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Abstract 

Intervertebral disc engineering confronts many challenges owing to its complexity 

and the presence of extraordinary stresses. However, rebuilding a disc of native 

function could be useful for the removal of the symptoms, and the correction of 

altered spine kinematics that are associated with disc degeneration. Improvement in 

the understanding of disc properties and techniques for its engineering brings promise 

to the fabrication of a functional motion segment for the treatment of disc 

degeneration. While whole disc engineering is premature relative to articular cartilage 

engineering, the increasing sophistication of techniques available in biomedical 

sciences will eventually bring its application into clinics. In this review we give an 

account of the current progress and challenges of intervertebral disc bioengineering, 

and discuss possible means to move forward and towards bedside translation. 
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Introduction 

Disease conditions are often manifested with the disruption of tissue structure and 

function, in which the body is incapable of repairing. Advancement in various 

disciplines including cell biology, developmental genetics, materials science, and 

biomechanics, has brought the realization that tissue engineering could assist tissue 

repair or replacement. Unlike cartilage engineering, the engineering of the 

intervertebral disc (IVD) confronts many challenges owing to its complexity and 

presence of extraordinary stresses related to its architecture and function. The IVD 

plays a crucial role in articulation of the spinal column and contributes to various 

body postures and force coordination in daily activities. Along with its role in 

articulation, the IVD has a major function in providing cushioning effects to the spine 

against axial load. As a result of the intensive mechanical stress, the IVD suffers from 

degeneration in a similar fashion to articular cartilage in loaded appendicular joints. 

The causes of IVD degeneration are not clear, although it is thought to be 

multifactorial with a large contribution from both genetic and environmental 

components [1,2], and may share common biological components exhibited in 

osteoarthritis [3]. Current treatments predominantly aim not to correct the 

degeneration, but alleviate symptoms such as back pain and sciatica which are often 

manifested by severe IVD degeneration or radiculopathy caused by prolapse of the 

degenerated disc. Conventional modalities range from surgical means such as spinal 

segment fusion, laminectomy, and total disc/nucleus replacement, to non-invasive 

physiotherapies such as ultrasound electrotherapy and traction.  

 

Current theory suggests that when the IVD is degenerated, the articular unit has 

compromised mechanical function and subsequently, the motion segment becomes 

unstable under load. Consequently, this may result in significant pain and 
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neurological irritations that can cause a severe decrease in daily activities of the 

individual. While intervertebral fusion, the ‘gold standard’ for treating symptomatic 

disc degeneration may stabilize the segment and relieve symptoms, juxtalevel 

degeneration may occur due to the observed hypermobility of the IVD adjacent to the 

fused segment [4]. Rebuilding an IVD of native function that allows appropriate 

interplay with other motion segment components including the facet joints and 

ligaments, could therefore be promising in the removal of symptoms whilst 

simultaneously reestablishing spine kinematics. A recent study of IVD allograft 

transplantation to treat cervical disc herniation in humans supports this notion [5]. 

Whilst total disc replacement may potentially resolve the issue in a similar manner, 

long-term results suggest that artificial disc replacements frequently result in 

spontaneous fusion, and is considered to be an expensive spacer for fusion [6]. 

Bioengineering of the IVD may therefore provide an alternative solution to address 

the issue.  

 

Tissue engineering can be achieved at different levels of complexity, from cell 

programming and scaffold modeling, to cell-scaffold composite construction and 

multi-scale tissue fabrication. Advances in our understanding of IVD properties and 

techniques in its engineering at each of the levels may impact on the success of 

building a functional motion segment for treating disc degeneration. In this review, 

we give an account of the progress and challenges of IVD engineering, and propose 

what is needed to move forward and towards bedside translation. 

