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Abstract 

This paper proposes a new road toll design model for congested road networks with uncertain 

demand that can be used to create a sustainable urban transportation system. For policy 

assessment and strategic planning purposes, the proposed model extends traditional 

congestion pricing models to simultaneously consider congestion and environmental 

externalities due to vehicular use. Based on analyses of physical and environmental capacity 

constraints, the boundary conditions under which a road user on a link should pay either a 

congestion toll or an extra environmental tax are identified. The sustainable toll design model 

is formulated as a two-stage robust optimization problem. The first-stage problem before the 

realization of the future travel demand aims to minimize a risk-averse objective by 

determining the optimal toll. The second stage after the uncertain travel demand has been 

determined is a scenario-based route choice equilibrium formulation with physical and 

environmental capacity constraints. A heuristic algorithm that combines the sample average 

approximation approach and a sensitivity analysis-based method is developed to solve the 

proposed model. The upper and lower bounds of the model solution are also estimated. Two 

numerical examples are given to show the properties of the proposed model and solution 

algorithm and to investigate the effects of demand variation and the importance of including 

risk and environmental taxation in toll design formulations. 
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1. Introduction 

 

Global warming, or climate change, is one of the most serious threats facing the world today, 

and considerable attention has been paid to sustainable environmental issues. There is a broad 

consensus that transportation systems are major contributors to climate change due to various 

externalities, including congestion and environmental impacts (Taylor 1996; Nagurney 2000a; 

Black and Sato 2007). Studies show that vehicular use contributes to 30-50% of hydrocarbon, 

40-60% of nitrogen oxide, and 80-90% of carbon monoxide emissions (United States 

Environmental Protection Agency 1991, 1992). The Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC 2007) stated that, during the 1990s, 

carbon emissions increased by less than 1% per year, whereas since 2000, emissions have 

grown at a rate of 3.5% per year, exacerbating environmental problems. There is clearly an 

urgent need for effective measures and policies to combat further environmental damage due 

to increased vehicular pollution emissions and to develop sustainable, low-carbon urban 

transportation systems. 

 

Road toll pricing, which is a type of traffic demand management measure, is widely 

recognized as a useful tool for alleviating traffic congestion and reducing vehicular emissions. 

Recent developments in information and communication technologies have made the 

implementation of road pricing schemes easier. Well-known successful examples of electronic 

road pricing include congestion-charging schemes in California, Singapore, and, more 

recently, London (Santos 2004; Hau 2006). 

 

There is a substantial body of literature on road toll pricing issues. The approaches adopted in 

previous related studies can generally be classified into two main categories: first-best pricing 

and second-best pricing. First-best pricing is based on the fundamental economic principle of 

marginal cost pricing, which requires that road users on each link of a network pay a toll 

equal to the difference between the marginal social and marginal private costs. However, this 

ideal pricing scheme may not be applicable in reality due to political and social restrictions. 

This has motivated research into the second-best pricing, where only a subset of links can be 

subject to tolls. A thorough discussion of the economic fundamentals of road pricing has been 

given by Hau (2005) and Yang and Huang (2005), and a more recent comprehensive review 

can be found in Tsekeris and Voß (2009). 
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Various studies have been carried out to develop different models (deterministic or stochastic) 

to assess the effects of different types of road toll pricing (congestion or environmental). Table 

1 gives a summary of these studies and reveals that most mainly dealt with the extra time 

costs (i.e., congestion externalities) that each road user imposes on others, which are 

collectively referred to as congestion pricing. In contrast, environmental externalities caused 

by vehicular traffic have received little attention. Rouwendal and Verhoef (2006) argued that 

ignoring environmental externalities in road toll pricing can lead to market failure. Other 

studies, such as those of Nagurney (2000b), Yin and Lawphongpanich (2006), and Szeto, Li, 

and O’Mahony (2008), have shown that the implementation of congestion pricing can lead to 

an emissions paradox whereby traffic emissions actually increase. It is thus necessary to 

incorporate environmental externalities into road toll pricing models to achieve 

environmentally sustainable urban transportation systems, particularly in this era of climate 

change. 

 

Table 1 also indicates that existing road toll pricing studies mainly use deterministic models, 

and that little attention has been paid to stochastic solutions. However, in reality, traffic flows 

on urban roads are basically stochastic. This stochastic effect may be due to various random 

factors that range from irregular and random incidents, such as traffic accidents, vehicle 

breakdowns, road work, signal failures, adverse weather, and earthquakes, to regular 

fluctuations in travel demand and capacity by time of day, day of week, and season (Chen et 

al. 2002, 2010; Chen, Subprasom, and Ji 2003; Chootinan, Wong, and Chen 2005; Lo, Luo, 

and Siu 2006; Li et al. 2008; Yin, Madanat, and Lu 2009; Kim, Kurauchi, Uno 2011). As a 

result, the optimal tolls derived using deterministic models may negatively affect the 

performance of transportation systems, especially when the actual future demand and supply 

deviate significantly from their expected values (Gardner, Unnikrishnan, and Waller 2008). It 

is thus important to incorporate the effects of uncertain demand and supply into road toll 

pricing models for policy assessment. 

 

In view of the shortcomings of previous studies in this area, this study proposes an 

environmentally sustainable toll design model for congested road networks with demand 

uncertainty. It extends previous work as follows. (1) A new robust toll design model that 

explicitly incorporates the effects of demand uncertainty and congestion and environmental 

externalities is developed for strategic planning. The proposed modeling framework has 
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important implications for the development of sustainable urban transportation systems. (2) 

Based on analyses of the relationship between physical and environmental capacity 

constraints, the boundary conditions under which a road user on a link should pay either a 

congestion toll or an extra environmental tax for vehicular use are determined. (3) A heuristic 

algorithm that is a combination of the sample average approximation approach and a 

sensitivity analysis-based method is developed to solve the proposed model. The quality 

(lower and upper bounds) of the model solution is also examined together with the efficiency 

of the proposed solution algorithm and the effects of variation in pricing schemes and 

demand. 

 

The proposed model consists of two decision stages and two groups of decision variables, one 

in each stage. As shown in Figure 1, the first stage of the model, which is referred to as the 

“here-and-now” stage, occurs before the actual travel demand is realized. The performance of 

the transport system, including the total user travel time and total amount of traffic emissions, 

is a random variable and is highly dependent on the actual future travel demand. The optimal 

toll solution obtained by traditional expectation models, which optimize the expected value of 

an objective function over all possible demand scenarios, can lead to large variation in the 

objective values for different scenarios. In particular, some scenarios may have very poor 

objective values. To compensate for this limitation of expectation models, this study 

introduces a risk-averse objective into the first stage of the proposed robustness model. This 

objective is defined as a linear bi-criteria combination of the expected value of an objective 

function and its semi-deviation or mean absolute deviation. The second stage of the model, 

which is referred to as the “wait-and-see” stage, models the responses (in terms of route 

choice) of road users to the first-stage toll decisions after a particular travel demand scenario 

has been realized. For a given demand scenario, each road user in the network is assumed to 

select the route with the minimal travel disutility, which leads to the classical Wardrop user 

equilibrium. 

