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Abstract

Background: PRDM (PRDI-BF1 and RIZ domain containing) proteins are zinc finger proteins involved in multiple cellular
regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic
abnormality and tumor suppressive functions in multiple tumorigeneses.

Methodology/Principal Findings: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal
tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation,
including 80% (4/5) nasopharyngeal, 44% (8/18) esophageal, 76% (13/17) gastric, 50% (2/4) cervical, and 25% (3/12)
hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be
restored by 5-aza-29-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently
detected by methylation-specific PCR (MSP) in multiple primary tumors, including 93% (43/46) nasopharyngeal, 58% (25/43)
esophageal, 88% (37/42) gastric and 63% (29/46) hepatocellular tumors. PRDM5 was further found a stress-responsive gene,
but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor
cell clonogenicity, accompanied by the inhibition of TCF/b-catenin-dependent transcription and downregulation of CDK4,
TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay
showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between
the expression of PRDM5 and activated b-catenin was also observed in cell lines.

Conclusions/Significance: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/b-
catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses,
which could serve as a tumor biomarker.
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Introduction

Tumor-specific epigenetic silencing of tumor suppressor genes

(TSGs) through promoter CpG methylation and histone modifi-

cation is frequently involved in multiple carcinogenesis [1]. CpG

methylation can also be used as an epigenetic biomarker for novel

TSG identification and tumor diagnosis. A series of TSGs such as

p16, RASSF1A, PCDH10 and RASAL, have been identified with

epigenetic inactivation in multiple cancers, through promoter

CpG methylation [2–4].

PRDM (PRDI-BF1 and RIZ domain containing) proteins

belong to the zinc finger protein family, harboring an evolution-

arily conserved N-terminal PR domain followed by 16 zinc finger

repeats [5]. The PR domain, a characteristic C2-H2 zinc finger

motif, shares high homology with SET (Suvar3–9, Enhancer-of-

zeste, Trithorax) domain that is involved in chromatin-mediated

transcriptional regulation [6]. Thus far, seventeen human PRDM

members have been identified, with several possessing growth

inhibitory functions in tumor cells. PRDM1 (PRDI-BF1 or

BLIMP1) functions as a transcriptional repressor of c-MYC and
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induces cell differentiation and apoptosis [7,8]. PRDM2 (RIZ1) is

the first identified member of methyltransferase family with tumor

suppressive function mediated by its PR domain [9,10]. The long

isoform of PRDM3 (MDS1-EVI1) is commonly mutated in myeloid

leukemia [11]. PRDM4 (PFM1) is located at a tumor suppressor

locus 12q23-q24.1 commonly deleted in ovarian, gastric and

pancreatic cancers [12].

PRDM5 (also known as PFM2) is a recently identified PRDM

member, mapped to a commonly deleted region 4q25-26 [13].

PRDM5 was first identified from an EST database based on its

conserved PR domain at the N-terminus followed by 16 zinc finger

motifs [14]. It acts as a candidate TSG in some tumors [14,15].

Recent reports showed PRDM5 silencing by promoter methylation

in multiple cancers including breast, ovarian, colorectal, gastric,

and hepatocellular tumors. Ectopic expression of PRDM5 leads to

G2/M arrest and apoptosis of tumor cells [14], although its

molecular mechanism is still unclear. PRDM5 is a nuclear protein

involved in the epigenetic regulation of various genes, through

interaction with histone methyltransferase G9A and histone

deacetylase 1 (HDAC1) [16].

Here, we studied the epigenetic abnormality and tumor

suppressive functions of PRDM5 in multiple common tumors

including nasopharyngeal, esophageal, gastric, hepatocellular and

cervical cancers.