 

Disc cell engineering 

The IVD is composed of multiple subunits that integrate seamlessly to form 

sophisticated and complex mechanical function. It has three main structures: a 
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gelatinous nucleus pulposus (NP) core wrapped around and confined by a fibrous 

lamella structure, the annular fibrosus (AF), and cartilaginous endplates (CEP) of the 

vertebrae sandwiching the NP and AF. The three compartments are different in 

mechanical properties and are functionally dependent on each other. These 

compartments are made up of various matrix components, predominantly collagens 

and proteoglycans, and comprise of different cells that are thought to play roles in 

maintaining the matrix integrity. From a developmental point of view, IVD formation 

involves the diversification of cells from a primitive anlage consisting of the 

notochord and its surrounding mesenchymal cells, a process that involves vigorous 

cell differentiation during the embryonic stage, and continual postnatal remodeling of 

its microenvironment including the extracellular matrices [7,8,9]. 

 

The primary role of the IVD is to provide mechanical support and motion, which is 

largely attributed to the viscoelastic properties (the viscous and elastic behavior under 

deformation) of the IVD [10]. IVD-like properties and function may possibly be 

obtained by simply using acellular scaffolds or devices. However, materials with 

desirable viscoelastic properties pertaining to IVD are often biodegradable and 

therefore their function may not be sustained in the long-term. Cell-containing 

constructs are advantageous with cells enable to remodel the scaffold template, 

thereby maintaining or enhancing matrix integrity. More importantly, IVD 

transplantation studies have demonstrated the integration of disc allograft to recipient 

vertebrae by biological remodeling at the endplates, including that of mis-aligned 

discs which were also found to self-correct post surgery [5]. Since the self-correction 

is considered to eventually contribute to motion segment kinematics and stability in 

the long term, cellular IVD constructs would theoretically outperform acellular 

prosthetic devices in function. 
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The loss of integrity and viscoelasticity of the NP is one of the earliest observable 

events in disc degeneration, suggesting that the engineering of the NP is crucial to the 

success of a functional IVD construct. Considerable effort has been invested into 

understanding the NP, in particular, delineating the NP cell phenotype so as to 

facilitate NP cell engineering for the creation of cellular IVD constructs. Two cell 

populations are thought to exist in the NP: small non-vacuolated cells with a 

chondrocyte-like phenotype, and large vacuolated cells which are often referred to as 

notochordal cells [11]. The large vacuolated NP cells have been shown to originate 

from the notochord [8], whereas controversy still surrounds the origin of the 

chondrocyte-like cells, particularly in human NP. Nevertheless, recent studies have 

provided some insights to the molecular identity of the latter type of cells based on 

microarray-based gene expression profiles of NP cells from adult human [12], bovine 

[13], and chondrodystrophoid dog [14]. Notably, these studies did not yield common 

genetic markers that is translatable among different species, but rather, indicated the 

presence of species-specific markers, for example PAX1 and FOXF1 in human, A2m 

and Anxa4 in canine, and Snap25 and Krt8 in bovine. Expression profile studies of 

rodent NP cells [15], which predominantly consist of large vacuolated notochordal 

cells, also suggested that markers may not be shared with human NP cells, and 

indicated that notochordal and chondrocyte-like NP cells may be distinct in 

phenotypes. This is supported by cell sorting studies in which the two populations 

were separately extracted from the same animal for comparative analyses [13,16]. 

Nevertheless, recent studies suggest that a crosstalk may possibly exist between the 

two cell populations, complicating the search of the true NP cell identity [17][18].  

 

IVD and articular cartilage have different mechanical properties. The transplantation 
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of chondrocyte-like cells or the use of such cells in the engineering of NP constructs 

may not produce a disc with ideal function. On the other hand, future IVD 

engineering will likely utilize stem cells and other progenitor cell types to 

differentiate into NP cells and generate them in large quantity. Unless the phenotype 

and the functional characteristics of the notochordal and chondrocyte-like NP cell 

types are clearly defined, the generation of authentic NP cells from stem/progenitor 

cells and hence bioengineering of NP with native mechanical properties may not be 

achieved. In vitro studies have suggested that stimulation by co-culturing with NP 

cells [20,21,22,23], induction of chondrogenic transcription factor SOX9 [24,25] or 

stimulation by chondrogenic growth factors TGF-β1 (transforming growth factor beta 