 

The remainder of this paper is organized as follows. The next section describes the basic 

assumptions and capacity constraints. Section 3 presents the two-stage robust optimization 

formulation. Section 4 presents the development of a heuristic solution algorithm for solving 

the proposed model and discusses the quality of the solution. Section 5 provides two 

examples to illustrate the application of the proposed model and solution algorithm. The 

conclusion is given in Section 6 together with recommendations for further studies. 
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2. Basic considerations 

 

2.1. Assumptions 

 

To facilitate the presentation of the essential ideas of this paper, the following assumptions are 

made. 

A1 The implementation of road tolls aims to simultaneously restrain the levels of traffic 

congestion and vehicular emissions within acceptable limits. To do so, two categories of 

capacity constraints – physical and environmental (emissions) – are introduced (Ferrari 1997; 

Yang and Bell 1997; Chen, Zhou, and Ryu 2011). 

A2 The travel demand between each origin-destination (OD) pair is a random variable with a 

known probability distribution that can be discretized as a finite set of demand scenarios or 

realizations (Gardner, Unnikrishnan, and Waller 2008; Yin, Madanat, and Lu 2009; Boyles, 

Kockelman, and Waller 2010). The objective of the road toll design model developed in this 

study is to minimize the linear bi-criteria combination of the expected value of the total 

system travel disutility (i.e., total user travel time plus total emissions) and its semi-deviation 

risk measure over all demand scenarios. For each demand scenario, the route choice of road 

users follows the Wardrop user equilibrium principle, but is subject to physical and 

environmental capacity constraints. 

A3 Carbon monoxide (CO) is considered to be an indicator of the level of atmospheric 

pollution generated by vehicular traffic. This assumption is not unreasonable because (i) 

vehicles are responsible for almost all CO emissions in the air, (ii) CO is the most significant 

pollutant among the various types of vehicular emissions, which include nitrogen oxide, CO, 

nitrogen dioxide, sulfur dioxide, ozone, and particulates, and (iii) the emission rates or 

production functions of other pollutants are similar to that of CO. This assumption has also 

been made in related studies, including those of Rilett and Benedek (1994), Benedek and 

Rilett (1998), Wallace et al. (1998), Sugawara and Niemeier (2002), Yin and Lawphongpanich 

(2006), and Nagurney, Qiang, and Nagurney (2010). 

A4 The study period is assumed to be a one-hour period, such as the morning peak hour, 

which is usually the most critical period in the day. The model proposed here is thus mainly 

for the purposes of strategic planning or policy evaluation. The vehicular pollutant emission 
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rate in the study period is estimated by the macroscopic model suggested by Penic and 

Upchurch (1992), and is related to the average vehicle speed (including the constant, 

acceleration, and deceleration rates) and delays at intersections due to signal controls, if any. 

A5 This study mainly focuses on automobiles, and other types of vehicles (e.g., buses) are not 

considered. The (average) travel time of an automobile on each link of the road network is 

assumed to be a continuous and strictly increasing function of the flows on that link, which 

implies that the link interaction is not considered. All of the users in the network are assumed 

to be homogeneous in terms of their time value. However, this assumption can easily be 

relaxed to consider multiple transport modes, multiple user classes, or the interaction of flows 

across links. 

 

2.2. Physical capacity constraint 

 

Physical capacity constraints are inherent in road transport systems, and there is a high risk of 

system failure or flow instability if they are violated (Ferrari 1995, 1997). Consider a road 

network G = (N, A) where N is the set of all nodes and A is the set of all links in the network. 

Let W be the set of all origin-destination (OD) pairs in the network and wR  be the set of all 

routes between OD pair w W . Let   be the set of all demand scenarios (or realizations) 

and s a particular demand scenario s . Let s
av  be the flow on link a under demand 

scenario s. The physical capacity constraint can then be represented as 

,   ,s
a av C a A s    ,  (1) 

where aC  is the physical capacity of link a, a A , as measured in vehicles per hour. This 

may be interpreted as the exit capacity of a link because the capacity at an intersection is 

usually minimal. For a signal-controlled intersection, the exit capacity of a link approaching 

the intersection depends on the proportion of green time, and can be calculated using the 

following formula (see Yang and Yagar 1995; Wong and Yang 1997). 

,   a a aC C a A    ,  (2) 

where a  (0.0 1.0)a    is the proportion of a cycle that is effectively green for link a, 

and aC  is the (constant) saturation flow (in vehicles per hour) of link a. When a link 

approaches a signal-controlled intersection, the value of a  is between 0 and 1, that is, 

0 1a   . When there is no signal control at the exit of a link, the value of a  is equal to 1, 
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that is, a aC C . 

 

The link flow s
av  in Equation (1) can be given by 

,   ,
w

s s
a rw ar

w W r R

v f a A s
 

      ,  (3) 

where s
rwf  is the flow on route wr R  between OD pair w W  under demand scenario 

s . ar  equals 1 if route r traverses link a, and 0 otherwise. 

 

2.3. Environmental capacity constraints 

 

Environmental (or emission) capacity constraints are not inherent in road networks, but are 

imposed by the system manager (e.g., the authority) on some links of the network to keep the 

level of local traffic emissions below a certain threshold (such as the maximum permissible 

emission standard). Let ( )s s
a ae v  be the average amount of traffic emissions on link a under 

demand scenario s, which is measured in grams per vehicle. According to A4, ( )s s
a ae v  

consists of two components: emissions s,Move
ae  due to vehicular movements on link a, and 

emissions s,Delay
ae  due to a stop delay at a signal-controlled intersection (if any), that is, 

s,Move s,Delay( )s s
a a a ae v e e  , 

   9.1913
exp 0.01023 0.003 1 ,   ,s

a a as
a

l k a A s
k

 
        

  
,  (4) 

where the term in the square brackets on the right-hand side of the equation represents the 

average amount of traffic emissions per vehicle-kilometer. al  is the length (in kilometers) of 

link a, and s
ak  is the average vehicle speed (in kilometers per hour) on link a under scenario 

s. When converted to feet and feet per second, the numbers in the square brackets are the 

same as those given by Penic and Upchurch (1992).   is the constant signal cycle time, 

measured in seconds, and  1 a   is the average stop delay (also in seconds) of vehicles 

on link a due to signal control. The calibrated coefficient 0.003 is the delay emissions per 

vehicle-second (Penic and Upchurch 1992). When a link is not subject to signal control, a  

equals 1, which means that the second term on the right-hand side of Equation (4) is zero. 
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Let ( )s
at   be the average travel time (in hours) of vehicles on link a under scenario s, that is, 

s s
a a at l k  (not including a stop delay at a signal intersection). Equation (4) can then be 

expressed as 

 ( ) 9.1913 ( ) exp 0.01023 0.003 1 ,   ,
( )

s s s s a
a a a a as s

a a

l
e v t v a A s

t v

 
          