Results

Frequent silencing of PRDM5 in multiple tumor cell lines
due to promoter methylation

We first examined PRDM5 expression in a panel of human

normal adult and fetal tissues by semi-quantitative RT-PCR. Results

showed that PRDM5 was broadly expressed in all normal tissues

(Figure 1A). We then checked PRDM5 expression in multiple

carcinoma cell lines. Results revealed that PRDM5 was frequently

downregulated or silenced in cell lines of nasopharyngeal, esopha-

geal, gastric, hepatocellular and cervical carcinomas, but readily

detected in immortalized normal epithelial cell lines (Figure 2).

There is a typical CpG island (CGI) spanning the transcription

start site of PRDM5 (Figure 1B), as predicted by CGI searcher

(http://cpgislands.usc.edu/). We thus analyzed its promoter CpG

methylation in tumor cell lines. Methylation-specific PCR (MSP)

results showed that PRDM5 was frequently methylated in silenced

cell lines, including 80% (4/5) nasopharyngeal, 44% (8/18)

esophageal, 76% (13/17) gastric, 25% (3/12) hepatocellular, and

50% (2/4) cervical carcinoma cell lines (Figure 2, Table 1), with

the exception of only infrequent PRDM5 methylation detected in

lung, colon, ovarian and bladder cancer cell lines (Figure S1). In

contrast, no methylation was observed in immortalized normal

epithelial cell lines (Figure 2, Table 1).

To confirm the MSP results, we further examined PRDM5

promoter methylation by high-resolution bisulfite genomic se-

quencing (BGS) analysis of 43 individual CpG sites within its CGI.

The BGS results were consistent with those of MSP, with all

promoter alleles intensively methylated in silenced cell lines but

rare methylated CpG sites detected in expressing normal cell lines

(Figure 3A). Taken together, these results revealed a strong

correlation between PRDM5 promoter CpG methylation and its

transcriptional silencing in tumor cell lines.

Pharmacologic demethylation restores PRDM5
expression

To determine whether promoter methylation directly contrib-

utes to PRDM5 silencing, several silenced tumor cell lines were

treated with DNA methyltransferase inhibitor 5-aza-29-deoxycy-

tidine (Aza) alone or combined with histone deacetylase inhibitor

trichostatin A (TSA). This pharmacologic demethylation restored

PRDM5 expression in all silenced cell lines, accompanied by the

increase of demethylated promoter alleles (Figure 3B and 3C),

indicating that PRDM5 silencing in tumor cells was directly

mediated by promoter methylation.

PRDM5 is a stress responsive gene but its response is
disrupted by promoter methylation

Analysis of regulatory elements of the PRDM5 promoter by

TFSearch (www.cbrc.jp/research/db/TFSEARCH) revealed two

HSF (heat shock factor) and five Sp1 binding sites (Figure 4A),

suggesting that PRDM5 might be a stress-responsive gene. We then

examined its response to environmental stress stimuli. We found

Figure 1. PRDM5 expression profile in normal tissues and the CpG island in its promoter. (A) PRDM5 is broadly expressed in human normal
adult and fetal tissues. Sk, skeleton. (B) PRDM5 promoter contains a typical CpG island. Each CpG site is shown as a vertical bar, MSP and BGS primers
are indicated. Transcription start site is showed by a curved arrow.
doi:10.1371/journal.pone.0027346.g001

Epigenetic Silencing of PRDM5 in Multiple Tumors
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that PRDM5 expression was dramatically induced in HK1 cells

with unmethylated promoter alleles, after exposure to heat shock

or UV irradiation. However, this stress response was significantly

reduced or totally abolished in cell lines with methylated promoter

(C666-1 and CNE2) (Figure 4B). Moreover, ChIP assay showed

significant enrichment of HSF1 binding to PRDM5 promoter after

heat shock treatment of HK1 cells (Figure 4C), suggesting that

PRDM5 is indeed stress-responsive but this response is disrupted

when the promoter is methylated.

PRDM5 is frequently methylated in primary tumors
We next examined PRDM5 methylation in primary tumors.