1) [25,26,27] are attractive strategies to drive differentiation of adult stem cells, such 

as mesenchymal stem cells, into NP-like cells. However, whether or not the 

differentiated cells have attained an authentic NP cell or chondrocyte-like phenotype 

remains elusive. Engineering the NP with chondrocytes is not desirable since it is 

likely that the construct will become hyaline cartilage instead of NP tissue and hence 

possesses inappropriate viscoelastic properties.  

 

AF cells are generally referred to as fibrochondrocytes. This phenotype is based on 

the ability of AF cells to produce collagen I and III, in addition to collagen II and 

aggrecan which are produced to a lower extent [28]. Compared to NP cells, the 

molecular phenotype of AF cells and their changes in disc degeneration is less clear. 

While NP and AF are morphologically different and supposedly have different cell 

phenotypes, recent transcription profiling studies indicated that AF cells express a 

large number of non-house-keeping genes at similar level to that of NP cells 

[12,13,14]. Nevertheless, other potential markers are suggested to be differentially 

expressed at higher levels in the AF relative to the NP, for example VCAM1 in human 
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[12]. Fibromodulin has been shown to be a specific marker of the AF in rodent [30], 

however, its expression pattern in humans or large animal models is unclear. On the 

other hand, while the CEP is assumed to be analogous to hyaline cartilage and 

consists of chondrocytes, the molecular phenotype of CEP cells is also not clear, and 

that there is a lack of evidence that demonstrates their similarities. In fact, histological 

findings have suggested that there is a difference in the glycosaminoglycan 

composition and collagen VI and X expression between CEP and growth plate 

cartilage [9,31]. It is not clear whether or not the use of chondrocytes in 

bioengineering can fully fulfill the function of the CEP. 

 

Engineering the disc microenvironment 

The bulk of the IVD is composed of extracellular matrix which plays prominent roles 

in the regulation of the disc cell environment and providing anchorage to disc cells. 

The extracellular matrix of the IVD, like cartilage, is comprised of mostly collagens 

which provide tensile strength of the disc [32], and proteoglycans, which function to 

reduce the internal friction in the disc matrix and to distribute load [33]. Importantly, 

they also account for the viscoelastic behavior of the IVD, contributing to the shock 

absorbing property [34]. Based on the relationship between function and form, 

materials that can mimic the anatomic architecture and mechanical properties of 

native IVD (reviewed by Nerurkar et al [10]) are of interest to disc bioengineers. 

 

Like hyaline cartilage, aggrecan and collagen II are the two main extracellular matrix 

components of mature NP. Although the NP in mature human IVD is thought to be 

analogous to articular cartilage, the nature of the matrix and hence their mechanical 

properties are not exactly the same [35]. NP in young individuals have a high 

proteoglycan to collagen content, with a suggested GAG to hydroxyproline ratio of 
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27:1, in comparison to a 2:1 ratio in hyaline cartilage [36]. The high proteoglycan 

content in the NP matrix facilitates the retainment of water which attributes to the 

high hydrostatic pressure exhibited in the NP. Hydrogel scaffolds have been 

commonly used with the intention of simulating the NP microenvironment and 

entrapment of the newly deposited proteoglycan to facilitate the establishment of 

hydrostatic pressure. The effectiveness of various hydrogel-based scaffolds, either 

made from natural hydrophilic biomolecules or synthetic polymers, for NP 

engineering or repair has been documented. To date, alginate is one of most 

commonly adopted hydrogel scaffolds for NP cell culturing [37,38] due to its ease of 

manipulation, biodegradability and inert bioactivities. Hyaluronic acid (HA) has been 

used for the treatment of osteoarthritic knee joints via the direct application into the 

