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Abstract

This paper considers the optimal dividend problem with propor-

tional reinsurance and capital injection for a large insurance portfolio.

In particular, the reinsurance premium is assumed to be calculated

via the variance principle instead of the expected value principle. Our

objective is to maximize the expectation of the discounted dividend

payments minus the discounted costs of capital injection. This opti-

mization problem is studied in four cases depending on whether capital

injection is allowed and whether there exist restrictions on dividend

policies. In all cases, closed-form expressions for the value function

and optimal dividend and reinsurance policies are obtained. From

the results, we see that the optimal dividend distribution policy is of

threshold type with a constant barrier, and that the optimal ceded

proportion of risk exponentially decreases with the initial surplus and

remains constant when the initial surplus exceeds the dividend barrier.

Furthermore, we show that the optimization problem without capital

injection is the limiting case of the problem with capital injection when

the proportional transaction cost goes to infinity.

Keywords: Capital injection; Dividend optimization; HJB equation; Pro-

portional cost; Proportional reinsurance; Stochastic control; Variance pre-

mium principle.
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1 Introduction

In recent years, stochastic control theory has been widely used to tackle op-

timization problems in the context of insurance risk theory. For details, the

readers are referred to Schmidli (2008). In the literature, many papers deal

with optimization problems with a combination of risk control and dividend

distribution in a diffusion model. For example, Højgaard and Taksar (1999)

obtained closed-form solutions to the value function, and the optimal propor-

tional reinsurance and dividend policies; Taksar (2000) presented a survey of

stochastic model of risk control and dividend optimization techniques for a

financial corporation; Asmussen et al. (2000) studied the excess-of-loss rein-

surance policies, and obtained explicit expressions for the value function and

optimal stochastic control policies. Subsequently, various generalizations of

the problem were studied. Among others, Højgaard and Taksar (2001) con-

sidered the problem in the presence of return on investments; Choulli et al.

(2003) investigated the problem with constraints on the risk control policies;

Taksar and Hunderup (2007) investigated the influence of bankruptcy value

on the optimal control policies; and He et al. (2008) considered solvency

constraints in terms of ruin probability in the finite-time case. In addition,

the optimization problem was also studied in the Cramer-Lundberg model;

see, for example, Azcue and Muler (2005) and Mnif and Sulem (2005).

The optimal dividend problem was first studied by de Finetti (1957). Due

to its practical importance, much research on dividend-payment problems

has been carried out for various surplus processes since then. For recent
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papers, see Gerber and Shiu (2003, 2004, 2006), Lin and Pavlova (2006),

Yuen et al. (2007, 2008, 2009), Dong et al. (2009) and references therein.

In addition to dividend payments, Sethi and Taksar (2002) has considered

a diffusion model with random returns for a company that can issue new

equity when the surplus becomes negative; Kulenko and Schimidli (2008)

studied the optimal dividend problem in the Cramer-Lundberg model with

capital injection, and obtained closed-form solutions for exponential claims;

Løkka and Zervos (2008) derived the optimal dividend and capital injection

policies for a diffusion model with proportional costs which show that whether

injecting capital or not depends on the size of the proportional cost of capital

injection; He and Liang (2008) studied the optimization problem of Løkka

and Zervos (2008) with proportional reinsurance under the expected value

principle.

When proportional reinsurance is taken as a risk control, the expected

value principle is commonly used as the reinsurance premium principle due

to its simplicity and popularity in practice. Although the variance principle

is another important premium principle, few papers consider using it for risk

control in a dynamic setting. Generally speaking, the expected value pre-

mium principle is commonly used in life insurance which has the stable and

smooth claim frequency and claim sizes, while the variance premium princi-

ple is extensively used in property insurance. The variance principle permits

the company to take the fluctuations (variance) of claims into consideration

when pricing insurance contracts.

Motivated by the work of Løkka and Zervos (2008) and He and Liang
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(2008), we study the optimal capital injection and dividend problem with

proportional reinsurance under the variance premium principle. The value

function is to maximize the expectation of the discounted dividend payments

minus the discounted costs of capital injection. Closed-form expressions for

the value function and optimal control policies are obtained in four cases

depending on whether capital injection is allowed and whether there exist

restrictions on dividend policies. Unlike the results obtained under the ex-

pected value principle, there exists a common switch level (instead of two

levels under the expected value principle; see Højgaard and Taksar (1999))

for the optimal reinsurance and dividend distribution policies. Hence, the

optimal dividend policy is of threshold type. In addition, the optimal ceded

proportion of risk exponentially decreases with the initial surplus under the

variance principle (instead of decreasing linearly under the expected value

principle; also see Højgaard and Taksar (1999)), and remains constant when

the initial surplus exceeds the switch level.

In this paper, we obtain results different from those in Løkka and Zervos

(2008). In the presence of the risk control, it can be shown that the op-

timization problem without capital injection is the limiting case of the one

with capital injection at zero surplus level as the proportional transaction

cost of capital injection goes to infinity. Since the value function with capital

injection is a decreasing function of the proportional cost, and converges to

the value function without capital injection, this suggests that one should

allow capital injection regardless of the size of the proportional cost.

The rest of the paper is organized as follows. In Section 2, we introduce the
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diffusion model with proportional reinsurance and dividend payments under

the variance premium principle. Parallel to Højgaard and Taksar (1999), we

consider the optimization problem in the case of unrestricted and restricted

rates of dividend payments without considering capital injection in Section 3.

In Section 4, we carry out a similar study for the optimization problem when

capital injection is allowed. Closed-form solutions to the value function and

the optimal control policies are obtained in both Sections 3 and 4. Finally,

we give some concluding remarks in Section 5.

2 Model formulation

We start with a filtered probability space (Ω,F ,G = {Gt, t ≥ 0},P), where

the filtration G satisfies the usual conditions, that is, G is right continuous

and P-completed. Throughout the paper, it is assumed that all stochastic

processes and random variables are well-defined on this probability space.

Reinsurance is an important business activity for an insurance company

to control its risk position. A reinsurance contract can be represented by

a measurable functional R(·) defined on the space composed of all positive

random variables such that 0 ≤ R(Y ) ≤ Y. Under reinsurance R, a positive

risk Y is decomposed into two parts, namely R(Y ) and Y −R(Y ), where R(Y )

is retained by the insurer and Y −R(Y ) is ceded to the reinsurer. Reinsurance

R can be of various forms in theory, but proportional reinsurance and excess-

of-loss reinsurance are most commonly used in practice. For proportional
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reinsurance, R(Y ) = (1−a)Y , where 0 ≤ a ≤ 1 is called the ceded proportion

of risk. On the other hand, for excess-of-loss reinsurance, R(Y ) = min{Y, b},

where 0 ≤ b <∞ is called the retained level of risk.