MSP detected PRDM5 methylation in 93% (43/46) nasopharyn-

geal, 58% (25/43) esophageal, 88% (37/42) gastric and 63% (29/

46) hepatocellular carcinomas. In contrast, only weak methylation

was infrequently detected in normal tissues (2/7 nasopharyngeal

and 3/7 esophageal tissues), while no methylation was detected in

any of the 9 paired normal tissues of HCC (Figure 5A, Table 1).

BGS analysis confirmed the dense methylation of PRDM5 in

primary tumors but not normal tissues (Figure 5B). Moreover,

quantitative RT-PCR analysis revealed that PRDM5 was fre-

quently downregulated in methylated primary NPC tumors when

compared to normal larynx (Figure 6).

PRDM5 inhibits tumor cell growth and proliferation
Frequent silencing of PRDM5 in multiple cancer cell lines and

primary tumors indicated that PRDM5 likely functions as a tumor

suppressor. Thus, we examined the effects of ectopic PRDM5

expression on tumor cell clonogenicity. A mammalian expression

vector encoding full-length PRDM5 was transfected into nasopha-

ryngeal, esophageal and gastric cancer cell lines with completely

methylated and silenced PRDM5 (HONE1, KYSE140 and

MKN28). Ectopic PRDM5 expression dramatically reduced the

colony formation efficiencies of all cell lines in monolayer culture,

as compared to vector controls (down to 18%, 32% and 56%,

respectively, Figure 7A upper panel and 7B). Expression of

PRDM5 in these cell lines was confirmed by RT-PCR and

Western blot (Figure 7A bottom panel). Consistently, knock-down

of endogenous PRDM5 using siRNA in HEK293 cells significantly

increased the cell proliferation rate (Figure 7C), suggesting that

PRDM5 does function as a tumor suppressor.

PRDM5 modulates WNT/b-catenin signaling and
represses oncogene expression

As a zinc finger transcription factor and epigenetic modifier,

PRDM5 should exert its tumor suppressive functions through

modulating cell signaling and gene transcription. We thus analyzed

the effect of PRDM5 expression on cell signaling using the TCF/b-

catenin- (TOPFlash) and Ras/MAPK-ERK- signaling (SRE)

luciferase reporter constructs. Although PRDM5 expression did

not affect SRE luciferase reporter activity (data not shown), it did

significantly inhibit TOPFlash reporter activity, an indicator of

TCF/LEF-dependent transcription, with FOPFlash reporter con-

struct containing mutant TCF/LEF binding sites as a control

(Figure 8A). Moreover, the promoter reporter activity of CCND1, a

WNT/b-catenin downstream target gene, was markedly decreased

Figure 2. Silencing of PRDM5 by promoter methylation. PRDM5 is frequently silenced and methylated in multiple carcinoma cell lines, while
expressed and unmethylated in all immortalized normal epithelial cell lines examined (underlined) with GAPDH as a control. Ca, carcinoma; NPC,
nasopharyngeal carcinoma; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular carcinoma; M, methylated; U, unmethylated.
doi:10.1371/journal.pone.0027346.g002

Table 1. Summary of PRDM5 methylation in cell lines and
primary tumors.

Samples Promoter methylation (%)

Carcinoma cell lines

Nasopharyngeal 80% (4/5)

Esophageal 44% (8/18)

Gastric 76% (13/17)

Cervical 50% (2/4)

Hepatocellular 25% (3/12)

Colorectal 27% (3/11)

Lung 29% (2/7)

Ovarian 0/2

Bladder 2/3

Primary tumors

Nasopharyngeal Ca 93% (43/46)

Esophageal Ca 58% (25/43)

Gastric Ca 88% (37/42)

Hepatocellular Ca 63% (29/46)

doi:10.1371/journal.pone.0027346.t001

Epigenetic Silencing of PRDM5 in Multiple Tumors
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when PRDM5 was expressed (Figure 8B). We also examined

whether PRDM5 methylation/silencing is correlated with enhanced

WNT/b-catenin signaling in tumor cell lines, and found that the

active form of b-catenin was accumulated in cell lines with

methylated and silenced PRDM5, with significant lower level of

active b-catenin detected in PRDM5-expressing cell lines (Figure 8C).