synovial cavity, and in vivo studies propose that HA [39,40,41,42] or HA-derived 

hydrogel [43,44,45] may facilitate NP function and promote motion segment 

mechanics. However, because the NP plays an important role in withstanding the 

compressive load so as to maintain disc height and range of motion of spinal segment, 

pure hydrogel scaffolds, which lack confined compressive strength, may not be 

adequate for NP engineering. Collagen I microspheres [46,47] and calcium 

polyphosphate [48] may on the other hand provide good tensile and compressive 

strength to support stem cells or NP cells in NP engineering. Recent studies have 

focused on the generation of collagen-incorporated [50,51,52] or polymer-linked 

[53,54] hydrogels. These hybrid scaffolds mimic the native microenvironment of the 

NP to reproduce its viscoelastic and load distribution behavior within the IVD. In fact, 

while swelling is known to provide the main load-bearing mechanism in the NP, the 

extensive collagen network inside the disc has also been suggested to support a 

considerable portion of load as the collagen fibril meshwork contributes to the 

compressive modulus to the tissue [55]. Moreover, collagens have been shown to act 
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as a reservoir of signaling ligands, such as TGF-β1 and BMP-2 for collagen II [56], 

and are able to transduce mechanical signals [57,58], therefore serving as important 

regulators of cell function and homeostasis. 

 

In addition to NP engineering, current research has attempted to use injectable 

scaffolds as carriers to deliver cells with the aim of salvaging disc degeneration or on 

its own, as fillers for NP replacement using a minimally invasive approach [52]. 

Studies have also developed injectable materials that have the ability to self-assemble 

into a higher-order network, resulting in a sol-gel (solution-to-gel) transition. For 

example, atelocollagen (pepsin-digested collagen) can self-crosslink to form a fibrous 

meshwork [59,60], and chitosan [27,61] and synthetic peptides [62,63,64] have been 

reported to self-assemble into a nanofiber network. Other natural biomolecules 

including hyaluronan and chitosan, when modified with crosslinkable moieties, are 

capable of chain polymerization through photochemical reactions [65]. These 

materials, as injectable media, may deliver cells of interest by providing a transient 

framework that prevents leakage of implants and allow for the accumulation of the 

extracellular matrix deposited by the introduced cells. 

 

While intradiscal pressure exerted by the NP plays an important role in disc function, 

it critically depends on the integrity of the AF. In addition, the trans-AF delivery 

system remains the commonly used way to manipulate the NP in clinical and 

experimental settings. The construction of AF may facilitate the repair of prolapsed 

discs and supplement nucleus replacement. Annulus closure devices [66] may 

possibly provide an effective means to treat prolapsed discs, however, may restrict 

segment motion and possibly modify the load distribution in the IVD. AF 

construction is understandably indispensable to IVD engineering, but effective 
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bioengineering of AF may not be implemented without proper understanding of its 

microstructure and mechanics.  

 

The AF lamellae are mainly composed of collagen I fiber bundles and have 

anisotropic mechanical behavior [67]. These bundles are approximately concentric to 

the lamellae around the NP, where the direction of alignment in one lamella differs to 

the next by 30° [68]. This angle-ply architecture of lamellae is thought to be designed 

to resist shear resulting from complex physiological stresses such as a combination of 

axial loading and torsion [69,70]. Annulus fibers are interconnected via intra-lamellar 

cross-bridges [71] and inter-lamellar bridges [72,73]. In vitro studies showed that 

excess circumferential constraint may negatively impact on NP cell metabolic 

activities [75], which suggests that tissue rigidity needs to be carefully controlled 

during AF construction. The rigidity of the AF largely depends on the mechanical 

properties of the materials used during fabrication. Various materials have been tested 

for AF tissue construction, and include porous silk [76,77], polymer nanofibers 

[40,69,78,79], polylactide/Bioglass composite [80], and alginate/chitosan composite 

[81]. These scaffolds provide a framework of desirable mechanical and bioinductive 

properties for future AF engineering. An alternative is collagen gel [82,83] or 

collagen-GAG composite [84], although fabrication into a specific geometry (such as 

fibers or lamella) or characteristic topographical template may be limited. Since AF 

cells are normally aligned with the lamella fibers, it may be ideal that AF constructs 

can be engineered through simultaneous controlled placement of AF cells and 

orientation of the matrix they interact with, such as using scaffolds with specifically 

designed micro-grooves [85].  