Throughout the paper, we assume that the reinsurance premium payments

are calculated using the variance principle instead of the expected value prin-

ciple. For the ceded risk Y − R(Y ), the reinsurance premium under the

variance principle is given by

p(Y −R(Y )) = E(Y −R(Y )) + θD(Y −R(Y )), (2.1)

where D stands for variance, and θ > 0 is a loading associated with the

variance of ceded risk.

In the classical risk theory, the surplus process of an insurance portfolio

follows the compound Poisson risk process {U(t)} with

U(t) = x+ ct−
N(t)∑
k=1

Yk, (2.2)

where x is the initial surplus; c is the rate of premium; {N(t)} is a Pois-

son process with jump intensity λ; and {Yk}, independent of {N(t)}, is a

sequence of positive claim-amount random variables with common distribu-

tion function F , finite mean µ1 and finite second moment µ2
2. Suppose that

reinsurance R is taken for each claim. Then, the total ceded risk up to time t

is given by
∑N(t)

k=1 (Yk−R(Yk)), and the aggregate reinsurance premium under
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the variance principle takes the form

E

N(t)∑
k=1

(Yk −R(Yk))

+ θD

N(t)∑
k=1

(Yk −R(Yk))


= λ

(
(µ1 − E(R(Y ))) + θE((Y −R(Y ))2)

)
t.

Similar to the case with the expected value principle, the aggregate reinsur-

ance premium under the variance principle is also proportional to time t.

Thus, the surplus process in the presence of reinsurance R can be written as

UR(t) = x+ (c− cR)t−
N(t)∑
k=1

R(Yk), (2.3)

where cR = λ ((µ1 − E(R(Y ))) + θE((Y −R(Y ))2)) represents the reinsur-

ance premium rate associated with R. Here, we assume that the reinsurance

market is frictionless. This means that the reinsurance premium rate is equal

to the premium rate c = λ(µ1 + θµ2
2) if the whole risk are ceded to the rein-

surer. Also, it is well known that the jump model is very difficult to deal

with for optimal control problems. In view of this, we approximate the model

(2.3) by a pure diffusion model {XR
t , t ≥ 0} with the same drift and volatility.

Specifically, XR
t satisfies the following stochastic differential equation

dXR
t = θλ

(
µ2

2 − E((Yk −R(Yk))
2)
)
dt+

√
λE((R(Yk))2)dBt, (2.4)

with XR
0 = x, where {Bt, t ≥ 0} is a standard Brownian motion.

In the dynamic setting, it is difficult to consider reinsurance policy with

general form. As was shown in Pesonen (1984) and Hipp and Taksar (2010),

the proportional reinsurance is optimal in the mean-variance model under
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the variance principle. In particular, for a given reinsurance R, there exists

a proportional parameter 0 ≤ a ≤ 1 such that

E((R(Yk))
2) = E(((1− a)Yk)

2) and E((Yk −R(Yk))
2) > E((aYk)

2).

Plugging this into (2.4), one can show that the surplus process with pro-

portional reinsurance always has a larger drift under the condition of same

volatility. This suggests that proportional reinsurance yields a larger surplus

process, and hence more future dividends are expected to be paid. There-

fore, proportional reinsurance is also optimal for maximizing the expectation

of discounted dividend payments. From now on, R is assumed to be a pro-

portional reinsurance policy with R(y) = (1 − a)y. Then, we rewrite (2.4)

as

dXa
t = (1− a2)θλµ2

2dt+ (1− a)
√
λµ2dBt, (2.5)

with Xa
0 = x. Associated with this stochastic differential equation, we define

the operator Aa by

Aaf(x) =
1

2
(1− a)2λµ2

2f
′′(x) + (1− a2)θλµ2

2f
′(x), (2.6)

for any twice continuously differentiable function f .

Assume that the parameter a can be adjusted dynamically to control the

risk position, and that dividends may be paid to shareholders. Then, the

surplus process with proportional reinsurance and dividend payments is gov-

erned by

dXπ
t = (1− a2

t )θλµ
2
2dt+ (1− at)

√
λµ2dBt − dLt, (2.7)

with Xπ
0 = x, where Lt is the cumulative dividends paid up to time t and

π = (a, L) is a control policy. Here, we say a policy π is admissible if
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• the ceded proportion a = {at, t ≥ 0} is a G-predictable process with

0 ≤ at ≤ 1 for all t ≥ 0, and

• the cumulative amount of dividends L = {Lt} is a non-decreasing

càdlàg (that is, right continuous with left limit) process, and satis-

fies the conditions that L0− = 0 and Lt ≤ Xπ
t for all t ≥ 0. The latter

condition is required to prohibit dividends from being distributed in

the case of deficit.

The set of all admissible control policies is denoted by Π. Under the policy

π ∈ Π, the ruin time of the controlled process Xπ is defined as

τπ = inf{t ≥ 0 : Xπ
t < 0}. (2.8)

Within this framework, we study the following two cases: (i) the classical

optimal dividend problem in which the value function is to maximize the

expectation of total discounted dividends until the time of ruin; and (ii) the

optimal dividend problem with capital injection in which the value function

is to maximize the expectation of the discounted dividend payments minus

the discounted costs of capital injection. To tackle these optimal control

problems, one needs to solve the associated Hamilton-Jacobi-Bellman (HJB)

equations. Since the derivations of the HJB equations and the proofs of

verification theorems are standard in the theory of stochastic control, they

are omitted in the rest of the paper unless we find them necessary.

Before ending the section, we present the following result which will be

repeatedly used in the coming sections:
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Lemma 2.1. Let a∗(s) = (ξ+a∗(0))e−2θs−ξ, s ≥ 0 such that 0 ≤ a∗(0) ≤ 1.

Suppose that H(x) satisfies

H ′(x) = exp

(∫ y

x

2θ
a∗(s)

1− a∗(s)
ds

)
,

with 2θξH(0) = (1− a∗(0))H ′(0) for some ξ and y > x ≥ 0. Then, we have

H(x) =
A(y)

2θξ

(
ξ + 1

ξ + a∗(0)
e2θx − 1

) ξ
ξ+1

, (2.9)

where

A(y) = (ξ + a∗(y))
ξ
ξ+1 (1− a∗(y))

1
ξ+1 . (2.10)

Note that Lemma 2.1 can be proved by straightforward calculations.