 
,  (5) 

where the link travel time function ( )s s
a at v  is assumed to be continuous and strictly 

increasing with regards to s
av . It can be estimated by the following Bureau of Public Roads 

(BPR) type function 

0
( ) 1 ,   ,

ns
s s a a
a a

aa

l v
t v a A s

Ck

            

,  (6) 

where 0
ak  is the (constant) free-flow speed of vehicles on link a, measured in kilometers per 

hour. The capacity aC  of link a can be calculated using Equation (2). The parameters   

and n reflect congestion effects. 

 

Let ˆ ( )s s
a ae v  be the total amount of emissions on link a under demand scenario s, measured in 

grams per hour. It is the product of the average amount of traffic emissions and the link flow 

(the number of vehicles) on that link, and is represented by 

ˆ ( ) ( ),   ,s s s s s
a a a a ae v v e v a A s     .  (7) 

The environmental or emission capacity constraint can thus be expressed as 

ˆ ( ) ,   ,s s
a a ae v E a A s    ,  (8) 

where aE  is the maximum permissible emission standard of link a, measured in grams per 

hour. 

 

Studies show that when the vehicle speed is lower than 70 kilometers per hour, ( )s
ae   in 

Equation (5) or (7) is a monotonically increasing (or decreasing) function of flow (or speed) 

(see Jakkula and Asakura 2009; Yin and Lawphongpanich 2006) and is thus invertible. This 

means that ˆ ( )s
ae   is also invertible. We denote the inverse of ˆ ( )s

ae   as 1ˆ( ) ( )s
ae   , and take 

the inverse on both sides of inequality (8) to obtain 
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,   ,s
a av E a A s    ,  (9) 

where aE  is the environmental capacity, measured in vehicles per hour, and 

1ˆ( ) ( ),   ,s
a a aE e E a A s    .    (10) 

By using the bisection method (Epperson 2007), Equation (10) can be solved and the unique 

value of the environmental capacity aE  can be obtained. 

 

2.4. Relationship between the two kinds of capacity constraints 

 

As noted, the (non-linear) environmental capacity constraint (Equation (8)) can be 

equivalently expressed as a linear constraint (i.e., Equation (9)), which is similar to the linear 

physical capacity constraint (1). However, there is a distinct difference between aE  and aC . 

Environmental capacity aE  in Equation (9) is a variable related to the length of link a and 

the travel time (or speed) of vehicles on link a (see Equations (4)-(6)), whereas physical 

capacity aC  in Equation (1) is a constant for a given signal setting. aE  and aC  have the 

following relationship. 

 

Proposition 1. Given the values of aE , aC , 0
ak , a ,  , and  , the physical and 

environmental capacities satisfy: 

(i) a aE C , if and only if a al L , 

(ii) a aE C , if and only if a al L , and 

(iii) a aE C , if and only if a al L , 

where aL  is referred to as the critical length of link a, which can be determined by 

  
 

0 00.003 1
exp 0.01023

9.1913 1 1
a a a a a

a
a

E C k k
L

C

     
          

. 

 

Proof. We first prove entry (i). As ˆ ( )s
ae   is invertible, we have 

1ˆ ˆ( ) ( ) ( ),   s s
a a a a a a a aE C e E C E e C a A       .   (11) 

From Equations (5)-(7), we obtain 

 ˆ ( )s s
a a a a ae C C e C   
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   
0

0
9.1913 1 exp 0.01023 0.003 1 ,   

1
a a

a a a
a

l k
C C a A

k

 
                 

.  (12) 

Combining Equations (11) and (12) yields 

  
 

0 00.003 1
exp 0.01023 ,   

9.1913 1 1
a a a a a

a a a
a

E C k k
E C l a A

C

     
              

.  (13) 

This completes the proof of entry (i). The proofs of entries (ii) and (iii) are similar. 

 

Proposition 1 shows that the environmental capacity aE  of link a may be greater than, 

smaller than, or equal to the physical capacity aC , depending on the length of the link. For 

illustrative purposes, Figure 2 shows the change in environmental capacity with the length of 

the link. In this example, the following input parameters are assumed: 3000aC   (veh/h), 

1200aE   (g/h), 0 48ak  (km/h), 0.15  , 4.0n  , and 1.0   (no signal control). 

Figure 2 shows that as the length al  of link a increases, the environmental capacity aE  of 

link a monotonically decreases. The critical length aL  of link a is 1.2 km. Accordingly, if 

1.2al   km, then a aE C ; if 1.2al   km, then a aE C ; and a aE C  otherwise. 

 

Corollary 1. Given the values of aE , aC , 0
ak , a ,  , and  , the physical and 

environmental capacity constraints (1) and (9) satisfy the following: 

(i) If a al L , then s
a a av E C  , 

(ii) If a al L , then s
a a av E C  , and 

(iii) If a al L , then s
a a av C E  . 

 

3. Model formulation 

 

As previously stated, the road toll pricing model developed in this study can be formulated as 

a two-stage decision process. In the first stage, the road tolls before future demand has been 

realized are optimized, whereas in the second stage, the route choice behavior of road users is 

modeled once the demand uncertainty is revealed. In the following, we formulate the 

two-stage decisions. 
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3.1. Scenario-based capacitated UE problem 

 

According to A2, for a given demand scenario, the route choice behavior of road users can be 

modeled as a Wardrop user equilibrium (UE) formulation, subject to physical and 

environmental capacity constraints. Assuming separate link travel time functions (see A5 and 

Equation (6)), it can be shown that the UE link-flow pattern can be obtained by solving the 

following mathematical programming problem. 

0 0
\

ˆ ˆmin ( ) ( )
s s
a av vs s a

a a
a A A a A

x
t d t d

 

 
      

  v
,  (14) 

subject to 

,   ,
w

s s
rw w

r R

f q w W s


    ,     (15) 

,   ,
w

s s
a rw ar

w W r R

v f a A s
 

      ,     (16) 

,   ,s
a av C a A s    ,     (17) 

,   ,s
a av E a A s    , and    (18) 

0,   , ,s
rw wf r R w W s     ,     (19) 

where ˆ ( )s s
a at v  is the travel time on link a, which consists of the flow-dependent running time 

and a stop delay at the signal intersection (if any), or 

 ˆ ( ) ( ) 1 ,   ,s s s s
a a a a at v t v a A s       ,     (20) 

where ( )s s
a at v  is given by Equation (6). A  is the subset of toll links and ax  denotes the 

tolls on link a A . v  is the vector of the link flow and s
wq  is the demand between OD 

pair w under scenario s.   is the road user’s time value, and thus 1   can be used to 

convert tolls into equivalent time units. Equations (15) and (16) represent the OD flow and 

link flow conservation constraints, respectively; Equations (17) and (18) are the physical and 

environmental capacity constraints, respectively; and Equation (19) is the usual 

non-negativity constraint on the route flow. 

