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Abstract In this paper, we propose a new self-calibration
algorithm for upgrading projective space to Euclidean space.
The proposed method aims to combine the most commonly
used metric constraints, including zero skew and unit aspect-
ratio by formulating each constraint as a cost function within
a unified framework. Additional constraints, e.g., constant
principal points, can also be formulated in the same frame-
work. The cost function is very flexible and can be com-
posed of different constraints on different views. The up-
grade process is then stated as a minimization problem
which may be solved by minimizing an upper bound of the
cost function. This proposed method is non-iterative. Exper-
imental results on synthetic data and real data are presented
to show the performance of the proposed method and accu-
racy of the reconstructed scene.

Keywords Multiple views · Self-calibration · Euclidean
reconstruction · Projective reconstruction · Uncalibrated
images · Structure and motion

1 Introduction

A projective space can be reconstructed robustly from 2D
correspondences across multiple uncalibrated images by one
of the several proposed projective reconstruction methods
[11–13, 28, 29]. Projective space, however, does not contain
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sufficient information for human perception of the 3D scene.
Upgrading from projective to Euclidean space is necessary
for visualization or virtual navigation.

The upgrade process is referred to as ‘Euclidean recon-
struction’ or self-calibration. The proposed algorithm in this
paper is a kind of self-calibration where the camera intrinsic
and extrinsic parameters are computed from 2D correspon-
dences without any knowledge about the scene and cameras.

In this paper, we propose a new self-calibration algo-
rithm for upgrading the reconstructed projective space to
Euclidean space.

Three usual conditions that can be used for Euclidean re-
construction are:

1. the zero-skew constraint;
2. the unit aspect-ratio constraint and
3. the (partial) constant principal-point constraint.

These three constraints are formulated in the same frame-
work such that the algorithm treats every view and constraint
equally. Our proposed algorithm is flexible since the above
three constraints can be customized for any specific situa-
tion.

The whole process is non-iterative with the runtime of
this algorithm being proportional to the number of applied
constraints.

The paper is organized as follows. We first provide a lit-
erature review on self calibration in Sect. 2. The relationship
between the dual image of the absolute conic and the abso-
lute dual quadric for camera calibration is briefly described
in Sect. 3. The problem of Euclidean reconstruction is for-
mulated in Sect. 4. The theory of the proposed algorithm is
derived in Sect. 6.

The complete algorithm is provided in Sect. 7. Experi-
mental results are given in Sect. 8. The proof of rank-4 prop-
erties is given in Sect. 9. Some additional constraints are
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provided in Sect. 10. Section 11 contains some concluding
remarks.

2 Literature Review

In classical calibration methods, the camera intrinsic (i.e.
Ki ) and extrinsic (i.e. rotation, Ri and translation, ti ) pa-
rameters are computed from images of a calibration board
with known grid patterns. The intrinsic and extrinsic param-
eters can be estimated accurately. Self-calibration, a new
trend of camera calibration, is to obtain the camera intrin-
sic and extrinsic parameters from point correspondences of
unknown objects instead of known objects. Maybank and
Faugeras [14] proved that self-calibration is possible when
the intrinsic parameters are fixed over a sequence of images
by solving the Kruppa equations [4, 14, 32], which are a set
of non-linear constraints on the intrinsic parameters. How-
ever, the result is very sensitive to noise. Sturm [27] pointed
out that the Kruppa equations will fail for some non-critical
motions (which are non-degenerate configurations for other
self-calibration methods). Gurdjos et al. [7], Sturm [26] also
studied ‘artificial critical motion sequences’ for linear self-
calibration algorithms [1, 7, 8, 18, 31].

Hartley [9] proposed a series of non-linear algorithms
to reconstruct the Euclidean model and camera parameters
from 2D correspondences by assuming constant intrinsic
parameters. Pollefeys and Gool [17] proposed the modulus
constraint to recover the affine space from projective space
and solve for the dual images of the absolute conic to up-
grade an affine space to a Euclidean space. This method
relies on the assumption of constant intrinsic parameters.
There are at most 64 solutions for the locations of the plane
at infinity but not all of them are sensible solutions. It is
costly to solve for the 64 possible solutions by the usual
continuation method. A new derivation of the modulus con-
straint directly from three views is proposed by Schaffal-
itzky [22]. The number of feasible solutions is then reduced
to 21 and a numerical algorithm is also provided for com-
puting them efficiently. However, there is still the problem
of deciding which one is the correct solution.