3 Optimization up to time of ruin

In this section, we consider the classical optimal dividend problem of maxi-

mizing the expected total discounted dividends until the time of ruin. Under

a policy π ∈ Π, the associated performance function is defined as

V π(x) = E
(∫ τπ

0

e−δtdLt

∣∣∣∣Xπ
0 = x

)
,

where δ > 0 denotes the discounted rate. Then, the value function is given

by

V (x) = sup
π∈Π

V π(x). (3.1)

Our aim is to find expressions for the value function V (x) and the optimal

control policy π∗ = (a∗, L∗) such that V (x) = V π∗(x).
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Proposition 3.1. The value function V of (3.1) is concave.

Proof. See Højgaard and Taksar (1999) for the proof in details.

As usual, we consider the dividend policy in two cases, namely the case

without restrictions and the case with a bounded rate M < ∞. As for the

two cases, we use V∞ and VM to denote the corresponding value functions

respectively.

3.1 Unrestricted dividends

In this subsection, we derive explicit expressions for the value function and

the optimal policies in the case that no restrictions are imposed on the divi-

dend policy.

Theorem 3.1. Assume that the value function V∞ is twice continuously

differentiable on (0,∞). Then, V∞ satisfies the following HJB equation

max

{
sup

0≤a≤1
(Aa − δ)V∞(x), 1− V ′∞(x)

}
= 0, (3.2)

with the boundary condition V∞(0) = 0. Conversely, if there exists a twice

continuously differentiable function f(x) which is a concave solution to (3.2)

with the boundary condition f(0) = 0, then f(x) = V∞(x).

Proof. The proof of this theorem is standard. We refer the reader to Højgaard

and Taksar (1999).
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According to the above theorem, in order to find explicit expressions for

the value function, we first need to construct a solution to (3.2).

Theorem 3.2. If there are no restrictions on dividend policy, then the value

function V∞ has the form

V∞(x) =

 x− b∞ + 1
2θξ
, x ≥ b∞,

1
2θ
ξ−

1
ξ+1
(
e2θx − 1

) ξ
ξ+1 , 0 ≤ x ≤ b∞.

(3.3)

That is, the optimal dividend policy is a barrier dividend strategy with con-

stant barrier b∞, and the optimal ceded proportion of risk has the form

a∗(x) =

 0, x ≥ b∞,

(ξ + 1) e−2θx − ξ 0 ≤ x ≤ b∞,
(3.4)

where

b∞ =
1

2θ
ln

(
ξ + 1

ξ

)
and ξ =

δ

2λ(θµ2)2
. (3.5)

Proof. Define b∞ = inf{x ≥ 0 : V ′∞(x) ≤ 1}. Then, by the concavity of

the value function, V ′∞(x) > 1 for x < b∞. It follows from (3.2) that, for

0 < x < b∞,

sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
∞(x) + (1− a2)θλµ2

2V
′
∞(x)

}
− δV∞(x) = 0. (3.6)

Differentiating with respect to a and setting the derivative equal to zero, we

obtain
V ′′∞(x)

V ′∞(x)
= −2θ

a∗(x)

1− a∗(x)
, (3.7)

where a∗(x) is the maximizer of the first term in (3.6). Putting (3.7) back

into (3.6) yields

(1− a∗(x))V ′∞(x) = 2θξV∞(x), (3.8)
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where ξ = δ/(2λ(θµ2)2) > 0. This together with the boundary condition

V∞(0) = 0 and the fact that V ′∞(x) > 1 for x < b∞ give

a∗(0) = 1, (3.9)

which means that ceding all the risk to the reinsurer is optimal when the

initial surplus is zero. On the other hand, taking derivative with respect to

x on both sides of (3.8) and using (3.7), we obtain the following ordinary

differential equation (ODE)

a∗′(x) = −2θa∗(x)− 2θξ, (3.10)

which implies a∗′(x) < 0, so the ceded proportion of risk decreases as the

initial surplus increases. Solving the ODE of (3.10) with the boundary con-

dition (3.9), one can easily get

a∗(x) = (ξ + 1) e−2θx − ξ. (3.11)

Note that we have a∗(x0) = 0 when

x0 =
1

2θ
ln

(
1 +

1

ξ

)
. (3.12)

Assume that x0 ≤ b∞. We next derive expressions for V∞(x) for 0 ≤ x ≤ x0,

x0 < x ≤ b∞ and x > b∞. For 0 ≤ x ≤ x0, we see from (3.7) that

V ′∞(x) = k exp

(∫ x0

x

2θ
a∗(s)

1− a∗(s)
ds

)
, (3.13)

with V ′∞(x0) = k, and that

V ′′∞(x0) = −2θ
a∗(x0)

1− a∗(x0)
V ′∞(x0) = 0,
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because a∗(x0) = 0. Note that the constant k needs to be determined later.

Applying Lemma 2.1 to (3.8) and (3.13) gives the following expression for

V∞(x)

V∞(x) =
k

2θ
ξ−

1
ξ+1
(
e2θx − 1

) ξ
ξ+1 , 0 ≤ x ≤ x0, (3.14)

with V∞(x0) = k/(2θξ−1) since a∗(0) = 1 and a∗(x0) = 0. For x0 < x ≤ b∞,

we take a∗(x) ≡ 0 which means that there is no ceded risk in this case. Then,

recalling the equation (3.6), we have V∞(x) satisfying the following ODE

1

2
λµ2

2V
′′
∞(x) + θλµ2

2V
′
∞(x)− δV∞(x) = 0,

which has a solution

V∞(x) = k1e
r+(x−b∞) + k2e

r−(x−b∞), x0 < x ≤ b∞, (3.15)

where r+ and r− are the two roots of the equation

1

2
λµ2

2r
2 + θλµ2

2r − δ = 0,

with r+ > 0 > −r+ > r−. Again, the two constants k1 and k2 need to

be determined later. Finally, for x ≥ b∞, V ′∞(x) ≡ 1 due to (3.2), and

V∞(b∞) = k1 + k2 because of (3.15). Hence, we have

V∞(x) = x− b∞ + k1 + k2, x > b∞. (3.16)

To determine the unknown constants k, k1, k2 and b∞, we need the as-

sumption of twice continuously differentiability of V∞(x) which leads to the

following four equalities

V ′∞(x0+) = V ′∞(x0−), V ′′∞(x0+) = V ′′∞(x0−),
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V ′∞(b∞+) = V ′∞(b∞−), V ′′∞(b∞+) = V ′′∞(b∞−).