We further examined the expression changes of multiple

oncogenes and tumor suppressor genes after ectopic PRDM5

expression in both normal and tumor cell lines (HEK293 and

HONE1). Real-time PCR showed that several oncogenes were

dramatically repressed by PRDM5, such as CDK4, TWIST1, and

MDM2 (Figure 9A, Table S1). We further performed ChIP assay,

and found direct binding of PRDM5 to the promoters of CDK4

and TWIST1 (Figure 9B). Moreover, PRDM5 expression resulted

in significant decreased levels of H3K4me3 and acetyl-histone H4

in CDK4 and TWIST1 promoters (Figure 9C), both as active

Figure 3. Pharmacologic demethylation restores PRDM5 expression. (A) High-resolution methylation analysis of PRDM5 promoter by BGS.
Each row of circles represents an individual promoter allele. Filled circle, methylated CpG site; open circle, unmethylated CpG site. (B) Pharmacologic
demethylation by Aza alone or combined with TSA restores PRDM5 expression in methylated and silenced carcinoma cell lines. (C) Detailed BGS
analysis of PRDM5 promoter demethylation in cell lines treated with Aza alone or combined with TSA.
doi:10.1371/journal.pone.0027346.g003

Figure 4. PRDM5 is stress responsive. (A) Transcription factor binding sites in the PRDM5 promoter. Promoter region used for ChIP assay was
indicated. (B) Induction of PRDM5 in response to stresses was disrupted in methylated cell lines, but not in unmethylated ones. Promoter methylation
status was shown at the bottom. M, methylated; U, unmethylated. (C) ChIP assay showed enrichment of HSF1 binding to PRDM5 promoter after heat
shock treatment in HK1 cells. *p,0.05.
doi:10.1371/journal.pone.0027346.g004

Epigenetic Silencing of PRDM5 in Multiple Tumors
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transcription marks. Thus, PRDM5 does exert its tumor

suppressive functions through modulating WNT/ b-catenin

signaling and the expression of multiple oncogenes as an

epigenetic modifier (Figure 10).

Discussion

Identification of TSGs silenced by CpG methylation elucidates

the molecular mechanisms of carcinogenesis and develops

epigenetic biomarkers for cancer detection and prognosis

prediction. In the present study, we showed that PRDM5, an

epigenetic modifier gene, was frequently inactivated by promoter

methylation in multiple common cancers. Ectopic expression of

PRDM5 inhibited tumor cell clonogenicity, at least partially

through antagonizing WNT/b-catenin signaling and oncogene

expression such as CDK4, TWIST1, and MDM2.

Epigenetic silencing of TSGs is critically involved in the onset

and progression of multiple cancers, even preceding genetic

changes during tumorigenesis [17]. CpG methylation of TSG

promoters is a fundamental epigenetic mechanism leading to their

Figure 5. Frequent methylation of PRDM5 in primary tumors. (A) Representative MSP analysis in primary tumors and normal tissues. M,
methylated; U, unmethylated. N, paired adjacent normal tissue; T, tumor. (B) Detailed analysis of PRDM5 methylation in primary tumors by BGS.
doi:10.1371/journal.pone.0027346.g005

Epigenetic Silencing of PRDM5 in Multiple Tumors
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inactivation in tumors [1]. Previous studies showed that PRDM5

silencing was mediated by either DNA methylation or trimethyla-

tion of H3K27 [15], but with limited cell lines and tumors studied.