 

Collagen fiber structure determines the mechanical strength and elasticity of the 
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annulus. Recent studies in AF engineering have shed light on some important aspects 

of its structural properties at the molecular level. Nerurkar et al showed that, through 

electrospun nanofiber fabrication, a bi-lamellar tissue model with AF-like angle-ply 

architecture can be generated [70,86]. By mechanical testing and modeling, they 

demonstrated that the bonding between the angle-ply lamellae is crucial to the 

resistance of inter-lamellar matrix to local deformations and therefore functions to 

reinforce the overall tensile response of AF architecture. Moreover, an in vitro study 

indicated that fibronectin can play a pivotal role in facilitating AF cell attachment and 

alignment on nanofibers [87], implying that a synergy between collagen and other 

non-collagen matrix components may be required to provide AF cells a niche to attain 

appropriate activities. Altogether, these findings indicate that the AF structure is not 

just a multi-layered fibrous tissue, but built with a sophisticated hierarchy of intra- 

and inter-lamellar supramolecular interactions.  

 

The CEP is involved in attachment of both AF and NP fibers [88]. Using a triphasic 

model, Kandel et al also suggested that the CEP is a critical interface for bone-disc 

integration by providing an adhesive force that is resilient to shear loading [89]. In 

addition, they reported that the CEP may secret factors to stimulate proteoglycan and 

inhibit TNF-α production in NP cells, suggesting CEP has a role in regulating NP 

homeostasis [90]. The CEP is thought to be similar to articular cartilage, and can be 

artificially engineered by plating and incubating chondrocytes at a high density on the 

target interface where they secret matrices to model the interface into a cartilage layer 

[89,91]. 

 

Towards whole disc engineering 

By the time a degenerated disc becomes clinically symptomatic and requires 
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treatment, the AF and endplate, in addition to NP, are also structurally altered or 

functionally incompetent. In fact, at a severely degenerated stage, the motion segment 

is often largely compromised not only because of malfunction of the disc but also due 

to secondary arthritic changes such as facet joint degeneration and osteophyte 

formation. Transplantation of whole IVD appears to be a rational approach to replace 

severely degenerated spinal motion segments. This has been demonstrated recently in 

large animal models and in humans, where the transplantation of disc allografts was 

able to alleviate symptoms caused by the degenerated segment and thus a feasible 

option for treating disc degeneration [5,97]. However, it is still not clear if allografts 

may be routinely applied in practice due to the limited availability of non-degenerated 

disc tissue from healthy donors, and legislative regulations in utilizing human 

cadavers. Artificial disc installation may provide an alternative to overcome the issues. 

However, the application of artificial disc replacements may need to overcome 

additional hurdles such as recipient-graft integration and demand in surgical precision 

that could possibly be overcome using organic disc grafts due to their biological 

remodeling capacity [5]. 

 

While de novo bottom-up assembly of whole IVD is considered a challenging task, 

various attempts have been made to construct disc tissue prototypes with 

multi-compartmental features. Nesti et al [40] studied a biphasic model composing of 

an outer fibrous shell fabricated by electrospun nanofibers and an inner filling made 

of HA. Under stimulation with TGF, mesenchymal stem cells (MSCs) pre-implanted 

in the two compartments were able to differentiate, transforming the composite into 