From these equalities, we obtain

k1r+ + k2r− = 1, (3.17)

k1r
2
+ + k2r

2
− = 0, (3.18)

k1r+e
r+(x0−b∞) + k2r−e

r−(x0−b∞) = k, (3.19)

k1r
2
+e

r+(x0−b∞) + k2r
2
−e

r−(x0−b∞) = 0. (3.20)

It is easy to check that (3.18) and (3.20) give

b∞ = x0,

and that (3.17) and (3.19) yield k = 1. In addition, we have

k1 + k2 =
r+ + r−
r+r−

=
1

2θξ
, (3.21)

by using the Vieta theorem.

So far, we have shown that the function V∞ has the form (3.3). But we still

need to check that (3.3) is a solution to (3.2) with the boundary condition

V∞(0) = 0. From the construction of V∞ above, we know that V ′∞(x) = 1 for

x ≥ b∞ and that

sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
∞(x) + (1− a2)θλµ2

2V
′
∞(x)

}
−δV∞(x) = 0, 0 < x < b∞.

In addition, for x ≥ b∞, we have

V∞(x) = x− b∞ +
1

2θξ
,
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which implies that V ′∞(x) = 1, V ′′∞(x) = 0, and

sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
∞(x) + (1− a2)θλµ2

2V
′
∞(x)

}
− δV∞(x)

= sup
0≤a≤1

(1− a2)θλµ2
2 − δV∞(x)

= θλµ2
2 − δ(x− b∞)− δ

2θξ

= −δ(x− b∞) ≤ 0;

and, for 0 < x < b∞, we have V ′∞(x) > 0, V ′∞(b∞) = 1, and

V ′′∞(x) = −2θ
a∗(x)

1− a∗(x)
V ′∞(x) < 0,

which implies that V ′∞(x) > 1. Hence, the proof is complete.

3.2 Dividends with a bounded rate

In this subsection, we impose a restriction that the cumulative dividend

process Lt is absolutely continuous and has a bounded density. Specifically,

the cumulative dividend process is defined as

Lt =

∫ t

0

lsds, 0 ≤ lt ≤M,

for all t ≥ 0, where 0 < M < ∞ is a constant. In this case, the problem

turns out to be a classical stochastic control problem.

Theorem 3.3. Assume that the value function VM is twice continuously

differentiable on (0,∞). Then, VM satisfies the following HJB equation

sup
0≤a≤1,0≤l≤M

{(Aa − δ)VM(x) + l(1− V ′M(x))} = 0, (3.22)
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with the boundary condition VM(0) = 0. Conversely, if there exists a twice

continuously differentiable function f(x) which is a concave solution to (3.22)

with the boundary condition f(0) = 0, then f(x) = VM(x).

Proof. See Højgaard and Taksar (1999) for the proof in details.

Because of Theorem 3.3, we need to construct a solution to (3.22). Let

0 < a∗ < 1 be the positive root of the equation

a2 +

(
ξ − 1 +

2Mθξ

δ

)
a− ξ = 0, (3.23)

that is,

a∗ =
2ξ√(

ξ − 1 + 2Mθξ
δ

)2
+ 4ξ + ξ − 1 + 2Mθξ

δ

. (3.24)

Also, define r̃M as the negative root of the equation

1

2
(1− a∗)2λµ2

2r
2 +

(
(1− a∗2)θλµ2

2 −M
)
r − δ = 0,

that is,

r̃M =
2δ

(1− a∗2)θλµ2
2 −M −

√
((1− a∗2)θλµ2

2 −M)
2

+ 2(1− a∗)2λµ2
2δ
.

(3.25)

The two notations a∗ and r̃M are used in the following theorem, which gives

explicit expressions for the value function and the optimal policies.

Theorem 3.4. If the dividend policy has a density bounded by M with 0 <

M <∞, then the value function VM has the form

VM(x) =

 M
δ

+ 1
r̃M
er̃M (x−bM ), x > bM ,

A
2θξ

(
e2θx − 1

) ξ
ξ+1 , 0 ≤ x ≤ bM ,

(3.26)
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where A = (ξ + a∗)
ξ
ξ+1 (1 − a∗)

1
ξ+1 . That is, the optimal dividend policy is a

threshold dividend strategy with barrier bM with

l∗(x) =

 M, x > bM ,

0, 0 < x ≤ bM .
(3.27)

Also, the optimal ceded proportion of risk has the form

a∗(x) =

 a∗, x > bM ,

(ξ + 1)e−2θx − ξ, 0 ≤ x ≤ bM ,
(3.28)

where a∗ is defined by (3.24) and

bM =
1

2θ
ln

(
ξ + 1

ξ + a∗

)
. (3.29)

Proof. Define bM = inf{x;V ′M(x) ≤ 1}. Then, by the concavity of the value

function, we have V ′M(x) > 1 for 0 < x < bM . Also, the HJB equation (3.22)

turns out to be

sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
M(x) + (1− a2)θλµ2

2V
′
M(x)

}
−δVM(x) = 0, 0 < x < bM .

Now we conjecture that there exists x0 ≤ bM such that a∗(x) < 1 for

0 ≤ x < x0 and a∗(x) ≡ 0 for x ≥ x0. To solve the HJB equation (3.22) for

0 < x < x0 and x0 < x < bM , arguments similar to those in the proof of

Theorem 3.2 can be used to obtain

VM(x) = (2θξ)−1(1− a∗(x))V ′M(x), 0 ≤ x ≤ x0,

VM(x) = k
2θ
ξ−

1
ξ+1
(
e2θx − 1

) ξ
ξ+1 , 0 ≤ x ≤ x0,

VM(x) = k1e
r+(x−bM ) + k2e

r−(x−bM ), x0 < x < bM .
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In addition, for x ≥ bM , we have the dividend maximizer l∗(x) ≡ M , and

hence VM(x) satisfies the following ODE

1

2
λµ2

2V
′′
M(x) + (θλµ2

2 −M)V ′M(x)− δVM(x) +M = 0. (3.30)

Note that VM(x) is bounded from above by M/δ which is a special solution

to (3.30). Thus, VM(x) has the form

VM(x) =
M

δ
+ k3e

rM (x−bM ), (3.31)

where rM < 0 is the negative root of

1

2
λµ2

2r
2 + (θλµ2

2 −M)r − δ = 0.

