants of each 

design pattern and adding variant structures as possible candidate 

structures on to SSM. Moreover, SSM would allow the user to build its own 

pattern by adding the number of required relationships for each pattern.  

Based on the validated set of design pattern instances recovered from 

eight subject systems, the MLDA benchmark for design pattern instances, a 

tool for automatic validation of recovered design instances could be 

developed. This tool would validate the design pattern instances recovered 

by other detection tools. In addition, the validation tool could inform the 

researcher whether the recovered instance was a true or a false positive and 

show a list of all false negative instances. Moreover, the researcher could 

update the repository by entering its validated set of design pattern instances 

recovered from other subject systems. 

Finally, the metrics based approach could be used to compare the 

metrics set of two system versions: the pattern version and the non-pattern 

version. However, producing two identical versions for the same system 

would not be an easy task since both versions should provide the same 

functionality. Certain refactoring techniques should be applied to ensure that 

both versions provide the same functionality. Another option would be to 
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track versions of a software and to compare their metrics set. This could offer 

a sign of the impact of design patterns. 
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Appendix 
Design Patterns Library Generated 
by MLDA 
 

 

Note that Class diagrams as they presented by GoF. 

 

A. Creational Design Patterns 
 
1. Singleton 

 

 

  

 

  

Class_Relations 
Source_Class Destination_Class Relation_Type 
Singleton Singleton ASSOCIATION 

 

 

 

 

 

 

 

 

 

 

 

A 

Stats 
Relation_Type Count 
ASSOCIATION 1 
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2.  Prototype 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Client Prototype AGGREGATION 
ConcretePrototype1 Prototype DEPENDENCY 
ConcretePrototype1 Prototype REALIZATION 
ConcretePrototype2 Prototype DEPENDENCY 
ConcretePrototype2 Prototype REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 2 
AGGREGATION 1 
DEPENDENCY 2 
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3.  Abstract Factory 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Client AbstractProductA AGGREGATION 
Client AbstractProductB AGGREGATION 
ConcreteFactory1 AbstractFactory REALIZATION 
ConcreteFactory2 AbstractFactory REALIZATION 
ConcreteFactory1 ProductA1 ASSOCIATION 
ConcreteFactory1 ProductB1 ASSOCIATION 
ConcreteFactory2 ProductA2 ASSOCIATION 
ConcreteFactory2 ProductB2 ASSOCIATION 
ProductA1 AbstractProductA REALIZATION 
ProductA2 AbstractProductA REALIZATION 
ProductB2 AbstractProductB REALIZATION 
ProductB1 AbstractProductB REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 6 
AGGREGATION 2 
ASSOCIATION 4 
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4. Factory 

 

 

 

 

 

 

 

 

 

Class_Relations 
 Source_Class Destination_Class Relation_Type 
ConcreteProduct Product REALIZATION 
ConcreteCreator Creator INHERITANCE 
ConcreteCreator ConcreteProduct AGGREGATION 

 

Stats 
Relation_Type Count 
INHERITANCE 1 
AGGREGATION 1 
REALIZATION 1 

 

5. Builder 
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Class_Relations 
Source_Class Destination_Class Relation_Type 
Director Builder ASSOCIATION 
ConcreteBuilder Product ASSOCIATION 
ConcreteBuilder Builder REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 1 
ASSOCIATION 2 

 
B. Structural Design Patterns  
6. Adapter 

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Adapter Adaptee ASSOCIATION 
Adapter Target REALIZATION 

  

Stats 
Relation_Type Count 
REALIZATION 1 
ASSOCIATION 1 
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7. Bridge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Composite 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Abstraction Implementor AGGREGATION 
ConcreteImplementorA Implementor REALIZATION 
ConcreteImplementorB Implementor REALIZATION 
RefinedAbstraction Abstraction REALIZATION 

Stats 
Relation_Type Count 
REALIZATION 3 
AGGREGATION 1 
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Class_Relations 
Source_Class Destination_Class Relation_Type 
Composite Component ASSOCIATION 
Composite Component REALIZATION 
Leaf Component REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 2 
ASSOCIATION 1 

 

9. Decorator  

 

 

 

 

 

 

 

 

 

  

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Decorator Component AGGREGATION 
Decorator Component REALIZATION 
ConcreteComponent Component REALIZATION 
ConcreteDecoratorA Decorator REALIZATION 
ConcreteDecoratorB Decorator REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 4 
AGGREGATION 1 
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10. Facade  

 

 

 

 

 

 

 

  

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Façade SubSystemTwo AGGREGATION 
Façade SubSystemThree AGGREGATION 
Façade SubSystemOne AGGREGATION 

 

Stats 
Relation_Type Count 
AGGREGATION 3 

 