Fundamental matrices between any two views can be
computed easily from a projective reconstruction. A simple
non-linear method [15] decomposes the fundamental matri-
ces into essential matrices by enforcing the property of the
singular values (i.e. λ = {e−iθ , eiθ ,0}) of an essential ma-
trix iteratively. The problem of Euclidean reconstruction is
formulated as a minimization problem directly parameter-
ized in terms of all intrinsic parameters (and there is no con-
straint on the intrinsic parameters). More detail experimen-
tal results can be found in [5]. There is, however, a lack of
proof of convergence and the result relies on a good initial
guess.

Instead of direct parameterizations on intrinsic parame-
ters, there are some implicit methods [1, 2, 8, 12, 16, 18,
20, 23–25, 31] for recovering the projective distortion ma-
trix to upgrade projective to Euclidean space. Triggs [31]
proposed to estimate the absolute quadric of the projective
space based on the assumption of constant intrinsic parame-
ters. This non-linear method requires at least four views.

If the skew factors are zero and both the principal points
and the aspect ratios are known, the projective distortion ma-
trix H ∈ R

4×4 can be solved linearly [2, 8, 16, 18, 19].
The method proposed by Han and Kanade [8] needs at

least 8 views to solve for the absolute quadric [31] linearly.
Sainz et al. [21] further developed the method of [8] for
enforcing the rank-3 property of the absolute quadric with
the assumptions that all the cameras have zero-skew, unit
aspect-ratio and known principal points. This rank-3 prop-
erty can be obtained by solving a 4th order polynomial
which is the determinant of a linear combination of two
possible solutions in one parameter. Practically, there will
not be exactly two possible solutions only when there is at
present of noise. Also, the important positive semi-definite
property of absolute dual quadric is also not enforced in
their algorithm. Pollefeys et al. [19] proposed to formulate
the linear approach of Han and Kanade [8] differently from
[21] for the assumptions that all cameras have zero-skew,
unit aspect-ratio and known principal points for at least 3
views. A direct parameterization is proposed to solve for the
5-unknown simplified absolute quadric which is based on
the special choices of the first camera projection matrices
in the projective and the upgraded Euclidean space. When
there are only 2 views, the solution is determined up to a one
parameter family of solutions. Similarly to [21], the rank-3
property constraint on the simplified absolute quadric can
be imposed on solving the 1-parameter but there will be 4
possible solutions.

Heyden and Åström [12] introduced a camera with Eu-
clidean image plane when the camera satisfies the two con-
ditions: zero-skew and unit aspect ratio. They also proved
that it is possible to upgrade projective to Euclidean space
when the cameras have Euclidean image planes. Seo and
Heyden [23] proposed another iterative linear algorithm to
solve for the absolute dual quadric. This method needs a
lot of iterations for convergence and the numerical stabil-
ity is not considered. Seo and Hong [25] proposed a linear
approach to estimate the absolute dual quadric by complex
eigen-decomposition. As the method is only developed for
zero-skew constraints, it will not make use of other available
constraints (such as known aspect-ratio and principal point).
Seo and Heyden [24] further proposed to alternatively esti-
mate the absolute dual quadric by applying a linear method
[18] and re-estimate the principal points. The applied linear
method is proposed by Pollefeys et al. [18] to solve the ab-
solute dual quadric linearly by assuming zero skew, known
aspect-ratio and principal point.
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Having the same assumptions on an image sequence with
Euclidean image plane, Bougnoux [1] proposed a closed-
form solution for calculating the focal lengths and the plane
at infinity for upgrading to Euclidean reconstruction with a
‘visually perfect’ result. It is proved in [1] that this method
has an ambiguity of the anisotropic homothety so that the
upgraded 3D scene is only good by visual verification and
the estimated intrinsic parameters are not accurate. The iter-
ative methods suffer from the usual problem that the itera-
tive algorithm should be initialized by a sufficiently accurate
guess.