Here, we systematically studied PRDM5 silencing and methylation

in a large collection of cell lines and primary tumors. Our results

showed that aberrant methylation of PRDM5 was associated with

its inactivation in multiple tumor cell lines and primary tumors,

with the silencing/methylation of PRDM5 in cell lines of gastric

cancer (MKN45) and HCC (huH1, Hep3B and HepG2) consistent

with previous studies [14,15]. Our results demonstrate that tumor-

specific promoter methylation represents the predominant mech-

anism of PRDM5 inactivation, although other mechanisms like

gene micro-deletion or mutations might also exist.

We also found that PRDM5 is a stress-responsive gene, but its

response is impaired when the promoter is methylated. When

inspecting the PRDM5 promoter, we found two predicted HSF

binding sites, with the one at 2390 to 2380 (CGGAAATTTCC)

containing a CpG site. It is likely that methylation of this CpG site

would affect the binding of HSF, leading to the disruption of its

stress response. Thus, epigenetic silencing of PRDM5 could abolish

Figure 6. PRDM5 expression in primary NPC tumors determined
by qRT-PCR. PRDM5 expression level in each sample was normalized
to internal control GAPDH. PRDM5 expression level in each tumor
sample relative to normal larynx is shown, with PRDM5 methylation
status shown at the bottom. M, methylated.
doi:10.1371/journal.pone.0027346.g006

Figure 7. PRDM5 inhibits tumor cell growth and proliferation. (A) Representative colony formation assay of HONE1, KYSE140 and MKN28 cell
lines (upper panel); confirmation of ectopic expression of transfected PRDM5 in these cell lines by RT-PCR and Western blot (bottom panel). (B)
Quantitative analysis of colony formation assay. Data were presented as means6SD of three independent experiments. (C) Knock-down of
endogenous PRDM5 using siRNA in HEK293 cells significantly increased cell proliferation rate as determined by CCK8 assay (left); PRDM5 mRNA levels
of HEK293 cells were evaluated by qRT-PCR (right). siCTRL, control siRNA; siPRDM5, PRDM5 siRNA.
doi:10.1371/journal.pone.0027346.g007

Epigenetic Silencing of PRDM5 in Multiple Tumors
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cellular protective response to environmental stresses, contributing

to tumorigenesis.

PRDM5 is a zinc finger protein. As a sequence-specific DNA-

binding transcription factor, PRDM5 functions as a repressor

targeting multiple protein-coding and miRNA genes involved in

cell cycle, signal transduction and protein modification [16].

Although with a PR/SET domain in the N-terminus, PRDM5

itself does not possess histone methyltransferase (HMTase) activity.

Instead, PRDM5 acts as an epigenetic modifier by recruiting

histone-modifying enzymes like HMTase G9A and HDAC1 to

target genes [16]. Our study indicates that if the epigenetic

modifier PRDM5 is inactivated in tumor cells, its repression to

target oncogenes would be released and thereby contributing to

tumor initiation and progression.

Previous report showed that ectopic PRDM5 expression caused

cell cycle G2/M arrest and induced apoptosis in tumor cells [14],

while the molecular mechanisms remain unknown. Recently, the

zebrafish PRDM5 was found to regulate Wnt/b-catenin signaling

at the early stages of zebrafish development [18]. Our results are in

agreement with this study. Aberrant activation of WNT/b-catenin

signaling is frequently involved in cancers, accompanied with

elevated levels of active b-catenin [19]. In addition to genetic

defects, epigenetic silencing of WNT/b-catenin antagonists also

leads to aberrant WNT/b-catenin signaling in tumors [19].

Frequent methylation-mediated silencing of extracellular (SFRPs

and DKKs) [20–22] and cytosolic (APC, AXIN2 and DACT3) [23–

25] WNT antagonists, nuclear proteins (SOX7 and SOX17)

[26,27], and non-transforming WNT families (WNT5A, WNT7A

and WNT9A) occurs in cancers [28–30], indicating that the

epigenetic inactivation of WNT-signaling negative regulators plays

a critical role in tumor pathogenesis. Our finding that ectopic

expression of PRDM5 leads to the inhibition of WNT/b-catenin

signaling in tumor cells, probably through upregulating DKK1,

DKK2, and WNT5A [18], suggests a novel mechanistic link

between PRDM5 and WNT signaling in human tumorigenesis.