11.  Flyweight 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
FlyweightFactory Flyweight ASSOCIATION 
UnsharedConcreteFlyweight Flyweight INHERITANCE 
ConcreteFlyweight Flyweight INHERITANCE 
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Stats 
Relation_Type Count 
INHERITANCE 2 
ASSOCIATION 1 

 

 

12. Proxy 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Proxy Subject REALIZATION 
Proxy RealSubject ASSOCIATION 
RealSubject Subject REALIZATION 

 

Stats 
Relation_Type Count 
REALIZATION 2 
ASSOCIATION 1 
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C. Behavioral Design Pattern 
13. Chain of Responsibility  

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Handler Handler AGGREGATION 
ConcreteHandler1 Handler REALIZATION 
ConcreteHandler2 Handler REALIZATION 

 

Stats 
Relation_Type Count 
AGGREGATION 1 
REALIZATION  2 

 

14. Command 
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Class_Relations 
Source_Class Destination_Class Relation_Type 
Invoker Command AGGREGATION 
ConcreteCommand Command REALIZATION 
Invoker Command AGGREGATION 

 

Stats 
Relation_Type Count 
AGGREGATION 2 
REALIZATION 1 

 

 

15.  Interpreter  

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
NonterminalExpression AbstractExpression REALIZATION 
TerminalExpression AbstractExpression REALIZATION 
NonterminalExpression AbstractExpression AGGREGATION 
AbstractExpression Context AGGREGATION 

 

Stats 
Relation_Type Count 
REALIZATION 2 
AGGREGATION 2 
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16.  Iterator  

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
ConcreteAggregate Aggregate REALIZATION 
ConcreteIterator ConcreteAggregate AGGREGATION 
ConcreteIterator Iterator REALIZATION 
ConcreteAggregate ConcreteIterator ASSOCIATION 

 

 

 

17. Mediator  

 

 

 

 

 

 

 

 

 

 

 

Stats 
Relation_Type Count 
ASSOCIATION 1 
AGGREGATION 1 
REALIZATION 2 
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Class_Relations 
Source_Class Destination_Class Relation_Type 
Colleague Mediator AGGREGATION 
ConcreteColleague1 Colleague INHERITANCE 
ConcreteColleague2 Colleague INHERITANCE 
ConcreteMediator ConcreteColleague2 AGGREGATION 
ConcreteMediator Mediator REALIZATION 
ConcreteMediator ConcreteColleague1 AGGREGATION 

 

Stats 
Relation_Type Count 
AGGREGATION 3 
INHERITANCE 2 
REALIZATION 1 

 

18. Memento  

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Caretaker Memento AGGREGATION 
Originator Memento ASSOCIATION 

 

Stats 
Relation_Type Count 
AGGREGATION 1 
ASSOCIATION 1 
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19.  Observer 

 

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Subject Observer ASSOCIATION 
ConcreteObserver Observer REALIZATION 
ConcreteObserver ConcreteSubject AGGREGATION 
ConcreteSubject Subject REALIZATION 

 

Stats 
Relation_Type Count 
ASSOCIATION 1 
AGGREGATION 1 
REALIZATION 2 

 
 

20. State 
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Class_Relations 
Source_Class Destination_Class Relation_Type 
Context State AGGREGATION 
ConcreteStateA State REALIZATION 
ConcreteStateB State REALIZATION 

   
Stats 
Relation_Type Count 
AGGREGATION 1 
REALIZATION 2 

 
 

 

21. Strategy 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
Context Strategy AGGREGATION 
ConcreteStrategyA Strategy REALIZATION 
ConcreteStrategyB Strategy REALIZATION 
ConcreteStrategyC Strategy REALIZATION 

 

Stats 
Relation_Type Count 
AGGREGATION 1 
REALIZATION 3 
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22.  Template method 

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
ConcreteClassA AbstractClass INHERITANCE 
ConcreteClassB AbstractClass INHERITANCE 

 

Stats 
Relation_Type Count 
INHERITANCE 2 
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23. Visitor  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class_Relations 
Source_Class Destination_Class Relation_Type 
ObjectStructure Element ASSOCIATION 
ConcreteElementA Element REALIZATION 
ConcreteElementB Element REALIZATION 
ConcreteVisitor1 Visitor REALIZATION 
ConcreteVisitor2 Visitor REALIZATION 
ConcreteVisitor1 ConcreteElementA AGGREGATION 
ConcreteVisitor2 ConcreteElementB AGGREGATION 

 
Stats 
Relation_Type Count 
ASSOCIATION 1 
AGGREGATION 2 
REALIZATION 4 

 

 

 



 

202 
 

 

Appendix 
Structural Search Model (SSM) 
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3. Abstract Factory 
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4. Factory 
 
 
 
 
 
 
 