Since V ′(bM) = 1, we have k3 = r−1
M . In order to determine the unknown

constants k, k1, k2 and bM , we again employ the assumption of twice con-

tinuously differentiability of the value function. Since the value function is

smooth at x0 and bM , it follows that

k1r+ + k2r− = 1, (3.32)

k1r
2
+ + k2r

2
− = rM , (3.33)

k1r+e
r+(x0−bM ) + k2r−e

r−(x0−bM ) = k, (3.34)

k1r
2
+e

r+(x0−bM ) + k2r
2
−e

r−(x0−bM ) = 0. (3.35)

From (3.32) and (3.35), we see that k1 > 0 and k2 < 0. This together with

(3.35) imply that

0 < e(r+−r−)(x0−bM ) = −
k2r

2
−

k1r2
+

< 1.

This inequality yields k1r
2
+ +k2r

2
− > 0 which contradicts (3.33). Hence, there

is no solution to the above system, and the conjecture that x0 ≤ bM does not

hold.
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We now conjecture that bM < x0 such that for x > x0, a∗(x) ≡ 0 and

dividends are paid at the maximum rate M for x > bM . Then, we again

obtain

VM(x) =
M

δ
+ k3e

rM (x−x0), x ≥ x0.

For bM < x < x0, the value function satisfies

sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
M(x) + (1− a2)θλµ2

2V
′
M(x)

}
−δVM(x)+M(1−V ′M(x)) = 0,

which results in
V ′′M(x)

V ′M(x)
= −2θ

a∗(x)

1− a∗(x)
.

If the conjecture that bM < x0 is correct, due to the smoothness of the value

function at x0, we should have

V ′′M(x0−)

V ′M(x0−)
=
V ′′M(x0+)

V ′M(x0+)
,

but
V ′′M(x0−)

V ′M(x0−)
= −2θ

a∗(x0)

1− a∗(x0)
= 0 6= rM =

V ′′M(x0+)

V ′M(x0+)
.

Thus, the conjecture that bM < x0 also does not hold. To conclude, there

does not exist x0 and the optimal ceded proportion a∗(x) cannot be zero

when the dividend policy has a bounded density.

We now focus on the conjecture that a∗(x) ≡ a∗ for all x > bM . We want

to determine the switch level bM and find explicit expressions for VM(x).

According to (3.22), the value function VM(x) satisfies

1

2
(1−a∗)2λµ2

2V
′′
M(x)+

(
(1− a∗2)θλµ2

2 −M
)
V ′M(x)−δVM(x)+M = 0, x > bM .

Since V ′M(bM) = 1 and VM(x) is bounded, the value function becomes

VM(x) =
M

δ
+

1

r̃M
er̃M (x−bM ), x > bM , (3.36)
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where r̃M is the negative root of the equation

1

2
(1− a∗)2λµ2

2r
2 +

(
(1− a∗2)θλµ2

2 −M
)
r − δ = 0. (3.37)

In addition, to match the condition

V ′′M(bM−)

V ′M(bM−)
=
V ′′M(bM+)

V ′M(bM+)
,

we have

−2θ
a∗

1− a∗
= r̃M . (3.38)

Then, by putting (3.38) back into (3.37), we see that 0 < a∗ < 1 is the unique

positive root of the equation (3.23). Using (3.11), one can show that bM is

given by (3.29). For 0 ≤ x ≤ bM , we have

V ′M(x) = k exp

(∫ bM

x

2θ
a∗(s)

1− a∗(s)
ds

)
.

Then, it follows from V ′M(bM) = 1 that k = 1. Noting that (1−a∗(0))V ′M(0) =

2θξVM(0) and applying Lemma 2.1, we obtain (3.26) as a∗(0) = 0. Finally,

from V ′M(bM) = 1, (3.23) and (3.38), we have

VM(bM−) =
1

2θξ
(1− a∗)V ′M(bM)

=
M

δ
− 1− a∗

2θa∗
=
M

δ
+

1

r̃M
= VM(bM+),

which implies that VM(x) is continuous at x = 0 ≤ x ≤ bM .

To end the proof, we need to check that (3.26) is the solution to (3.22).

For x > bM , V ′M(x) = er̃M (x−bM ) < 1 due to r̃M < 0, and hence,

sup
0≤a≤1,0≤l≤M

{(Aa − δ)VM(x) + l(1− V ′M(x))}

= sup
0≤a≤1

{(Aa − δ)VM(x)}+M(1− V ′M(x))

=

(
sup

0≤a≤1
g(a)λµ2

2 −
δ

r̃M
−M

)
er̃M (x−x1),
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where g(a) = 1
2
(1 − a)2r̃M + (1 − a2)θ. Then, g attains its maximum at

a = r̃M/(r̃M − 2θ). On the other hand, comparing this with (3.38), we have

a∗ = r̃M/(r̃M − 2θ). Thus,

sup
0≤a≤1,0≤l≤M

{(Aa − δ)VM(x) + l(1− V ′M(x))}

=

(
1

2
(1− a∗)2λµ2

2r̃
2
M + (1− (a∗)2)θλµ2

2r̃M −Mr̃M − δ
)

1

r̃M
er̃M (x−bM )

= 0,

where the last step follows from (3.37). For 0 ≤ x ≤ bM , we know that

V ′M(x) > 1 due to V ′M(bM) = 1 and

V ′′M(x) = −2θ
a∗(x)

1− a∗(x)
V ′M(x) < 0.

Thus,

sup
0≤a≤1,0≤l≤M

{(Aa − δ)VM(x) + l(1− V ′M(x))}

= sup
0≤a≤1

{
1

2
(1− a)2λµ2

2V
′′
M(x) + (1− a2)θλµ2

2V
′
M(x)

}
− δVM(x)

= 0,

where the last step is based on the construction of the value function in the

proof of Theorem 3.2. The proof is complete.

Remark 3.1. (Limiting case of maximum dividend rate M) As M →∞, it

follows from (3.24) that a∗ → 0 and bM → b∞, and hence A = A(bM) goes to

ξ
ξ
ξ+1 by (2.10). For 0 < x < bM , it is obvious that the solution to the value

function in Theorem 3.4 tends to that in Theorem 3.2 as M goes to infinity.