 

Note that the constraint set of the mathematical programming model (14)-(19) is linear, and 

its objective function is strictly convex with respect to the link flow variables due to the strict 

monotony of the link travel time function. Thus, the link flow solution to (14)-(19) is unique. 
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To show the equivalence between the minimization model (14)-(19) and the UE conditions, 

we derive the first-order optimality conditions of this model as 

1ˆ ( ) ,   if  0,

 
1ˆ ( ) ,   if  0,

s s s s s s
a a ar a ar a ar a ar w rw

a A a A a A a A

s s s s s s
a a ar a ar a ar a ar w rw

a A a A a A a A

t v x d c f

t v x d c f

   

   

           

          
 

   

   
 (21) 

0,   if  ,
 

0,   if  ,

s s
a a a

s s
a a a

d v C

d v C

  


 
  (22) 

0,   if  ,
 

0,   if  ,

s s
a a a

s s
a a a

v E

v E

  

  

  (23) 

where s
wc  is the minimum generalized travel cost or disutility of travel between OD pair w 

under demand scenario s. s
ad  and s

a  are the Lagrange multipliers associated with the 

physical and environmental capacity constraints (17) and (18), respectively. 

 

The travel disutility of a link is a combination of the flow-dependent travel time, any extra 

queuing delay, any extra environmental tax, and any congestion toll (for toll links only). 

Equation (21) indicates that, given demand scenario s, for each OD pair, the used routes have 

the minimal travel disutility, and the travel disutility of any unused route is greater than or 

equal to the minimum. Clearly, the optimal solution to the mathematical programming model 

(14)-(19) indeed reproduces the user equilibrium of route choice. 

 

Physically, s
ad  and s

a  represent the extra penalties (except the toll ax ) incurred by road 

users who continue to use the physically or environmentally saturated road links to constrain 

the link flows at or below the binding capacities. However, as stated, physical capacity 

constraints are intrinsic to road networks, whereas environmental constraints are imposed by 

an outside authority. This means that when the flow of a link reaches its physical capacity, a 

queuing delay occurs on that link. This queuing delay can affect the route choice behavior of 

users, even in the absence of an intervention (or control). However, users will not change their 

route choice because of emission constraints in the absence of external intervention. 

Consequently, there is a substantial difference between the implications of s
ad  and s

a . 

Specifically, s
ad  can be regarded as the equilibrium queuing delay (the extra time due to 
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insufficient physical capacity) on physically saturated link a in demand scenario s, whereas 

s
a  can be interpreted as the extra environmental tax imposed on road users who use 

environmentally saturated link a in demand scenario s. The extra environmental tax (which is 

an economic intervention) is introduced to control the link flows within the pollution emission 

bounds by affecting the route choice behavior of users.  

 

However, the values of s
ad  and s

a  (queuing delays and environmental taxes) may not be 

unique even though the link-flow pattern is unique. For delays or taxes to be unique, it is 

necessary and sufficient that all of the binding (or active) physical and environmental capacity 

constraints are linearly independent (Bell 1995; Yang and Bell 1997). In addition, in solving 

the capacitated problem (14)-(19), the linear capacity constraints (17) and (18) can be 

incorporated into the objective function (14) using an augmented Lagrangian penalty function 

approach. Readers are referred to Larsson and Patriksson (1995) and Li et al. (2007) for 

detailed descriptions of this approach. 

 

Due to this uniqueness issue, Equations (22) and (23) entail that when capacity constraint (17) 

or (18) becomes binding (or active), extra queuing delays or environmental taxes will be 

incurred. The sign of the queuing delay or extra environmental tax of a link can be identified 

by the following proposition. 

 

Proposition 2. Given the values of aE , aC , 0
ak , a ,  , and  , the signs of s

ad  and s
a  

can be determined as follows. 

(i) If a al L , then 0s
ad   and 0s

a  , 

(ii) If a al L , then s
ad  or 0s

a  , and 

(iii) If a al L , then 0s
ad   and 0s

a  . 

 

Proof. This can be derived directly from Corollary 1 and the complementary slackness 

conditions (22) and (23). 

 

Proposition 2 shows that when the length ( al ) of a link is greater than the critical length ( aL ), 

no queuing occurs on that link but an extra environmental tax may be required, and vice versa. 
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When the length of a link equals the critical length, the physical and environmental capacity 

constraints become identical, and thus either of them can be removed from the constraint set. 

As a result, a queuing delay (or extra environmental tax) is required. 

 

Note that the value of s
a  is dependent on the demand scenario, which implies that the 

environmental tax may vary with different demand scenarios. In order to ensure that the 

environmental capacity constraint is satisfied for each demand scenario, the environmental tax 

can take the maximum value of s
a  over all demand scenarios, i.e. * max{ , }s

a a s     . 

 

Thus far, the scenario-based capacitated UE problem has been well defined. The basic 

underlying idea is to model the effects of demand uncertainty through a finite number of 

discrete demand scenarios. As such, there is a significant distinction between the proposed 

scenario-based capacitated UE problem and previous related studies involving demand 

uncertainty, such as the reliable stochastic user equilibrium (RSUE) problem recently 

suggested by Sumalee, Watling, and Nakayama (2006), and Lam, Shao, and Sumalee (2008). 

Specifically, in the scenario-based formulation, all of the constraint conditions must be 

satisfied for each demand scenario. That is, no constraint violation is allowed. However, in 

the RSUE problem, the flow conversation constraints are defined in terms of an expectation 

level, and the capacity constraints can be violated at a certain probability level. 

 

3.2. Robust toll design problem 

 

As stated in the introduction section, traditional expectation models may lead to large 

variations in the performance of a transport system under different demand scenarios. To 

create a reliable and robust transport system, we introduce a risk-averse measure as the 

objective of the road toll design. 

 

Let sZ  be the total system disutility under demand scenario s, which is expressed as 

   ˆ, ( ), ( ) ( ) ( )s s s s s s s s
a a a a a a a

a A a A

Z v t v d v e v
 

     x v x d x , (24) 

where the symbols in bold represent the vectors of the corresponding variables,   is the 

user’s time value (see also Equation (14)), and   is the damage value per unit of CO 

emissions. The calibration results in the study of Roth and Ambs (2004) show that the value 
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of   is between 506 and 2494 (US$/ton). Further, the congestion toll ax  and extra 

environmental tax s
a  are not included in the objective function, because payment of a toll or 

tax implies only a transfer of money from road users to the authority inside the system, and 

not a deadweight loss. 