 
5. Builder 
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6. Adapter 
 
 
 
 
 
 
7. Bridge 
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8. Composite 
 
 
 
 
 
 
 
 
9. Decorator  
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10. Façade 
 
 
 
 
 
 
 
 
 
11. Flyweight  
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12. Proxy 
 
 
 
 
 
 
 
13. Chain of Responsibility 
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14. Command 
 
 
 
 
 
 
 
 
 
 
15. Interpreter 
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16. Iterator 
 
 
 
 
 
 
 
 
 
17. Mediator 
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18. Memento  
 
 
 
 
 
 
 
 
 
19. Observer 
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20. State/Strategy 
 
 
 
 
 
 
21. Visitor 
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22. TemplateMethod 
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Appendix  
Pseudocode of the Structural 
Search Model (SSM) 
 

 

 

Singleton_Instances  

1. FOR each record in database { 
2. IF (Connecting _Relationship == association) { 
3. s1 = getSourceClass()       d1= getDestinationClass() 
4. IF (s1== d1)   INSERT   s1   into Singleton 
5. } // end IF 
6. }// end FOR       

 

Prototype_ instances 

1. FOR each record in database { //1st FOR  
2. IF (Connecting _Relationship == Realization) { // 1st IF  
3. s1 =  getSourceClass   d1= getDestinationClass 
4. FOR each record in database { //2nd FOR 
5. IF (Connecting _Relationship == Dependency) { // 3rd IF 
6.  s2 =  getSourceClass   d2= getDestinationClass 
7.  IF(s1==s2 AND  d1==d2)  {  // 4th IF   ….prototype detected          
8. INSERT   s1 into Concrete _Prototype  and INSERT   d1 into 

Prototype 
9. END of 4th IF, 3rd IF, 2nd FOR, 1st IF, 1st FOR.    

 

AbstractFactory_instances  

1. FOR each record in database  { //1st FOR 
2. IF (Connecting _Relationship == aggregation) { //1st IF  
3. s1= getSourceClass     d1= getDestinationClass 
4. FOR each record in database { //2ndFOR  
5. IF (Connecting _Relationship == aggregation) { //2nd IF 
6. s2= getSourceClass     d2= getDestinationClass 
7. IF (s1 == s2  AND  d1 != d2) { //3rd IF 
8. FOR each record in database  { //3rd  FOR 
9. IF(Connecting _Relationship == Realization) { //5th IF 
10. S3= getSourceClass     d3= getDestinationClass 

C 
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11. tempConcreteFactory= s3 
12. FOR each record in database  { //4th FOR  
13. IF (Connecting _Relationship == Realization) {  // 6th IF 
14. S4= getSourceClass     d4= getDestinationClass 
15. IF (d4==d1 AND  d4!= d3) { //7rd IF 
16. FOR each record in database {  //5th  FOR  
17. IF (Connecting _Relationship == Realization) {   // 8th  IF 
18. S5= getSourceClass    d5= getDestinationClass 
19. IF (d2 == d5  AND d5!=d3)  { // 9th IF 
20. tempProdcutA = s4    tempProductB= s5 
21. FOR each record in database  {//6th FOR  
22. IF (Connecting _Relationship == association)  {// 10th IF  
23. S6= getSourceClass     d6= getDestinationClass 
24. IF (d6==s4  OR d6==s5) {  //11th IF …. Abstract factory detected  
25. INSERT   d1 into AbstractProductA 
26. INSERT   d2 into AbstractProductB 
27. INSERT   d3 into AbstractFactory  
28. INSERT   s3 into ConcreteFactory 
29. INSERT   s4 into ProductA 
30. INSERT   s5 into ProductB 
31. }//end  of 11th IF 
32. }  // end  of 10th IF 
33. }//end of 6th FOR 
34. }// end  of 9th IF  
35. }// end  of 8th  IF  
36. }// end of 5th FOR  
37. }// end of 7th IF   
38. }// end of 6th IF 
39. }//end of 4th  FOR 
40. }//end of 5th IF 
41. }// end of 3rd FOR  
42. } //end of 3rd IF  
43. }//end of 2nd IF  
44. }// end of 2nd  FOR  
45. } //end 1st  IF  
46. }//end of 1st  FOR 

 