Furthermore, for x ≥ bM , r̃M → 0 as M →∞. Using Taylor expansion and
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(3.37), we get

VM(x) =
M

δ
+

1

r̃M
er̃M (x−bM )

=
(Mr̃M + δ) + δr̃M(x− bM) + o(r̃M(x− bM))

δr̃M

=
1
2
(1− a∗)2λµ2

2r̃
2
M + (1− a∗2)θλµ2

2r̃M + δr̃M(x− bM) + o(r̃M(x− bM))

δr̃M

→ x− b∞ +
θλµ2

2

δ
= x− b∞ +

1

2θξ
,

as M goes to infinity. That is, the optimal control problem without dividend

restrictions can be seen as the limiting optimal control problem with a bounded

dividend density when the bound goes to infinity.

4 Optimal dividends with capital injection

Based on the results obtained in Section 3, the optimal dividend policy is

a barrier strategy. However, as we all know, ruin will occur almost surely

in the presence of barrier dividend policy. Therefore, similar to the work of

Kulenko and Schmidli (2008), we allow the investor to inject capital with a

proportional transaction cost (or called penalty factor) when the surplus ever

becomes negative so that ruin can be avoided. In this section, we maximize

the expected discounted dividend payments minus the expected discounted

costs of capital injection.

Given an admissible π ∈ Π, the surplus process can be described by

X̃π
t = Xπ

t + Zπ
t , (4.1)
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where Xπ is determined by (2.7) and the capital injection process Zπ can be

written as

Zπ
t = max{− inf

0≤s≤t
Xπ
s , 0},

according to Skorohod equation (see Karatzas and Shreve (1991)). The per-

formance function in this case is defined as

W π(x) = E
(∫ ∞

0

e−δtd(Lt − φZπ
t )

∣∣∣∣Xπ
0 = x

)
, (4.2)

where δ > 0 is the discount factor and φ > 1 is the proportional transaction

cost for capital injection. Correspondingly, the value function is given by

W (x) = sup
π∈Π

W π(x), (4.3)

and the objective of this section is to find explicit expressions for W (x) and

the optimal policy π∗ ∈ Π such that W (x) = W π∗(x).

Proposition 4.1. The value function W defined in (4.3) is concave.

Proof. For any ε > 0, according to the definition (4.3), we can choose sub-

optimal admissible control πi = (a(i), L(i)) ∈ Π for the initial surplus xi such

that

W πi(xi) ≥ W (xi)− ε, i = 1, 2. (4.4)

For any 0 < ρ < 1, define a new control policy π = (a, L) for initial surplus

ρx1 + (1− ρ)x2 such that

at = ρa
(1)
t + (1− ρ)a

(2)
t ,

Lt = ρL
(1)
t + (1− ρ)L

(2)
t .
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Then, according to (2.7) and Jessen’s Inequality, we have Xπ
t ≥ ρXπ1

t + (1−

ρ)Xπ2
t with Xπi

0 = xi, i = 1, 2. In addition, according to (4.1), we have

Zπ
t ≤ max

{
− inf

0≤s≤t
{ρXπ1

s + (1− ρ)Xπ2
s }, 0

}
≤ max

{
−ρ inf

0≤s≤t
Xπ1
s − (1− ρ) inf

0≤s≤t
Xπ2
s , 0

}
≤ ρmax

{
− inf

0≤s≤t
Xπ1
s , 0

}
+ (1− ρ) max

{
− inf

0≤s≤t
Xπ2
s , 0

}
= ρZπ1

t + (1− ρ)Zπ2
t .

Thus,

W (ρx1 + (1− ρ)x2) ≥ W π(ρx1 + (1− ρ)x2)

≥ ρW π1(x1) + (1− ρ)W π2(x2)

≥ ρW (x1) + (1− ρ)W (x2)− ε.

Hence, the concavity of W follows from the arbitrariness of ε.

As was discussed in Section 3, we also consider the dividend policies in

two cases: dividends without restrictions and the accumulate dividends with

a bound density. We use W∞ and WM to denote the corresponding value

functions respectively.

4.1 Unrestricted dividends

In this subsection, we first consider the case with no restrictions imposed on

the dividend policy.
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Theorem 4.1. Assume that the value function W∞ is twice continuously

differentiable on (0,∞). Then, W∞(x) satisfies the following HJB equation

max

{
sup

0≤a≤1
(Aa − δ)W∞(x), 1−W ′

∞(x)

}
= 0, (4.5)

with the boundary condition W ′
∞(0) = φ. Conversely, if there exists a twice

continuously differentiable function f(x) which is a concave solution to (4.5)

with the boundary condition f ′(0) = φ, then f(x) = W∞(x).

Proof. Since the derivation of the HJB equation is similar to the classical

theory in Fleming and Soner (2006), we just explain the boundary condition

W ′
∞(0) = φ. In fact, when the surplus attains zero, the investor injects a

small amount of capital ε, and then we have

W∞(0) = W∞(ε)− φε+ o(ε).

Dividing ε on both sides of the above equation and then taking ε → 0+, it

follows that W ′
∞(x) = φ.

For any given admissible policy π = (a, L), the surplus process X̃π is gov-

erned by (2.7) and (4.1). Define the first hitting time τn = inf{t ≥ 0; X̃π
t >

n}. Applying the generalized Itô formula, it follows that

e−δ(t∧τn)f(X̃π
t∧τn) = f(x)−

∫ t∧τn

0

e−δsdLs +

∫ t∧τn

0

e−δsf ′(X̃π
s )dZπ

s

+

∫ t∧τn

0

(Aa − δ)e−δsf(X̃π
s )ds+

∫ t∧τn

0

e−δs(1− f ′(X̃π
s ))dLs

+
∑
s≤t

e−δs[f(X̃π
s )− f(X̃π

s−)− f ′(X̃π
s−)(X̃π

s − X̃π
s−)]

+

∫ t∧τn

0

e−δsf ′(X̃π
s )dBs.
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Note that X̃π
t ≥ 0 for all t ≥ 0, dZπ

t = 0 when X̃π
t > 0, f(x) − f(y) ≤

f ′(y)(x − y) for any x and y due to the concavity of f , and that the last

term in the above equation is a martingale since the integrand is bounded

by φ. Employing the boundary condition f ′(0) = φ and taking expectation

on both sides of the above equation, we obtain

f(x) ≥ E
[
e−δ(t∧τn)f(X̃π

t∧τn) | X̃π
0 = x

]
+E

[∫ t∧τn

0

e−δsd(Ls − φZπ
s ) | X̃π

0 = x

]
.