In this paper, we propose a new self-calibration algorithm
to estimate the projective distortion matrix. The method of
recovering the projective distortion matrix is formulated in
a subspace framework. The proposed method is also based
on solving the absolute dual quadric [10]. We unify most
of the common constraints on intrinsic parameters (such as
zero-skew constraint, unit aspect-ratio constraint, constant
principal points etc.) within the same subspace framework.
The proposed algorithm is simple and flexible for combining
different assumptions in a single minimization problem. The
derivations of different constraints for different assumptions
will be provided. Some features of the proposed algorithm
are:

1. a non-iterative algorithm;
2. views are treated equally and all constraints are treated

equally;
3. options for combining different constraints.

3 Background

3.1 Dual image of the absolute conic and absolute dual
quadric

In the Euclidean space, the absolute dual quadric is defined
as

Ω∗ ∼
[

I3 03×1

0T
3×1 0

]
.

Let us denote a rigid transformation T as

T =
[

R t
0T

3×1 1

]

where R is a 3 × 3 rotational matrix and t is a 3 × 1 transla-
tion vector. The absolute dual quadric transformed by T can
be expressed as

T Ω∗T T =
[

R t
0T

3×1 1

][
I3 03×1

0T
3×1 0

][
RT 03×1

tT 1

]
= Ω∗

which shows that the absolute dual quadric is invariant to
any rigid transformation. The absolute dual quadric can be

projected to any camera and its image on the image plane
is called the dual image of the absolute conic (DIAC), ω∗

i

[10]. If the projection matrix of ith view is Pi = Ki[Ri |ti],
its dual image of the absolute conic is given by

ω∗
i = PiΩ

∗P T
i

= (
Ki[Ri |ti]

)
Ω∗(Ki[Ri |ti]

)T

= KiK
T
i . (1)

Hence, the dual image of the absolute conic ω∗
i is only re-

lated to the intrinsic parameters of the ith view.

4 Problem Formulation

A projective frame can be reconstructed from 2D correspon-
dences across multiple views by projective reconstruction
methods [11–13, 28, 29]. We choose the method of Hung
and Tang [13] to minimize 2D reprojection error. To up-
grade the reconstructed projective frame (P̂i and X̂j ) to a
Euclidean frame (K̃i, R̃i , t̃i and X̃j ), metric constraints are
applied to the reconstructed projective projection matrices
P̂i to recover the projective distortion matrix, H ∈ R

4×4

so that all the upgraded projection matrices P̃i = P̂iH can
be decomposed as P̃i = K̃i[R̃T

i |−R̃T
i t̃i] and the Euclidean

shape is then given by X̃j ∼ H−1X̂j . A camera matrix Ki

can be parameterized as

Ki =
⎡
⎣fi si ui

0 αifi vi

0 0 1

⎤
⎦ (2)

where si is the skew ratio, [ui vi 1]T is the principal point,
fi is the scaling factor (focal length to pixel size ratio) and
αi is the aspect ratio for the ith view. Substituting Ki from
(2) into (1) gives

ω∗
i = KiK

T
i =

⎡
⎣f 2

i + s2
i + u2

i siαifi + uivi ui

siαifi + uivi α2
i f

2
i + v2

i vi

ui vi 1

⎤
⎦ . (3)

To relate the projective distortion matrix H to the dual image
of the absolute conic ω∗

i , first denote H as

H = [H1|H2] ∈ R
4×4 (4)

where H1 ∈ R
4×3 is the first 3 columns of H and H2 ∈ R

4×1

is the last column of H . The upgraded projection matrix can
be expressed as

P̃i = P̂iH = [P̂iH1|P̂iH2] = [Mi |P̂iH2] (5)
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where Mi is defined as