Factory_instances  

1. FOR each record in database {   //1st FOR  
2. IF (Connecting _Relationship == inheritance) {     // 1st IF 
3. s1= getSourceClass     d1 = getDestinationClass  
4. FOR each record in database {  // 2nd FOR  
5. IF (Connecting _Relationship == Realization)  {//2nd IF 
6. s2= getSourceClass       d2 = getDestinationClass 
7. IF (s1!= s2 AND  d1 != d2) {  //3rd IF  
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8. FOR each record in database {   // 3rd FOR  
9. IF (Connecting _Relationship == aggregation) {  // 4th IF  
10. s3= getSourceClass  d3 = getDestinationClass 
11. IF (s1==s3 AND  s2==d3) { // 5th IF  … factory detected  
12. INSERT   d1 to Creator 
13. INSERT   d2 to Product    
14. INSERT   s1 to ConcreteCreator  
15. INSERT   s2 to ConcreteProduct  
16. }// end of 5th IF 
17. } // end of 4th IF  
18. }// end of 3rd  IF  
19. }// end of 3rd FOR  
20. } // end of 2rd IF  
21. } //end of 2nd FOR  
22. }// end of 1st IF  
23. } // end of 1st FOR  

 

Builder_instances   

1. FOR each record in database { // 1st FOR  
2. IF(Connecting _Relationship == association) { // 1st IF 
3. s1 = getSourceClass      d1= getDestinationClass 
4. FOR each record in database { //2nd FOR    
5. IF (Connecting _Relationship == Realization )  { // 2nd IF   
6. s2 = getSourceClass   d2= getDestinationClass 
7. IF (d1==d2) { // 3rd IF  
8. FOR each record in database { // 3rd FOR  
9. IF (Connecting _Relationship == association)  { // 4th IF 
10. S3 = getSourceClass    D3= getDestinationClass 
11. IF (s2==s3) {  // 5th IF …. Builder detected 
12. INSERT   s1 into Director  
13. INSERT   d1 into Builder 
14. INSERT   s2 into ConcreteBuilder  
15. INSERT   d3 into Product 
16. }// end of 5th IF  
17. }// end of 4th IF  
18. }// end of 3rd FOR  
19. }// end of 3rd IF  
20. }// end of 2nd IF  
21. }// end of 2nd FOR  
22. }// end of 1st IF  
23. }// end of 1st FOR  
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Adpater_instances  

1. FOR each record in database  {//1st FOR  
2. IF(Connecting _Relationship == Realization)   { //1st IF 
3. s1 = getSourceClass   d1 = getDestinationClass 
4. FOR each record in database {   // 2nd FOR  
5. IF (Connecting _Relationship == association) {  //2nd IF 
6. s2 = getSourceClass    d2 = getDestinationClass 
7. IF (s1==s2) { // 3rd IF    … adapter detected   
8. INSERT   d1 into Target  
9. INSERT   s1 into Adapter  
10. INSERT   d2 into Adaptee 
11. } // end of 3rd IF 
12. }// end of 2nd IF 
13. }// end of 2nd FOR  
14. }//  end of 1st IF  
15. }// end of 1st  FOR  

 

Bridge _instances  

1. FOR each record in database {  // 1st FOR  
2. IF (Connecting _Relationship == aggregation) {  //1st IF  
3. s1 = getSourceClass  d1= getDestinationClass 
4. FOR each record in database {  // 2nd FOR 
5. IF (Connecting _Relationship == Realization) { //  2nd IF 
6. s2 = getSourceClass;  d2= getDestinationClass; 
7. IF(s1==d2)  { // 3rd IF 
8. FOR each record in database { // 3rd FOR  
9. IF (Connecting _Relationship == Realization) { // 4th IF  
10. S3 = getSourceClass      D3= getDestinationClass 
11. IF (d3==d1) { //5th IF 
12.  INSERT   s3 into ConcreteImplementor  
13. INSERT   d1 into Implementor  
14. INSERT   d2 into Abstraction  
15. INSERT   s2 into RefinedAbstraction  
16. }// end 5th IF 
17. }// end 4th IF 
18. } // end 3rd FOR  
19. }//end 3rd IF 
20. }// end 2nd IF  
21. }//end 2nd FOR  
22. }//end 1st IF  
23. }// end 1st FOR  
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Composite_instances  

1. FOR record in database {    // 1st FOR 
2. IF (Connecting _Relationship == Realization) {  // 1st IF 
3. s1 = getSourceClass    d1= getDestinationClass 
4. FOR each record in database { //2nd FOR  
5. IF (Connecting _Relationship == association)  {  // 2nd IF 
6. s2 = getSourceClass   d2= getDestinationClass 
7. IF (s1== s2 AND d1==d2)  { // 3rd IF 
8. FOR each record in database { // 3rd FOR 
9. IF(Connecting _Relationship== Realization)  { //4th IF 
10. s3 = getSourceClass      d3= getDestinationClass 
11. IF (d3==d1)  AND  (s3 != s1) {  //5th IF 
12. INSERT   s3 into Leaf  
13. INSERT   d1 into Component  
14. INSERT   s1 into Composite  
15. }//end of 5th IF 
16. } // end of 4th IF 
17. }// end of 3rd FOR  
18. }// end of 3rd IF 
19. }// end of 2nd IF  
20. }// end of 2nd FOR  
21. }// end of 1st IF 
22. }// end of 1st FOR 