PRDM5 also significantly inhibited the promoter activity of

CCND1, a direct downstream target oncogene of WNT/b-catenin

signaling which acts as a mitogenic signal sensor [31,32]. CDK4 is

one of the binding partners of CCND1 and also transcriptionally

downregulated by PRDM5. PRDM5 silencing is also linked to the

accumulation of active b-catenin in tumor cells, which leads to

constitutive activation of WNT/b-catenin signaling.

In summary, we found that PRDM5 was frequently silenced by

promoter methylation in multiple tumors. PRDM5 suppresses

tumor cell growth through antagonizing WNT/b-catenin signal-

ing and suppressing multiple oncogenes expression. The high

incidence of PRDM5 methylation in some carcinomas indicates

that it is a potential epigenetic biomarker for these tumors.

Materials and Methods

Cell lines and tumor samples
A series of tumor cell lines were used, including nasopharyngeal,

esophageal, gastric, hepatocellular, lung, colorectal, and cervical

cell lines [33,34]. Immortalized epithelial cell lines NP69, NE083,

Het-1A, NE1 and NE3 were used as normal controls. Carcinoma

cell lines were maintained in RPMI 1640 (Invitrogen) supple-

mented with 10% fetal bovine serum. Cell lines were purchased

from the American Type Culture Collection (ATCC, Manassas,

VA) or obtained from collaborators. Human normal adult and

fetal tissue RNA samples were purchased commercially (Strata-

gene, La Jolla, CA or Millipore Chemicon, Billerica, MA).

Figure 8. PRDM5 antagonizes WNT/b-catenin signaling. (A) Effects of ectopic PRDM5 expression on WNT/b-catenin signaling were assessed by
TOPFlash luciferase reporter assay, with FOPFlash reporter as a control. (B) Ectopic expression of PRDM5 repressed CCND1 promoter (+ ,2 kb
upstream) activity by as determined dual-luciferase assay. (C) Correlation of active b-catenin expression and PRDM5 methylation/silencing in
carcinoma cell lines. Active b-catenin protein level was determined by Western blot. PRDM5 expression was evaluated by RT-PCR. +, expressed;
-, silenced. PRDM5 promoter methylation was examined by MSP. M, methylated; U, unmethylated.
doi:10.1371/journal.pone.0027346.g008

Epigenetic Silencing of PRDM5 in Multiple Tumors
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Samples of normal nasopharyngeal and esophageal epithelial

tissues from healthy individuals were described previously [33].

Nude mice-passaged undifferentiated NPC tumors from North

Africans, C15, C17 and C18 were also used [34]. DNA samples of

NPC, gastric tumors, esophageal squamous cell carcinomas,

hepatocellular carcinomas (T) and their corresponding surgical

marginal normal tissues (N), were described previously [34].

Pharmacologic demethylation and stress treatments
Cell lines were treated with DNA methyltransferase inhibitor 5-

aza-29-deoxycytidine (Aza) (Sigma, St. Louis, MO) and histone

deacetylase inhibitor Trichostatin A (TSA) as reported previously

[3]. Cells were subjected to heat shock treatment with incubation

at 42oC for 1 hour followed by recovery at 37uC for 2 hours. For

UV treatment, medium was removed and the flask was turned

upside down to face the light source in a UV cross-linker

(Amersham Biosciences, Piscataway, NJ). Cells were irradiated for

a dose of 70 J/m2. After irradiation, fresh medium was added, and

cells were recovered at 37uC for 1 hour and then harvested [33].

Plasmid construction
The full length open reading frame (ORF) of PRDM5 [14] was

subcloned into the NotI and KpnI site of the pcDNA3.1 mammalian

expression vector to generate pcDNA3.1-PRDM5 with sequence

and orientation confirmed.