Mi = P̂iH1 =
⎡
⎢⎣

mT
1i

mT
2i

mT
3i

⎤
⎥⎦ ∈ R

3×3 (6)

and m1i ,m2i and m3i are 3-vectors. The absolute dual
quadric Ω∗ can be projected onto the image planes as the
dual images of the absolute conic. Similarly to (1), the pro-
jection of the absolute dual quadric by the upgraded projec-
tion matrix P̃i in (5) can also be expressed as

ω∗
i ∼ P̃iΩ

∗P̃ T
i

= ([Mi |P̂iH2]
)
Ω∗([Mi |P̂iH2]

)T = MiM
T
i . (7)

The both projections can be combined as

ω∗
i = KiK

T
i ∼ MiM

T
i = P̂i

(
H1H

T
1

)
P̂ T

i = P̂iQP̂ T
i (8)

where Q = H1H
T
1 ∈ R

4×4 is the absolute dual quadric, and
the dual image of the absolute conic KiK

T
i is its dual image

on the ith view.
In Sect. 5, we will show how to determine H2 linearly

by choosing the world origin at the centroid of the up-
graded 3D points. In Sect. 6, a flexible approach to solve H1

from user selected constraints (such as zero-skew constraint,
unit aspect-ratio constraint and/or partial constant principal-
point constraints) is proposed.

5 Estimating H2

To estimate H2, we choose the centroid of the scaled up-
graded 3D points υj X̃j = H−1X̂j at the origin so that

n∑
j=1

υj X̃j = Υ

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

where Υ = ∑n
j=1 υj and X̃j (j = 1, . . . , n) are the up-

graded 3D points in homogeneous coordinates in a Eu-
clidean frame. The projection equation for X̃j can be ex-
pressed as

λij wij = P̂iX̂j = P̃i(υj X̃j ). (9)

The scale factor λij in (9) can be obtained from wij , P̂i

and X̂j in the reconstructed projective frame. Summing all
scaled 2D points for the ith view, we get

n∑
j=1

λij wij =
n∑

j=1

P̃i(υj X̃j ) = P̃i

n∑
j=1

υj X̃j

= Υ P̂i[H1|H2]

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

n∑
j=1

λij wij = Υ P̂iH2, 1 ≤ i ≤ m. (10)

Equation (10) can be formulated as a least-squares problem
of estimating H2 from all views, such that

⎡
⎢⎢⎢⎢⎣

∑n
j=1 λ1j w1j∑n
j=1 λ2j w2j

...∑n
j=1 λmj wmj

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P̂1

P̂2
...

P̂m

⎤
⎥⎥⎥⎦ (Υ H2). (11)

H2 can then be estimated by solving (11) as a linear least-
squares problem by ignoring Υ as H2 can be determined up
to scale. By counting argument, we require 3m ≥ 4. Thus,
the minimum number of views, m for solving H2 is 2. This
choice on the upgraded Euclidean coordinates is adapted
from the approach of factorization method on orthogonal
projection [30].

6 Estimating H1 (Absolute Dual Quadric)

From (8), the absolute dual quadric Q is equal to H1H
T
1 and

is rank-3 as H1 is rank-3. Denote Q as

Q = H1H
T
1 =

⎡
⎢⎢⎣

q1 q2 q3 q4

q2 q5 q6 q7

q3 q6 q8 q9

q4 q7 q9 q10

⎤
⎥⎥⎦ . (12)

Collect the 10 variables of Q into a vector as

q = [
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

]T
.

(13)

From (6) and (8), each KiK
T
i can be written as

KiK
T
i ∼ MiM

T
i

=
⎡
⎣m1i · m1i m1i · m2i m1i · m3i

m2i · m1i m2i · m2i m2i · m3i

m3i · m1i m3i · m2i m3i · m3i

⎤
⎦ . (14)

By (8), each element of this matrix is linear in the 10 ele-
ments (i.e. qk , ∀k) of Q. The absolute dual quadric Q can be
obtained by applying different constraints on the dual image
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of the absolute conics MiM
T
i . Three different constraints on

the dual image of the absolute conic will be considered here.