 

Decorator_instances   

1. FOR each record in database {  // 1st FOR  
2. IF (Connecting _Relationship == aggregation) { // 1st IF 
3. s1 = getSourceClass     d1= getDestinationClass 
4. FOR (each record in database { // 2nd FOR  
5. IF (Connecting _Relationship == Realization )  { // 2nd IF 
6. s2 = getSourceClass   d2= getDestinationClass 
7. IF (s1==s2 AND d1==d2) { // 3rd IF  
8. FOR each record in database { // 3rd FOR 
9. IF (Connecting _Relationship == Realization)  {// 4th IF 
10. s3 = getSourceClass  d3= getDestinationClass 
11. IF (s1==d3) { // 5th IF 
12. FOR each record in database { // 4rd FOR 
13. IF (Connecting _Relationship == Realization) { // 6th IF 
14. s4 = getSourceClass   d4= getDestinationClass 
15. IF(s4!= s3 AND  s4 != s1 AND    d4 ==d1) { // 7th IF 
16. INSERT   d1 into Component  
17. INSERT   s1 into Decorator  
18. INSERT   s3 into Concrete Decorator  
19. INSERT   s4 into Concrete Component  
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20. }// end of 7th IF 
21. }// end of 6th IF 
22. }// end of 4th  FOR  
23. } // end 5th IF 
24. }// end of 4th IF 
25. }// end of 3rd FOR 
26. }// end of 3rd IF 
27. }// end of 2nd IF 
28. }// end of 2nd FOR  
29. }// end of 1st IF 
30. }// end of 1st FOR  

 

 

Façade_instances  

1. FOR each record in database { // 1st FOR  
2. IF (Connecting _Relationship == aggregation)  {// 1st IF 
3. s1 = getSourceClass  d1= getDestinationClass 
4. FOR each record in database { // 2nd FOR  
5. IF (Connecting _Relationship == aggregation) { // 2nd IF 
6. s2 = getSourceClass   d2= getDestinationClass 
7. IF(d2 != d1)  { // 3rd IF , not with itself 
8. FOR each record in database  { //3rd FOR  
9. IF (Connecting _Relationship == aggregation) { //4th IF 
10. s3 = getSourceClass   d3= getDestinationClass 
11. IF(d3 !=d1) { //5th IF 
12. IF ( s1==s2 AND  s1==s3){ // 6th IF 
13. INSERT   s1 into Façade  
14. INSERT   d1 into Subsystem1 
15. INSERT   d2 into Subsystem2 
16. INSERT   d3 Subsystem3 
17. } // end of 6th IF 
18. }// end of 5th IF 
19. }// end of 4th IF 
20. }// end of 3rd FOR 
21. }// end of 3rd IF 
22. }// end of 2nd IF 
23. }// end of 2nd FOR 
24. }// end of 1st IF 
25. }// end of 1st FOR  

 

Flyweight_instances  

1. FOR each record in database {  //1st FOR  
2. IF (Connecting _Relationship == association) { // 1st IF 
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3. s1 = getSourceClass       d1= getDestinationClass 
4. FOR each record in database { // 2nd FOR  
5. IF (Connecting _Relationship== inheritance ) //2nd IF 
6. s2 = getSourceClass  d2= getDestinationClass 
7. IF ( d2==d1 AND  s2 != s1) { //3rd IF 
8. FOR each record in database { //3rd FOR  
9. IF (Connecting _Relationship == inheritance ) { //4th IF 
10. s3 = getSourceClass    d3= getDestinationClass 
11. IF (d3==d1 AND  s2 !=s3)  { // 5th IF 
12. INSERT   s1 into FlyweightFactory  
13. INSERT   d1 into Flyweight 
14. INSERT   s2 into UnsharedConcreteFlyweight  
15. INSERT   s3 into ConcreteFlyweight  
16. } // end of 5th IF 
17. }// end of 4th IF 
18. }// end of 3rd FOR  
19. }// end of 3rd IF  
20. }// end of 2nd IF 
21. }// end of 2nd FOR  
22. }// end of 1st IF  
23. }// end of 1st FOR 

 