(4.6)

Taking n→ +∞, by Fatou’s lemma and the monotone convergence theorem,

we have

f(x) ≥ e−δtE
[
f(X̃π

t ) | X̃π
0 = x

]
+E

[∫ t

0

e−δsd(Ls − φZπ
s ) | X̃π

0 = x

]
. (4.7)

Due to the concavity of f , it follows that f(y) ≤ K(1 + y) for some K > 0.

In addition, note that

X̃π
t ≤ |Xa

t |+ sup
s≤t
|Xa

s | ≤ 2 sup
s≤t
|Xa

s |,

where Xa is determined by (2.5) with Xa
0 = x, that is,

Xa
t = x+

∫ t

0

(1− a2
s)θλµ

2
2ds+Mt,

where Mt =
∫ t

0
(1 − as)

√
λµ2dBs is a martingale. Therefore, by apply-

ing Doob’s maximal inequality (See Karatzas and Shreve (1991)) to sub-

martingale |M |, it follows that

E
[
f(X̃π

t ) | X̃π
0 = x

]
≤ E

[
K(1 + X̃π

t ) | X̃π
0 = x

]
≤ K

(
1 + 2x+ 2θλµ2

2t+ 2E
[
sup
s≤t
|Ms| | X̃π

0 = x

])
≤ K

(
1 + 2x+ 2θλµ2

2t+ 4
[
E
(
|Mt|2 | X̃π

0 = x
)] 1

2

)
≤ K

(
1 + 2x+ 2θλµ2

2t+ 4µ2

√
λt
)
.
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Thus, taking t → ∞ in (4.7) and using the monotone convergence theorem

again, we have f(x) ≥ W π
∞(x). Hence, it follows by taking supremum that

f(x) ≥ W∞(x).

Particularly, let b = inf{f ′(x) ≤ 1}. If we take an admissible policy π∗ =

(a∗, L∗) such that dividend distribution policy is a barrier policy with barrier

b and reinsurance policy satisfies (Aa∗ − δ)f(x) = 0 for 0 < x < b, then

the controlled surplus process X̃π∗ is continuous such that 0 ≤ X̃π∗
t ≤ b and

dL∗t = 0 for X̃π∗ < b. Thus, the above inequality (4.6) becomes an equality,

that is,

f(x) = E
[
e−δ(t∧τ

∗
n)f(X̃π∗

t∧τ∗n) | X̃π∗

0 = x
]
+E

[∫ t∧τ∗n

0

e−δsd(L∗s − φZπ∗

s ) | X̃π∗

0 = x

]
,

where τ ∗n = inf{t ≥ 0; X̃π∗
t > n}. Note that 0 ≤ X̃π∗

t ≤ b for all t > 0.

Then, taking n → ∞ and t → ∞ and using the dominated and monotone

convergence theorems, we obtain f(x) = W π∗
∞ (x) ≤ W∞(x). Therefore, one

can conclude that f(x) = W∞(x).

In the following theorem, we construct a solution to (3.22) and give explicit

expressions for the value function.

Theorem 4.2. If the dividend distribution policy is without any restriction,

then the value function W∞ has the form

W∞(x) =


x− b̃∞ + 1

2θξ
, x > b̃∞,

1
2θ
ξ−

1
1+ξ

(
ξ+1

ξ+a∗(0)
e2θx − 1

) ξ
1+ξ

, 0 ≤ x ≤ b̃∞.
(4.8)

That is, the optimal dividend policy is a barrier strategy with dividend barrier
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b̃∞; and the optimal ceded proportion of risk has the form

a∗(x) =

 0, x > b̃∞,

(ξ + a∗(0))e−2θx − ξ, 0 ≤ x ≤ b̃∞,

where 0 < a∗(0) < 1 is uniquely determined by the equation

φξ+1

(
1 +

a

ξ

)ξ
(1− a) = 1, (4.9)

and

b̃∞ =
1

2θ
ln

(
1 +

a∗(0)

ξ

)
. (4.10)

Proof. Recall the steps for solving (3.2) in the last section. Parallel to (3.8),

it still follows that

(1− a∗(x))W ′
∞(x) = 2θξW∞(x). (4.11)

But with the boundary condition W ′
∞(0) = φ, we cannot directly determine

a∗(0) from the above equation without knowing W∞(0). Thus, according to

(3.10), we only have

a∗(x) = (ξ + a∗(0))e−2θx − ξ, (4.12)

where a∗(0) needs to be determined later. In addition, with the same argu-

ments, we also infer that there is only one switch level, say b̃∞, such that

a∗(b̃∞) = 0, W ′
∞(b̃∞) = 1, and W ′

∞(0) = φ. So, parallel to (3.13), we have

k = 1 and

(ξ + a∗(0))e−2θb̃∞ = ξ,∫ b̃∞

0

2θ
a∗(s)

1− a∗(s)
ds = lnφ.
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Combining these with (4.12) and doing some basic calculations, one can show

that 0 < a∗(0) < 1 is uniquely determined by the equation (4.9). Then, (4.12)

is clear and the switch level b̃∞ can be solved using a∗(b̃∞) = 0. It follows

from (4.11) that

W∞(0) =
φ

2θξ
(1− a∗(0)). (4.13)

Then, parallel to (3.13), we have

W ′
∞(x) = k exp

(∫ b̃∞

x

2θ
a∗(s)

1− a∗(s)
ds

)
, 0 ≤ x ≤ b̃∞,

where k = 1 by W ′
∞(b̃∞) = 1. Noting that a∗(b̃∞) = 0 and 2θξW∞(0) =

(1− a∗(0)) from (4.11), we put y = b̃∞ in Lemma 2.1 to obtain

W∞(x) =
1

2θ
ξ−

1
1+ξ

(
ξ + 1

ξ + a∗(0)
e2θx − 1

) ξ
1+ξ

, 0 ≤ x ≤ b̃∞,

such that W∞(b̃∞) =) = (ξ−
1

1+ξ ξ−
ξ

1+ξ )/(2θ) = (2θξ)−1.

Finally, using arguments similar to those in the proof of Theorem 3.2, one

can show that (4.8) is a solution to (4.5). So, the proof is complete.