AF- and NP-like structures. Mizuno et al [98] were able to produce an IVD-like tissue 

by generating a composite of AF cell-seeded synthetic polymer mesh wrapping 

around an NP cell-seeded alginate filling, which was subsequently implanted 
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subcutaneously for in vivo modeling and resulted in a collagen/proteoglycan-rich 

construct of enhanced mechanical properties. Another study by Wan et al [99] tested 

the fabrication of a dual-layer composite consisting of bone matrix gelatin in one 

phase and chondrocyte-seeded, concentrically oriented polymer in another to replicate 

the inner and outer AF. Hamilton et al [89] constructed a triphasic model to 

recapitulate the bone-CEP-NP organization. With the fabrication technique that 

replicates the angle-ply fiber organization of AF, Nerurkar et al engineered a 

biochemically and mechanically functional AF-NP composite with MSCs. 

Collectively, these studies reveal the possibility of artificially engineering discs which 

are similar anatomically and mechanically to the native disc, and thus have laid a 

valuable foundation for building a fully functional multi-scale disc composite for total 

disc replacement. Future efforts are anticipated to build a complete CEP-NP-AF 

architecture in order to simulate the higher-order complexity of native disc tissues. An 

osteochondral interface with proper zonal organization between vertebre and CEP 

may also need to be carefully engineered to obtain satisfactory structural and 

functional complexity, such as via a collagen microencapsulation-based multi-layer 

co-culture method [100]. 

 

Hurdles and perspectives 

The function of the IVD relies on an integrated dynamic interaction between the NP, 

AF and CEP. Therefore, de novo engineering of IVD would ultimately entail 

comprehensive knowledge in the biology and engineering techniques. At this stage, 

while the mechanical properties and functions of the individual compartments (i.e. NP, 

AF and CEP) have been fairly well studied, there is limited understanding in the 

interaction among the compartments. For instance, what components are present in 

the interface between NP and inner AF, and how AF/NP fibers are attached to the 



	   15	  

CEP. This is analogous to the interface between tendon and bone, but with more 

complex mechanical moduli due to interplay among the disc compartments. 

 

Moreover, disc cell engineering appears to be one of the main hurdles in the progress 

of IVD bioengineering. This could be partly due to an incomplete understanding of 

their phenotypes and their modulation during disc development and homeostasis. 

Studies of animal and ex vivo culture models, such as transgenic mice and bioreactor 

systems, may provide clues, such as specific genes or signaling factors, necessary for 

the induction of progenitors or stem cells to become disc-related cell types, and to 

stably maintain the phenotype/characteristics of the derived cells in vitro. On the other 

hand, a better modeling of IVD microarchitecture may be achieved through molecular 

imaging and nanotechnology for better scaffold design and fabrication. 

 

The engineering of a complete IVD is the first step of many, but the true challenge 

lies in the production of a fully functional IVD. Within a decade, we will probably 

arrive at a stage that will enable complete bioengineering of all disc compartments. 

However, in the long-term there may be a limitation in the available fabrication 

technology that enables the assembly of the building blocks to establish overall disc 

biomechanics. Perhaps to overcome the issue, one might possibly fabricate a disc 

anlage, a primitive construct composing of distinctly engineered compartments, and 

subsequently allow the construct (the so-called precursor tissue analog [103]) to 

evolve to form a mature IVD through native morphogenetic activities of disc cells, 

mimicking tissue growth and remodeling during the post-natal maturation process of 

the IVD [7,9]. Such a strategy may be realized with future advances in disc cell 

engineering and bioreactor systems for whole IVD culturing with mechanical 

stimulation [63,95,104]. Perhaps with advancement in tissue engineering and total 
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disc replacement devices, it may be possible to combine both disciplines to create 

hybrid constructs with strengths in bioactivity, mechanical function, and durability. 

 

Tissue engineering for IVD is at its infant stage when compared to articular cartilage 

engineering. However, in view of increasing the variety and sophistication of 

modalities available in cell biology, biomechanics, and tissue engineering, the 

bioengineering of whole functional IVD, and hence its clinical application, could 

eventuate in the not too distant future. 
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