Proxy_instances  

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == Realization) {// 1st IF  
3. s1 = getSourceClass       d1= getDestinationClass 
4. FOR each record in database {// 2nd FOR  
5. IF (Connecting _Relationship == Realization){ //2nd IF  
6. s2 = getSourceClass      d2= getDestinationClass 
7. IF( s1 != s2 AND  d1==d2) {//3rd IF  
8. FOR each record in database  {// 3rd FOR   
9. IF (Connecting _Relationship= = association)  {//4th IF 
10. s3 = getSourceClass    d3= getDestinationClass 
11. IF(s3==s1 AND  d3==s2)  {//5th IF 
12. INSERT   d1 into Subject  
13. INSERT   s1 into Proxy  
14. INSERT   s2 into RealSubject  
15. } // end of 5th IF 
16. }// end of 4th IF 
17. }// end of 3rd FOR  
18. }// end of 3rd IF  
19. }// end of 2nd IF  
20. }// end of 2nd FOR  
21. }// end of 1st IF  
22. }// end of 1st FOR  
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ChainofResponsibility_instances  

1. FOR each record in database {  // 1st FOR  
2. IF ( Connecting _Relationship == aggregation) { // 1st IF 
3. s1 = getSourceClass     d1= getDestinationClass 
4. IF (s1==d1) {// 2nd IF , aggregation with itself 
5. FOR each record in database { // 2nd FOR  
6. IF (Connecting _Relationship == Realization) {  //3rd IF 
7. s2 = getSourceClass      d2= getDestinationClass 
8. IF(d2==s1) { //4th IF 
9. INSERT   s1 into Handler  
10. INSERT   s2 into ConcreteHandler  
11. }// end of 4th IF 
12. }// end of 3rd IF 
13. }// end of 2nd FOR  
14. }// end of 2nd IF  
15. }// end of 1st IF  
16. }// end of 1st FOR  

 

Command_instances  

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == aggregation){ // 1st IF  
3. s1 = getSourceClass    d1= getDestinationClass 
4. FOR each record in database { // 2nd FOR  
5. IF (Connecting _Relationship == INHERITANCE) { //2nd  IF  
6. s2 = getSourceClass     d2= getDestinationClass 
7. IF(d1==d2) { //3rd  IF  
8. FOR each record in database {// 3rd FOR  
9. IF (Connecting _Relationship == aggregation) {//4th IF 
10. s3 = getSourceClass    d3= getDestinationClass 
11. IF (s3==s2 AND  s3 != s1 AND  d3 !=s1){ //5th IF 
12. INSERT   s1 into Invoker  
13. INSERT   d1 into Command  
14. INSERT   s2 into ConcreteCommand  
15. INSERT   d3 into Receiver 
16. }// end of 5th IF  
17. }// end of 4th IF 
18. }// end of 3rd FOR  
19. }// end of 3rd IF  
20. }// end of 2nd  IF  
21. }// end of 2nd FOR 
22. }// end of 1st IF 
23. }// end of 1st FOR  
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Interpreter_instances  

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == aggregation { // 1st IF  
3. s1 = getSourceClass    d1= getDestinationClass 
4. FOR each record in database { //2nd  FOR  
5. IF(Connecting _Relationship == Realization) { // 2nd IF  
6. s2 = getSourceClass     d2= getDestinationClass 
7. IF(s1==d2) { //3rd IF 
8. FOR each record in database {// 3rd FOR  
9. IF(Connecting _Relationship == aggregation) { //4th IF 
10. s3 = getSourceClass;   
11. d3= getDestinationClass; 
12. IF (s3 ==s2 AND  d3==d2) { //5th IF  
13. INSERT   s1 into AbstractExpression  
14. INSERT   d1 Context  
15. INSERT   s2 into NonterminalExpression  
16. }// end of 5th IF 
17. }// end of 4th IF 
18. }// end of 3rd FOR  
19. }// end of 3rd IF 
20. }// end of 2nd IF  
21. }// end of 2nd FOR  
22. }// end of 1st IF  
23. }// end of 1st FOR  

 

Iterator_instances  

1. FOR each record in database // 1st FOR { 
2. IF (Connecting _Relationship == Realization ) // 1st IF  {  
3. s1 = getSourceClass     d1= getDestinationClass 
4. FOR each record in database {// 2nd FOR  
5. IF (Connecting _Relationship == Realization) {// 2nd IF  
6. s2 = getSourceClass  d2= getDestinationClass 
7. IF (s1 != s2 AND  d1 !=d2) {//3rd IF  
8. FOR each record in database {// 3rd FOR  
9. IF (Connecting _Relationship ==  association) {//4th IF  
10. s3 = getSourceClass      d3= getDestinationClass 
11. IF (s3==s2 AND d3 ==s1) { // 5th IF  
12. FOR each record in database {// 4th FOR  
13. IF(Connecting _Relationship == aggregation ) { //6th IF    
14. s4 = getSourceClass      d4= getDestinationClass 
15. IF (s4 ==s1 AND  d4 ==s2  AND  d4==s3 AND  s4==d3){ //7th IF  
16. INSERT   d1 into Iterator  
17. INSERT   d2 into Aggregate  
18. INSERT   s1 into ConcreteIterator  
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19. INSERT   s2 into ConcreteAggregate  
20. }// end of 7th IF  
21. }// end of 6th IF  
22. }// end of 4th FOR  
23. }// end of 5th IF  
24. }// end of 4th IF  
25. }// end of 3rd FOR 
26. }// end of 3rd IF  
27. }// end of 2nd IF  
28. }// end of 2nd FOR  
29. }// end of 1st IF  
30. }// end of 1st FOR  