 

Let sP  be the probability of scenario s. The expected value  E Z  of the total system 

disutility over the scenario set   is then given by 

  s s

s

E Z P Z


  . (25) 

 

We now introduce a measure of risk known as semi-deviation as an indicator of solution 

robustness, following Ahmed (2006) and Ruszczynski and Shapiro (2003). This measure is 

defined as 

    s s s s

s s

Z E Z E Z P Z P Z


 
         , (26) 

where  a   denotes the absolute value of a, or   | |a a  .  

 

The semi-deviation, but not the variance (or standard deviation), is introduced as a proxy for 

the risk measure because variance is a symmetric statistic and gives equal weight to 

deviations above and below the mean without addressing the risks associated with extreme 

outcomes (List et al. 2003; Yin, Madanat, and Lu 2009), and because mean-variance does not 

preserve the convexity of the objective function (Ahmed 2006). The semi-deviation risk 

measure defined in Equation (26) overcomes both of these shortcomings. 

 

We formulate a mean-risk robust toll design model as follows. 

     min   , ( ), ( ) s s s s s s

s s s

E Z Z P Z P Z P Z
  

         
x

x v x d x , (27) 

subject to 

min max ,   a a ax x x a A    , (28) 

where ( )v x  and ( )d x  can be calculated by solving the following scenario-based 

capacitated UE problem. 



 16

0 0
\

ˆ ˆmin ( ) ( )
s s
a av vs s a

a a
a A A a A

x
t d t d

 

 
      

  v
,  (29) 

subject to 

,   ,
w

s s
rw w

r R

f q w W s


    ,     (30) 

,   ,
w

s s
a rw ar

w W r R

v f a A s
 

      ,     (31) 

,   ,s
a av C a A s    ,     (32) 

,   ,s
a av E a A s    , and    (33) 

0,   , ,s
rw wf r R w W s     .     (34) 

 

In this model, min
ax  and max

ax  are the lower and upper bounds, respectively, of the toll 

charges on link a.   is a non-negative weighting factor that reflects the significance of the 

risk measure for the objective function, and models the tradeoff between the average level of 

system performance (i.e., the expected total system disutility) and the robustness of the 

system (i.e., the semi-deviation risk measure). The larger the value of  , the greater the 

robustness of the system, and vice versa. When   equals zero, the mean-risk robust toll 

design model is reduced to a traditional expectation model. The expectation model is thus a 

special case of the robustness model. 

 

We now introduce an additional variable, sy , into the objective function (27) to eliminate the 

absolute value operation. This gives the following proposition. 

 

Proposition 3. The robust toll design model (27)-(34) can be rewritten as 

 
,

min   , ( ), ( ), 2s s s s s s s

s s s

P Z P Z P Z y
  

 
       

 
  

x y
x v x d x y , (35) 

subject to 

0,   s s s s

s

Z P Z y s


     ,  (36) 

0,   sy s   , and (37) 

min max ,   a a ax x x a A    , (38) 
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where ( )v x  and ( )d x  can be given by the scenario-based capacitated UE problem 

(29)-(34). 

 

Proof. We consider two cases. In Case (i), if 0s s s

s

Z P Z


  , then 0sy   and thus 

s s s s s s

s s s

P Z P Z P Z
  

 
      

 
   . In Case (ii), if 0s s s

s

Z P Z


  , then 

s s s s

s

y P Z Z


   and thus s s s s s s

s s s

P Z P P Z Z
  

 
      

 
   . This implies that the 

formulation (35)-(38) is identical to the original model (27)-(34). 

 

The next section shows that this change in the model formulation is useful for developing a 

heuristic algorithm for solving the robust toll design model. 

 

4. Solution procedure 

 

4.1. Sample average approximation (SAA) based solution scheme 

 

The idea behind the SAA scheme is to approximate a robust optimization problem using the 

sample average estimate derived from a random sample. The original robust optimization 

problem is then transformed into a deterministic equivalent that can be solved by the solution 

techniques for deterministic problems. The process is repeated with different samples to 

obtain candidate solutions, along with statistical estimates of their optimality gaps. 

 

In the SAA-based solution scheme, we generate a sample of size N, or  1 2, , , Ns s s , for 

each OD demand by using Monte Carlo simulation. When generating multivariate, correlated 

random variables, the Monte Carlo simulation technique entails an excessively high 

computational effort (Daganzo, Bouthelier, and Sheffi 1977), and other approaches, such as 

Clark’s approximation (Clark 1961) or the multivariate random variate generation procedure 

proposed in Chang, Tung, and Yang (1994), can be adopted as an alternative. The robust toll 

design model (35)-(38) can then be approximated by the following SAA problem. 

 
, 1 1 1

1 1
min   , ( ), ( ), 2i i i i

N N N
s s s s

N
i i i

Z Z Z y
N N N  

 
      

 
  

x y
x v x d x y ,  (39) 
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subject to 

1

1
0i i i

N
s s s

i

Z Z y
N 

   ,  (40) 

0isy  , and (41) 

min max ,   a a ax x x a A    , (42) 

where ( )v x  and ( )d x  can be determined by (29)-(34) for each scenario is . 

 

The SAA problem in Equations (39)-(42) is a non-linear deterministic mathematical 

programming problem with a scenario-based capacitated UE problem forming the constraints, 

which can be solved using a sensitivity analysis-based algorithm. To implement the algorithm, 

we formulate the linear approximation of isZ  using its gradient information, as follows. 

* * *( ) ( )( )i i is s sZ Z Z  xx x x x ,  (43) 

where 

 ˆ
i i i i i ii

i i i i i

i i

s s s s s ss
s s s s sb b b b b b
b b b b bs s

a a a a ab A b Ab b

v t v d v eZ
t d v e v

x x x x xv v 

                         
                 

  , (44) 

where 

9.1913 1 0.01023 exp 0.01023
( ) ( )

i i

i i i i i i

s s
a a a a
s s s s s s
a a a a a a

e t l l

v v t v t v

    
               

, and (45) 

1

0

i i

i

ns s
a a a
s

aa aa

t n l v

Ck Cv


  

     
, (46) 

where the derivatives is
abv x   and is

abd x   can be obtained using the sensitivity analysis 

method for network equilibrium problems originally proposed by Tobin and Friesz (1988) and 

later extended and applied by Yang and Yagar (1995), Yang and Lam (1996), and Yang and 

Bell (1997). 