Semi-quantitative RT-PCR and real-time PCR
Total RNA was extracted from cell lines using TRI reagent.

Reverse transcription (RT) using random hexamer, and RT-PCR

using Go-Taq (Promega, Madison, WI) were performed as

previously, with GAPDH as a control [34]. Primers used were

PRDM5F: 59-CAGGTTCTCCCTGAAGTCCT and PRDM5R:

Figure 10. Proposed model of the tumor suppressive functions
of PRDM5. PRDM5 antagonizes WNT/b-catenin signaling and sup-
presses oncogene expression (CDK4, TWIST1, MDM2, etc), which leads
to tumor suppression.
doi:10.1371/journal.pone.0027346.g010

Figure 9. PRDM5 suppresses multiple oncogenes expression. (A) Suppression of oncogene expression by PRDM5 in HEK293 and HONE1 cells,
evaluated by real-time PCR. (B) ChIP assay in HEK293 cells showed direct association of PRDM5 with CDK4 and TWIST1 promoters. (C) Downregulation
of CDK4 and TWIST1 by PRDM5 expression is accompanied by decreased H3K4me3 and acetyl-histone H4 levels at their promoters, determined by
ChIP assay in HEK293 cells.
doi:10.1371/journal.pone.0027346.g009

Epigenetic Silencing of PRDM5 in Multiple Tumors
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59-TGAGATGGTGCCTCATGAAC. RT-PCR was performed

for 32 cycles for PRDM5, while 23 cycles for GAPDH.

Real-time PCR was performed using SYBR Green master

mixture and an HT7900 system according to the manufactures’

instruction (Applied Biosystems, Foster City, CA). To screen for

PRDM5 modulated target genes, total RNA extracted from

PRDM5 or vector-transfected cells was treated with DNase I, and

reverse transcripted as described previously [34]. Real-time PCR

was performed for 34 selected candidate target genes. For each

gene, the expression level in PRDM5-transfected cells was

normalized to control. Primer sequences were listed in Table S2.

Methylation-specific PCR (MSP) and bisulfite genomic
sequencing (BGS)

Bisulfite modification of DNA, MSP and BGS was performed as

previously described [4]. The bisulfite-treated DNA was amplified

with methylation-specific primer set, PRDM5m1: 59-TTGTTT-

CGGGTTTCGCGTTC, PRDM5m2: 59-ATTCCTACTACGA-

AAACGCG; or unmethylation-specific primer set, PRDM5u11:

59-TAGTTTTGTTTTGGGTTTTGT, PRDM5u2: 59-CCATT-

CCTACTACAAAAACACA. All MSP primers were tested for not

amplifying any unbisulfited genomic DNA to ensure the specificity

of MSP. For BGS, bisulfite-treated DNA was amplified using BGS

primer set, PRDM5BGS3: 59-GTTTGAAAATTTAGAGTTG-

GAT and PRDM5BGS4: 59-ACCAAAATAAAAAAAAAAAA-

CC. The BGS PCR products were TA-cloned into pCR4-TOPO

vector with 4–10 colonies randomly chosen for sequencing.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed using a commercial kit (17–295,

Upstate) according to manufacturer’s protocol. 1 mg antibody was

used for each ChIP assay, while no-antibody immunoprecipitation

was used as negative control. Input DNA and immunoprecipitated

DNA were purified with QIAamp DNA mini kit (51306, Qiagen).