 

Mediator_instances  

1. FOR each record in data base {// 1st FOR  
2. IF (Connecting _Relationship == inheritance) { // 1st IF  
3. s1 = getSourceClass    d1= getDestinationClass 
4. FOR each record in data base {// 2st FOR  
5. IF (Connecting _Relationship == inheritance) { // 2st IF 
6. s2 = getSourceClass     d2= getDestinationClass 
7. (IF s1!=s2 AND  d1 != d2) {// 3rd IF  
8. FOR each record in database { // 3rd FOR  
9. IF (Connecting _Relationship == aggregation) { // 4th IF 
10. s3 = getSourceClass  d3= getDestinationClass 
11. IF (s3 ==d1 AND   d3==d2) { // 5th IF  
12. FOR each record in data base { //4th FOR  
13. IF (Connecting _Relationship == aggregation) { //6th IF  
14. s4 = getSourceClass  d4= getDestinationClass 
15. IF ( d4==s1 AND  s4 ==s2 s AND 4!=s3 AND  d4 != d3) { //7th IF  
16. INSERT   d1 into Colleague  
17. INSERT    s1 into ConcreteColleague 
18. INSERT    s2 into ConcreteMediator  
19. INSERT    d2 into Mediator  
20. }// end of 7th IF  
21. }// end of 6th IF  
22. }// end of 4th FOR  
23. }// end of 5th IF  
24. }// end of 4th IF  
25. }// end of 3rd FOR  
26. }// end of 3rd IF  
27. }// end of 2nd IF  
28. }// end of 2nd FOR  
29. }// end of 1st IF  
30. }// end of 1st FOR  
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Memento_instances  

1. FOR each record in database {// 1st FOR  
2. IF(Connecting _Relationship == ASSOCIATION) {// 1st IF  
3. s1 = getSourceClass  d1= getDestinationClass 
4. FOR each record in database {// 2nd FOR  
5. IF(Connecting _Relationship == aggregation) {// 2nd  IF  
6. s2 = getSourceClass  d2= getDestinationClass 
7. IF(d1==d2 AND  s1 !=s2) {// 3rd IF  
8. FOR each record in database {// 3rd FOR  
9. IF(Connecting _Relationship == inheritance){ //4th if 
10. s3 = getSourceClass  d3= getDestinationClass 
11. if(d3==d1 && s3!= s1 && s3!=s2){// 5th if 
12. INSERT    d1 into Memento  
13. INSERT   s1 into Originator  
14. INSERT   s2 into Caretaker  
15. INSERT   s3 into ConcreteMemento   
16. }// end of 5th if 
17. }// end of 4th if 
18. }//end 3rd for 
19. } // end of 3rd IF 
20. }// end of 2nd IF  
21. }// end of 2nd FOR 
22. }// end of 1st IF  
23. }// end of 1st FOR  

 

Observer_instances  

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == Realization ){ //1st IF  
3. s1 = getSourceClass  d1= getDestinationClass 
4. FOR each record in database {// 2nd  FOR  
5. IF (Connecting _Relationship == Realization ){ //2nd IF  
6. s2 = getSourceClass  d2= getDestinationClass 
7. IF (s1!= s2 AND  d1 != d2){//3rd IF 
8. FOR each record in database {// 3rd FOR  
9. IF (Connecting _Relationship == association ){//4th IF  
10. s3 = getSourceClass  d3= getDestinationClass 
11. IF (d1 ==s3 AND d2 ==d3) {//5th IF  
12. FOR each record in database {//4th FOR  
13. IF(Connecting _Relationship == aggregation ){ //6th IF   
14. s4 = getSourceClass     d4= getDestinationClass 
15. IF ( s4 ==s2 AND  d4==s1) {//7th IF 
16. INSERT   d1 into Subject  
17. INSERT   s1 ConcreteSubject  
18. INSERT   d2 into Observer  
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19. INSERT   s2 into ConcreteObserver  
20. }// end of 7th IF 
21. }// end of 6th IF 
22. }// end of 4th FOR 
23. }// end of 5th IF  
24. }// end of 4th IF 
25. }// end of 3rd FOR  
26. }// end of 3rd IF  
27. }// end of 2nd IF  
28. }// end of 2nd FOR  
29. }// end of 1st IF  
30. }// end of 1st FOR  

 