 

By substituting Equation (43) into Equations (39) and (40), SAA problem (39)-(42) then 

becomes a linear programming problem that can be solved using the well-known simplex 

method. The SAA-based solution algorithm is described as follows. 
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Step 0.  Initialization. Generate a sample of size N for each OD demand, that is, N demand 

scenarios 1 2{ , , , }Ns s s , and choose an initial toll solution (0) (0){ }axx . Set the 

iteration counter j equal to 0. 

Step 1. Solving of the second-stage problem. For each scenario is , run the following steps. 

Step 1.1. Solve the scenario-based capacitated UE problem (29)-(34) for a given ( )jx , and 

obtain ( ){ }is j
av  and ( ){ }is j

ad . 

Step 1.2. Conduct a sensitivity analysis to calculate the derivatives ( )is j
abv x   and 

( )is j
abd x  . 

Step 1.3. Calculate ( )is jZx  and ( )is jZ  according to Equations (43)-(46). 

Step 2.  Solving of the first-stage problem. Formulate the local linear approximation of the 

SAA problem (39)-(42), and solve the resultant linear programming problem to 

obtain the auxiliary toll solution ( )jh . 

Step 3.  Updating. Update the toll pattern in terms of    ( 1) ( ) ( ) ( ) 1j j j j j    x x h x . 

Step 4.  Convergence check. If ( 1) ( )max(| |, )j j
a ax x a A      , where   is a 

pre-specified error tolerance, then stop. Otherwise, set j = j + 1 and go to Step 1. 

 

It should be pointed out that different demand scenarios lead to different solutions. Intuitively, 

the larger the number of samples, the more robust the solution. However, the number of 

variables and constraints in the SAA problem (39)-(42) increase linearly with the sample size, 

leading to a rapid rise in the computational complexity of the model. Fortunately, however, 

Mulvey, Vanderbei, and Zenios (1995) and Laguna (1998) showed that a relatively small 

sample can produce a near-optimal solution. Kleywegt, Shapiro, and Homem-De-Mello (2001) 

showed that as the sample size increases, the solution to the SAA problem (39)-(42) 

converges exponentially quickly with a probability of 1 to the optimal solution of the original 

problem (27)-(34). In practice, the selection of the sample size for the SAA problem is a 

tradeoff between the quality or accuracy of the solution and the computational effort required 

to solve the problem. 

 

4.2. Evaluation of the solution quality 
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The optimal solution obtained using this sampling technique cannot guarantee the optimality 

of the original problem. However, taking the optimal solutions from several sample sets 

provides a statistical inference of the confidence interval of the actual optimal solution. 

 

Let *
Nx  and *

N  be the optimal toll solution and optimal objective value, respectively, of an 

approximate problem with sample size N. In general, *
Nx  and *

N  vary with the sample 

size N. Let *x  and *  be the optimal solution and optimal objective value, respectively, of 

the original problem. Clearly, the following relationship holds. 

* *
N   .   (47) 

This means that *
N  is the upper bound of the optimal solution of the original problem.  

 

Note that *
Nx  is the optimal solution of the approximate problem, which gives  

* * *( ) ( )N N N N    x x .   (48) 

Taking the expectations on both sides of Equation (48) yields 

* *( )N NE E        x .   (49) 

As the SAA problem is an unbiased estimator of the original problem, we have 

* * *( )N NE E          x .   (50) 

Equation (50) indicates that the expected value *
NE     of *

N  is the lower bound of the 

optimal objective value *  of the original problem. In the following, the statistical lower 

and upper bound estimates of the true objective value are discussed. 

 

4.2.1. Estimate of the lower bound 

 

The expectation *
NE     can be estimated by generating lM  independent sample groups, 

each with lN  samples. Solving the corresponding SAA problem (39)-(42) for each sample 

group m gives the optimal solution *
l

m
Nx  and the optimal objective value *

l

m
N . Following 

Equation (50), the lower bound of the original objective function (27) is then given by 
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* *

1

1 l

l l

M
m

l N N
l m

E
M 

        .   (51) 

 

According to the central limit theorem, the distribution of the lower bound estimate of the 

original problem converges to a normal distribution  2,l lN   . The mean *
ll NE       

can be approximated by a sample mean l  (shown in Equation (51)), and the variance 

2 *var
ll N

      can be approximated by a sample variance represented as 

   22 *

1

1

1

l

l

M
m

l N l
l l mM M 

   
  .   (52) 

The  1  confidence interval for this lower bound is 

2 2,l l l lz z         ,   (53) 

where 2z  satisfies that the probability   2 2Pr 0,1 1z N z      , where  0,1N  

denotes the probability density function of the standard normal distribution. For instance, the 

95% confidence interval of the lower bound implies that 0.05   and 2 1.96z  . 

 

4.2.2. Estimate of the upper bound 

 

We select a feasible solution *
Nx  from the set of sample solutions *{ }, 1, 2, ,

l

m
N lm Mx  , 

and generate uM  independent sample groups, each with uN  samples. The upper bound of 

the original problem can then be estimated by 

* * *

1

1
( ) ( )

u

u

M
m

u N N N
u mM 

  x x .   (54) 

 

According to the central limit theorem, the distribution of the upper bound estimate converges 

to a normal distribution  2,u uN   , where the mean *
uu NE       can be approximated by 

a sample mean *( )u N x  (see Equation (54)) and the variance 2 *var
uu N

      can be 

estimated by a sample variance given by 
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   22 * * *

1

1
( ) ( )

1

u

u

M
m

u N N u N
u u mM M 

   
  x x .   (55) 

Hence, the  1  confidence interval for the upper bound is 

* *
2 2( ) , ( )u N u u N uz z        x x ,   (56) 

where 2z  satisfies that the probability   2 2Pr 0,1 1z N z      . 

 

4.2.3. Optimality gap estimate 

 

On the basis of the upper and lower bound estimates, we can compute the estimate for the 

optimality gap by 

*
gap ( )u N l   x .   (57) 

The variance for the gap estimate is then given by 

2 2 2
gap l u    .   (58) 

 

5. Numerical studies 

 

To facilitate the presentation of the essential ideas and contributions of this study, in this 

section two test scenarios are used to illustrate the application of the proposed model and 

solution algorithm. This first scenario shows the properties of the proposed model and 

establishes the importance of the incorporation of risk and environmental taxation in road toll 

design. The second scenario shows the efficiency or performance of the proposed solution 

algorithm and investigates the effects of OD demand variation on the model solution and the 

computation time of the solution algorithm. The proposed solution algorithm was coded in 

programming language C and run on a personal computer with an Intel(R) Core(TM) 

I5-520M processor, 2.40 GHz, and 4GB of RAM. The stopping tolerance   in both 

examples is set to 0.0001. 