The enrichment of each target sequence was determined by real-time

PCR. Immunoprecipitated DNA enrichment was normalized to its

input. Antibodies used were HSF1 (4356, Cell Signaling), FLAG M2

(F3165, Sigma), Histone H3K4me3 (ab8580, Abcam), and acetyl-

Histone H4 (06–866, Upstate). Primers used were: PRDM5ChIPF:

59-TGGAAAACCTACTTAGTCCAG and PRDM5ChIPR: 59-G-

AGGCTGATCTGAGATGTTC; CDK4ChIPF: 59-TACACAC-

TGGAAGCAAGCAC and CDK4ChIPR: 59-GGTCTTTCAG-

CCTGTCTGC; TWIST1ChIPF: 59-GGAGGACGAATTGTTA-

GACC and TWIST1ChIPR: 59-GCAGTGTCATTGGCCTGAC.

Colony formation assay
Cells were seeded at 16105 cells/ml and cultured overnight in

12-well plates. Cells were then transfected with pcDNA3.1-

PRDM5 or empty vector using FuGene6 (Roche). Forty-eight

hours post-transfection, cells were collected and seeded in 6-well

plates at an appropriate density with G418 selection (400 mg/ml).

After 2-3 weeks, cells were stained with Gentian Violet with

survived colonies ($50 cells/colony) counted.

siRNA transfection and cell proliferation assay
PRDM5 siRNA and siRNA negative control were obtained from

Invitrogen. siRNAs were transfected using Lipofectamine 2000

(Invitrogen) according to manufacturer’s protocol. Twenty-four

hours after transfection, cells were collected and seeded in 96-well

plates (103 cells per well). Cell proliferation rates were determined

at indicated time points using Cell Counting Kit-8 (Dojindo,

Rockville, MD). Triplicates for each sample were performed.

Dual-luciferase reporter assay
Luciferase reporter construct of CCND1 promoter (+ ,2 kb

upstream of transcription start site), or TOPFlash reporter

containing 4xTCF-binding sites (kind gift from Dr. Christof

Niehrs, German Cancer Research Center (DKFZ)), or FOPFlash

reporter containing mutant TCF/LEF binding sites (kind gift

from Dr. Jin Dong-Yan, University of Hong Kong) was co-

transfected with either pcDNA3.1-PRDM5 or empty vector,

together with an internal control Renilla luciferase reporter pRL-

CMV vector using FuGene6 [35]. Forty-eight hours after

transfection, cells were harvested and analyzed by the dual-

luciferase assay kit (Promega, Madison, WI). Each experiment

was repeated for three times. Statistical analysis was carried out

by Student’s t-test, p,0.05 was considered as statistically

significant difference.

Western blot
Cell pellets were incubated in lysis buffer (50 mmol/L Tris-

HCl, pH 8.0; 150 mmol/L NaCl; 0.5% NP40) for 30 minutes on

ice, followed by centrifugation at 14,000 rpm for 15 minutes at

4uC. Cell lysates were resolved using SDS-PAGE gels and

transferred onto nitrocellulose membranes. Membranes were then

incubated with primary antibodies for 1 hour at room temperature

or overnight at 4uC, followed by incubation with a secondary

antibody at room temperature for 1 hour. Immunoreactive bands

were detected using Western blot Luminol reagent (GE Health-

care Bio-Sciences) according to the manufacturer’s protocol.

Antibody used were FLAG M2 (F3165, Sigma), active b-catenin

(05-665, Upstate) and a-Tubulin (DM1A, Lab Vision).

Supporting Information

Figure S1 PRDM5 downregulation and methylation is rarely

detected in cell lines of lung, colorectal, ovarian and bladder

cancer. Ca, carcinoma; M, methylated; U, unmethylated.

(TIF)

Table S1 Real-time PCR of PRDM5 target genes. Modulation

of multiple genes by PRDM5 expression in HEK293 and HONE1

cells was evaluated by real-time PCR. Data were obtained from

three independent experiments and presented as relative average

ratio. The expression of target genes in PRDM5-transfected cells

were normalized to those in vector controls, GAPDH was used as

internal control. p,0.05 was considered as statistical significance

by Student’s t-test.

(DOC)

Table S2 Primers for target gene screening by real-time PCR

analysis.

(DOC)
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