State_Strategy_instances  

1. FOR each record in data base {//1st FOR  
2. IF (Connecting _Relationship == aggregation ) { //1st IF  
3. s1 = getSourceClass    d1= getDestinationClass 
4. FOR each record database { // 2nd  FOR  
5. IF (Connecting _Relationship == Realization){//2nd IF  
6. s2 = getSourceClass    d2= getDestinationClass 
7. IF(d1==d2 AND  s1!= S2) { //3rd IF  
8. INSERT   S1 into Context  
9. INSERT   d1 into State  
10. INSERT   s2 into ConcreteState  
11. }// end of 3rd IF  
12. }// end of 2nd IF  
13. }// end of 2nd FOR  
14. }// end of 1st IF  
15. }// end of 1st FOR  

 

Template_instances     

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == inheritance) {// 1st IF  
3. s1 = getSourceClass       d1= getDestinationClass 
4. IF( s1 != d1){ // 2nd  IF  
5. INSERT   s1 into ConcreteClass  
6. INSERT   d1 into AbstractClass 
7. }// end of 2nd  IF  
8. }// end of 1st  IF  
9. }// end of 1st  FOR  
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Visitor_instances  

1. FOR each record in database {// 1st FOR  
2. IF (Connecting _Relationship == association ) {//1st IF  
3. s1 = getSourceClass       d1= getDestinationClass 
4. FOR each record in database { //2nd for 
5. IF (Connecting _Relationship == Realization) {// 2nd IF  
6. s2= getSourceClass      d2= getDestinationClass 
7. IF ( d1==d2 AND  s1!=s2) { //3rd IF  
8. FOR each record in database {// 3rd FOR  
9. IF (Connecting _Relationship == Realization ) {// 4th IF  
10. s3= getSourceClass    d3= getDestinationClass 
11. IF(s3 != s2 AND  d3 !=d2){// 5th IF  
12. FOR each record in database {//4th FOR  
13. IF (Connecting _Relationship == aggregation ) {// 6th IF  
14. s4= getSourceClass         d4= getDestinationClass 
15. IF(s3==s4 AND d4==s2 AND  s1 != d3){//7th IF  
16. INSERT   s1 into ObjectStructure  
17. INSERT   d1 into Element  
18. INSERT    s2 into ConcreteElement  
19. INSERT   d3 into Visitor  
20. INSERT   s3 into ConcreteVisitor  
21. }// end of 7th IF  
22. }// end of 6th IF  
23. }// end of 4th FOR 
24. }// end of 5th IF 
25. }// end of 4th IF  
26. }// end of 3rd FOR  
27. }// end of 3rd IF 
28. }// end of 2nd IF 
29. }// end of 2nd FOR 
30. }// end of 1st IF 
31. }// end of 1st FOR  
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Appendix  
List of Publications 
 

  

 

[Chapter Two] 

1. Al-Obeidallah, M.G., Petridis, M. and Kapetanakis, S.: ‘A Survey on 
Design Pattern Detection Approaches’, International Journal of Software 
Engineering, 7(3), pp. 41–59. (2016). 

 

[Chapters Three and Four] 

2. Al-Obeidallah, M.G., Petridis, M. and Kapetanakis, S.: MLDA: A Multiple 
Levels Detection Approach for Design Patterns Recovery, in the proceedings 
of 2017 International Conference On Computing and Data Analysis (ICCDA 
2017), May 19-23, Florida, United States, 2017, pp. 33-40. 

 

[Chapters Five and Six] 

3. Al-Obeidallah M.G., Petridis M., Kapetanakis S. (2018). A Structural Rule-
Based Approach for Design Patterns Recovery. In: Lee R. (eds) Software 
Engineering Research, Management and Applications. SERA 2017. Studies 
in Computational Intelligence, vol 722. Springer, Cham. 

 

Accepted Papers 

[Chapters Three until Six] (The complete model with all datasets) 

4. Al-Obeidallah M.G., Petridis M., Kapetanakis S. A Multiple Phases 
Approach for Design Patterns Recovery Based on Structural and Method 
Signature Features. Accepted for publication in the International Journal of 
Software Innovation (IJSI), vol. 6, issue 3, December 2017. 

IJSI is indexed by Thomson Reuters, Scopus, ACM, Web of science, 
INSPEC, etc.   
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Awards 

1. Best Student Paper Award (SERA 2017) 

 “A Structural Rule-Based Approach for Design Patterns Recovery”, which 
has been published in the 15th ACIS International Conference on Software 
Engineering Research, Management and Applications (SERA 2017) 
http://www.acisinternational.org/sera2017/, has won the best student paper 
award in the conference. This paper was selected out of 80 submissions. 

 

 

 

http://www.acisinternational.org/sera2017/
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