4.2 Dividends with a bounded rate

Like Subsection 3.2, we consider the case with a bounded dividend rate M

in this subsection. The value function in this case is denoted by WM .

Theorem 4.3. If the value function WM is twice continuously differentiable

on (0,∞), then WM satisfies the following HJB equation

sup
0≤a≤1,0≤l≤M

{(Aa − δ)WM(x) + l(1−W ′
M(x))} = 0, (4.14)
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with the boundary condition W ′
M(0) = φ. Conversely, if there exists a twice

continuously differentiable function f(x) which is a solution to (4.14) with

boundary condition f ′(0) = φ, then f(x) = WM(x).

Proof. The proof is similar to Theorem 4.1 with slight change so we omit

it.

The following theorem gives explicit expressions for the value function by

constructing a solution to (4.14).

Theorem 4.4. If the cumulative dividend policy has a density bounded by

M such that 0 < M < ∞, then the value function WM defined in (4.3) has

the form

WM(x) =


M
δ

+ 1
r̃M
er̃M (x−b̃M ), x > b̃M ,

A
2θξ

(
ξ+1

ξ+a∗(0)
e2θx − 1

) ξ
1+ξ

, 0 ≤ x ≤ b̃M ,
(4.15)

where A = (ξ + a∗)
ξ
ξ+1 (1 − a∗)

1
ξ+1 . That is, the optimal dividend policy is a

threshold dividend strategy with barrier b̃M with

l∗(x) =

 M, x > b̃M ,

0, 0 < x ≤ b̃M .
(4.16)

Furthermore, the optimal ceded proportion of risk has the form

a∗(x) =

 a∗, x > b̃M ,

(ξ + a∗(0))e−2θx − ξ, 0 ≤ x ≤ b̃M ,
(4.17)

where a∗ is defined by (3.24); and a∗ < a∗(0) < 1 is the unique solution to

the equation

φξ+1

(
ξ + a

ξ + a∗

)ξ (
1− a
1− a∗

)
= 1; (4.18)
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and

b̃M =
1

2θ
ln
ξ + a∗(0)

ξ + a∗
. (4.19)

Proof. Solving the HJB equation (4.14) is similar to solve (3.22). Based on

the analysis in Theorem 3.4, we conjecture that there is one switch level b̃M

such that W ′
M(b̃M) = 1, W ′

M(0) = φ and a∗(x) = a∗(b̃M) for x ≥ b̃M . Then,

parallel to (3.32)-(3.34), we know that a∗(b̃M) = a∗.

Note that for 0 ≤ x ≤ b̃M , it still follows that

W ′
M(x) = k exp

(∫ b̃M

x

2θ
a∗(s)

1− a∗(s)
ds

)
,

where k = 1 by W ′
M(b̃M) = 1. In order to determine a∗(0), we put y =

b̃M in Lemma 2.1 to obtain (4.15). Then, taking derivative on both sides

and applying W ′
M(0) = φ, the equation (4.18) follows. Thus, a∗(0) can be

uniquely determined by the equation (4.18). Once a∗(0) and a∗(b̃M) are

worked out, b̃M can be obtained using (4.19).

Finally, using arguments similar to those in the proof of Theorem 3.4, we

can show that (4.15) is a solution to (4.14). Hence, the proof is complete.

Remark 4.1. Similar to Remark 3.1, we can also check that

W∞(x) = lim
M→∞

WM(x), x ≥ 0.

That is, with capital injection, the optimal problem without dividend restric-

tions can also be seen as the limiting case of the optimal problem with a

bounded dividend density as the bound goes to infinity.
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Before ending this section, we present another remark to compare the value

functions obtained in Section 3 and Section 4 respectively.

Remark 4.2. The gain of capital injection. According to Remark 3.1

and Remark 4.1, we see that the optimal problem without dividend restrictions

is the limiting case of the optimal problem with a bounded dividend density, so

we only need to compare the results of the optimization problem with bounded

dividend density.

First, we find that the value functions VM and WM satisfy the same HJB

equation (see Theorems 3.3 and 4.3) but with different boundary conditions.

Without capital injection, ruin occurs immediately when the surplus hits zero

so the value function satisfies the boundary condition VM(0) = 0. However,

with capital injection with proportional transaction cost φ > 1, the value

function satisfies the boundary condition W ′
M(0) = φ.

In addition, from the expressions for the value function VM given by (3.26),

we have a∗(0) = 1 and

V ′M(x) ∼ C(e2θx − 1)−
1
ξ+1 e2θx →∞, as x→ 0, that is, V ′M(0) =∞.

On the other hand, it is easy to verify from (4.18) that

a∗(0) ↑ 1 and b̃M ↑ bM as φ→∞,

which imply that

WM(x) ↓ VM(x), as φ→∞.

That is, the optimization problem without capital injection is the limiting

case of the problem with capital injection as the proportional cost φ tends to
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infinity. With capital injection, we can achieve a larger value function than

the one without capital injection, regardless of the size of the proportional

cost of capital injection. Therefore, we can conclude that it is better to have

capital injection when ruin occurs, no matter how large the proportional cost

is.

The result obtained here is somehow different from the result obtained in

Løkka and Zervos (2008). The main reason is the existence of proportional

reinsurance policies. By adjusting the ceded proportion, the investor can

change the drift and volatility of the controlled diffusion process. In fact, no

matter how large the proportional cost φ is, the investor can always choose

a∗(0) such that WM(0) > 0 and W ′
M(0) = φ. The two conditions guarantee

that having capital injection is better than letting ruin occur.

5 Concluding remarks

In this paper, we investigate the optimal proportional reinsurance and div-

idend problem for a diffusion model under the variance premium principle

instead of the expected value premium principle. The controlled diffusion

model is established in terms of the diffusion approximation of the stochastic

process. The closed-form expressions for the value functions and the optimal

control policies are obtained in four cases depending on whether capital in-

jection is allowed and whether there exist restrictions for dividend policies.

The results obtained here under the variance principle are different from

35



those under the expected value principle. The optimal ceded proportion of

risk exponentially decreases with respect to the initial surplus. In addition,

with the existence of proportional reinsurance policies, the value function

with capital injection is always larger than the one without capital injection,

regardless of the size of proportional cost of capital injection. In order to

obtain closed-form solutions for the value functions and the optimal control

policies, cheap reinsurance is an important assumption. The same optimiza-

tion problem under non-cheap reinsurance assumption is another interesting

topic.
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