 

5.1. Scenario 1 

 

The example network for Scenario 1, as shown in Figure 3, consists of four nodes, six links, 

and one OD pair (1-4). In Figure 3, node 3 (which is shaded) represents a signal-controlled 
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intersection. It is assumed that the proportion of green time at this intersection is 50% and the 

constant signal cycle time   is one minute. The free-flow speed 0
ak  of vehicles is 48 km/h 

on each link. The traveler’s time value   is US$20/h, and the damage value   per unit of 

pollutant emissions is US$2494/ton. The maximum permissible emission for each link is 

assumed to be 5,000 grams per hour. The parameters   and n  in the link travel time 

function (6) are 0.15 and 4.0, respectively. The lengths and saturation capacities of all links 

are given in Table 2. The OD demand is assumed to follow a truncated normal distribution 

with   24200 5000, 300 5800N  . 

 

We first illustrate the relationship between the physical and environmental capacities, which is 

stated in Proposition 1. Table 3 shows the resultant critical length and physical and 

environmental capacities for each link. It can be seen that for links 1 to 5, the physical 

capacities are less than the associated environmental capacities, or ,  1,...,5a aC E a   . As 

a result, an environmental tax is not incurred on these five links. However, on link 6, the 

physical capacity exceeds the environmental capacity, with 6 6C E  (shown in bold in the 

last row of Table 3), which indicates that the environmental capacity constraint of link 6 will 

become binding earlier than its physical capacity constraint. Accordingly, following 

Proposition 2, an extra environmental tax will be required on link 6. 

 

It should be noted that the environmental capacities of different links for this example 

network are different even for links with the same physical capacity and length. For instance, 

links 2 and 3 have the same length of 7.2km and the same physical capacity of 1500 veh/h. 

However, their environmental capacities and critical lengths (see Table 3) are different due to 

the existence of a signal-controlled intersection at node 3. This indicates that the potential 

effect of signal intersections on traffic pollutant emissions should not be neglected. The 

incorporation of this effect into the optimization of signal settings is an interesting and 

important topic but is outside the scope of this paper, and is thus left to future research. 

 

Figure 4 plots the expected total system disutility against its semi-deviation risk measure in 

the SAA problem (39)-(42) for different values of  , which measures the risk-averse degree 

of the toll design scheme. The sample size adopted in the implementation of the SAA scheme 

is 500. Figure 4 shows that as   increases from 0 (i.e., the expectation model) to 100 (i.e., a 
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risk-averse model), the expected total system disutility increases from $20,482 to $21,742 per 

hour, whereas the corresponding semi-deviation risk measure decreases from $654 to $511 

per hour. This means that a larger value of   leads to more robust or reliable system 

performance, and vice versa. Ignoring the risk term (i.e., the traditional expectation model) 

can lead to the underestimation of the expected total system disutility and the overestimation 

of its variation. Consequently, in a robust toll design, a tradeoff should be made between the 

expected system performance and its risk. 

 

We now compare the results generated by different pricing schemes when   is fixed at 10. 

In Scheme I, links 5 and 6 are subject to a congestion toll ranging between $0.00 and $2.00 

and an environmental tax, respectively. In Scheme II, only link 5 is subject to a congestion toll. 

In Scheme III, no link toll is required in the network (i.e., there is no intervention). To 

estimate the lower and upper bounds of the objective function in the original robust design 

model (27)-(34) for different pricing schemes, 10 sample groups with 500 samples in each 

group are used, that is, 10l uM M   and 500l uN N  . Table 4 shows that among the 

schemes, Scheme III generates the worst network performance (the largest lower/upper 

bounds of the objective value) and Scheme I the best network performance. This suggests that 

a scheme that combines a congestion toll and an environmental tax is the most productive and 

efficient in terms of road network performance, and can serve as a useful tool for managing 

traffic congestion and vehicular emissions. 

 

5.2. Scenario 2 

 

The network for Scenario 2 is shown in Figure 5, which is adopted from Nguyen and Dupuis 

(1984) and consists of 13 nodes, 19 links, and 4 OD pairs (i.e., 1-2, 1-3, 4-2, and 4-3). Nodes 

5, 6, 8, 9, 10, and 11 in the network represent signal-controlled intersections. Links 13 and 15 

are two bottleneck links that are subject to congestion tolls ranging from $0.00 to $2.00. The 

OD demands are assumed to follow the following independent (truncated) normal 

distributions. 

  
  

2

2

1800 2500, 300 3200,   for OD pairs (1, 2) and (4, 3),

1000 1500, 200 2000,   for OD pairs (1, 3) and (4, 2).

N

N

  


 

    (59) 

The parameters of the link travel time functions are given in Table 5. Again, the proportion of 
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green time and the constant signal cycle time at each signal-controlled intersection are 

assumed to be 50% and one minute, respectively. The other parameters are 0 48ak   km/h, 

20   US$/h, 2494   US$/ton, 5000aE   g/h, 0.15  , and 4.0n  . 

 

Table 6 shows the resultant critical length and physical and environmental capacities for each 

link. It can be seen that for links 4 and 18, the environmental capacities are less than their 

associated physical capacities, or 4 4E C  and 18 18E C , as shown in bold in Table 6. As a 

result, an additional environmental tax is required on links 4 and 18 according to Proposition 

2.  

 

Figure 6 illustrates the changes in the value of objective function ( )N   in Equation (39) and 

in the CPU time required to compute the model solution for numbers of demand scenarios 

(the sample size for each OD demand) varying from 5 to 800. It can be seen that the value of 

( )N   varies sharply when the number of demand scenarios increases from 5 to 400. 

However, after 500 scenarios, the value of ( )N   stabilizes. This means that a sufficiently 

large number of samples results in a good approximation of the original or true problem with 

a continuous OD demand distribution. Figure 6 also shows that the computational time (in 

CPU seconds) increases with the number of scenarios. Based on a tradeoff between the 

quality or accuracy of the solution and the computational effort, the numerical results 

presented below are generated with 500 samples. 

 

We now look at the effects of the OD demand variation by checking two demand variation 

levels: the base case (the demand variation shown in Equation (59)) and twice the base case. 

Table 7 shows the effects of OD demand variation on the model solution and the 

computational time. When the level of demand variation for each OD pair doubles, the value 

of the objective function ( )N   increases by $7812 per hour (from $79406 to $87218 per 

hour). This means that a large demand fluctuation can diminish the performance of the 

transportation system. Further, as the OD demand variation increases, the CPU time required 

to solve the proposed robust design model increases by 283 seconds (from 1,383 to 1,666 

seconds).  

 

Figure 7 plots the histograms of the total system travel disutility and the total amount of 
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emissions for the aforementioned two OD demand variation levels under their associated 

optimal tolls, as shown in Table 7. It can be observed that a larger OD demand variation leads 

to a broader spread in both the total system travel disutility and the total amount of emissions. 

This further illustrates that, as the OD demand variation increases, the performance of the 

transportation system diminishes. 

 

6. Conclusion and further studies 

 

In this study, a new two-stage robust optimization model is proposed to investigate road toll 

design problems for policy assessment and strategic planning purposes. In the proposed 

model, the effects of demand uncertainty are explicitly considered together with congestion 

and environmental externalities caused by vehicular traffic on the roads. Based on analyses of 

physical and environmental capacity constraints, the boundary conditions under which a road 

user on a link should pay either a congestion toll or an extra environmental tax are determined. 

A heuristic solution algorithm is proposed and its solution quality evaluated. Two example 

networks are presented to illustrate the properties of the proposed model and solution 

algorithm. The proposed model is shown to be a useful tool for studying congestion and 

environmental pricing in urban road networks with uncertainty, and can be used to assess the 

effects of various travel demand management measures and vehicular emission policies at a 

strategic level. 

 

Although the numerical results for small networks easily illustrate the essential merits of the 

proposed model, we recognize that case studies of large and realistic networks are necessary 

to further validate the findings of the numerical examples and the performance of the 

proposed model. In this study, attention has mainly focused on demand uncertainty. However, 

it is of great importance to extend this study to incorporate the effects of supply uncertainty 

on travel time variability to further improve the robustness of the model. Future studies could 

also focus on extending the proposed model to consider pollutant emissions from different 

modes of transportation in urban transport systems, to optimize traffic signal settings at road 

intersections, and to incorporate the risk-taking behavior of travelers in view of network 

uncertainties. 
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Figure 1. Framework of the two-stage decision model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Environmental capacity versus length of link. 
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Figure 3. Example network for Scenario 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Expected total system disutility versus the semi-deviation risk measure in the SAA 

problem (39)-(42). 
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Figure 5. Nguyen and Dupuis’s network for Scenario 2. 
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Figure 6. Value of objective function ( )N   in the SAA problem (39)-(42) and the CPU 

time of the proposed solution algorithm versus number of scenarios. 
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(a) 

 

(b) 

Figure 7. Effects of OD demand variation on the distribution of (a) total system disutility and 

(b) total amount of emissions. 
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Table 1 Contributions to road toll design research 

Type of road toll pricing Deterministic model Stochastic model 

Congestion pricing Ferrari (1995, 1997); 
Hearn and Ramana (1998); 
Yang and Lam (1996); 
Yang and Bell (1997); 
Yang and Huang (2005); 
Verhoef (2002); 
Clark et al. (2009) 

Gardner, Unnikrishnan, 
and Waller (2008); 
Li, Bliemer, and Bovy 
(2008); 
Boyles, Kockelman, 
Waller (2010); 
Sumalee and Xu (2011) 

Environmental pricing Johansson (2006); 
Yin and Lawphongpanich (2006) 

This paper 

Simultaneous 
congestion and 
environmental pricing 

Johansson (1997); 
Nagurney (2000a); 
Jakkula and Asakura (2009) 

This paper 

 

 

Table 2 Parameters of the link travel time functions in Scenario 1 

Link No. 
Link length al  

(km) 
Saturation capacity aC  

(veh/h) 
1 4.8 3000 
2 7.2 1500 
3 7.2 3000 
4 2.4 4000 
5 2.4 3000 
6 8.0 2000 

 

 

Table 3 Critical link lengths and physical / environmental capacities for Scenario 1 

Link No. 
Critical length aL  

(km) 

Physical capacity aC  

(veh/h) 

Environmental capacity 

aE  (veh/h) 

1 4.94 3000 3066 
2 9.88 1500 1862 
3 9.61 1500 1824 
4 7.14 2000 3484 
5 4.94 3000 4578 
6 7.41 2000 1882 

Note: The bolded row implies that the environmental capacity is less than the associated physical capacity. 
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Table 4 Comparison of solutions for different pricing schemes ( 10  ) 

 Scheme I Scheme II Scheme III 
Congestion toll 5x  ($) 1.06 0.90 — 

Environmental tax 6  ($) 1.95 — — 

Lower bound l  ($/h) 25351 29189 33842 

Std. dev. of lower bound l  ($/h) 73.4 187.2 398.3 
95% conf. int. of lower bound ($/h) [25207, 25495] [28822, 29556] [33062, 34623] 
Upper bound u  ($/h) 27126 32992 34378 

Std. dev. of upper bound u  ($/h) 41.3 158.6 180.8 
95% conf. int. of upper bound ($/h) [27045, 27207] [32681, 33303] [34024, 34732] 
Gap gap  ($/h) 1775 3803 536 

Std. dev. of gap gap  ($/h) 84.2 245.3 437.4 

Note: std. dev. = standard deviation; conf. int. = confidence interval. 
 
 
 

Table 5 Parameters of the link travel time functions in Scenario 2 

Link No. 
Link length al  

(km) 
Saturation capacity aC  

(veh/h) 
1 3.6 5000 
2 3.6 3000 
3 3.6 6000 
4 6.0 5000 
5 3.6 6000 
6 3.6 6000 
7 3.6 3000 
8 3.6 6000 
9 3.6 3000 
10 3.6 5000 
11 3.6 3000 
12 3.6 6000 
13 5.4 2500 
14 3.6 6000 
15 3.6 2500 
16 3.6 3000 
17 3.6 3000 
18 7.2 4000 
19 3.6 3000 
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Table 6 Critical link lengths and physical / environmental capacities for Scenario 2 

Link No. 
Critical length aL  

(km) 

Physical capacity aC  

(veh/h) 

Environmental capacity 

aE  (veh/h) 

1 5.66 2500 3324 
2 4.94 3000 3724 
3 4.67 3000 3574 
4 5.66 2500 2392 
5 4.67 3000 3574 
6 4.67 3000 3574 
7 4.94 3000 3724 
8 4.67 3000 3574 
9 9.61 1500 2521 
10 5.66 2500 3324 
11 4.94 3000 3724 
12 4.67 3000 3574 
13 5.93 2500 2679 
14 4.67 3000 3574 
15 5.93 2500 3434 
16 4.94 3000 3724 
17 9.61 1500 2521 
18 7.14 2000 1988 
19 4.94 3000 3724 

Note: The bolded rows imply that the environmental capacity is less than the associated physical capacity. 

 
 

Table 7 Effects of OD demand variation on the model solution and computational time 

( 10  ) 

Solution 
Base level of 

demand variation 
Twice the base level 
of demand variation 

Congestion toll ($) 
13x  0.97 1.08 

15x  0.46 0.43 

Environmental tax ($) 
4  0.29 0.34 

18  0.51 0.97 

Value of objective function ( )N   ($/h) 79406 87218 

CPU time (seconds) 1383 1666 

 

 

 