1. Zero-skew constraint
Recalled that P̃i = K̃i[R̃T

i | − R̃T
i t̃i] and using (5), we

have Mi = K̃iR̃
T
i . Let the orthogonal matrix R̃i =

[r1i r2i r3i] ∈ R
3×3, the three columns of MT

i can be
expanded as

m1i = fi r1i + si r2i + ui r3i ,

m2i = αifi r2i + vi r3i , (15)

m3i = r3i .

Let us define the zero-skew constraint following Faugeras
[3] as

φz(Mi) = (m1i × m3i ) · (m2i × m3i ). (16)

Expanding (16) by the expressions from (15), we have

φz(Mi) = αifisi . (17)

Hence, the zero-skew constraint can be written as

φz(Mi) = 0. (18)

Equation (18) can be treated as a 4D ruled quadric in a
10D space as

qT Φz
i q = 0 (19)

where Φz
i is a 10 × 10 symmetric matrix and it is of

rank-4. The derivation of an expression for Φz
i and the

proof of the rank-4 property are given in Sect. 9.
2. Unit aspect-ratio constraint

Define the unit aspect-ratio constraint φu(Mi) following
Faugeras [3] as

φu(Mi) = |m1i × m3i |2 − |m2i × m3i |2. (20)

Expanding (20) by (15), we have

φu(Mi) = |sir1i − fir2i |2 − α2
i f

2
i = s2

i + (
1 − α2

i

)
f 2

i .

(21)

For general cameras, si is almost zero and the magni-
tude of fi is usually of the order of several thousands
times that of si . As fi � si , the skew factor si is negli-
gible compared with fi . When the zero-skew constraint
is enforced, (21) is equal to zero only if α2

i = 1. The unit
aspect-ratio constraint can therefore be imposed as

φu(Mi) = 0. (22)

Equation (22) can also be treated as a 4D ruled quadric
in a 10D space as

qT Φu
i q = 0 (23)

where the symmetric matrix Φu
i ∈ R

10×10 is of rank-4.
An expression for Φu

i is given in Sect. 9.
3. Constant principal-point constraints

For the ith and j th views, constant principal-point con-
straints consist of two equations ui = uj and vi = vj .
By comparing the entries (1,3) and (2,3) of KiK

T
i and

MiM
T
i , the two constraints can be expressed as

m1i · m3i

m3i · m3i

= m1j · m3j

m3j · m3j

and

m2i · m3i

m3i · m3i

= m2j · m3j

m3j · m3j

.

Both conditions can be transformed into quadratic equa-
tions in q, namely

qT Φx
ij q = 0 (24)

and

qT Φ
y
ij q = 0 (25)

where Φx
ij and Φ

y
ij are 10 × 10 symmetric matrices and

they are of rank-4.

Equations (19), (23), (24) and (25) are quadratic equa-
tions in q. The derivations of expressions for Φz

i , Φu
i , Φx

ij

and Φ
y
ij and the proof of the rank-4 properties are given in

Sect. 9. It can be shown that each of Φz
i , Φu

i , Φx
ij and Φ

y
ij has

4 non-zero eigenvalues of which two are positive and two
are negative. This kind of quadric is called a ‘ruled quadric’
[10].

6.1 Cost Function for Estimating the Absolute Dual
Quadric Q

From the above formulations of the constraints, the deter-
mination of H1 can be posed as a non-linear minimization
problem with cost function

εQ = min‖q‖=1

M∑
k

∣∣qT Φkq
∣∣ (26)

where Φk can be any ruled quadric representing constraints,
k is the index for the summation over all the included con-
straints and M is the total number of selected constraints.
For example, when there are m cameras and both zero-skew
and unit aspect-ratio constraints are applied on all views, the
number of constraints will be M = 2m. In the form of (17)
and (21), the constraints are weighted by different scaling
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factors such as αifi and f 2
i . To equalize this weighting ef-

fect on each Φk , we divide each Φk by its own eigenvalue
with the largest magnitude.

6.2 Solving Its Upper Bound

Let us denote the eigenvalue decomposition of the symmet-
ric matrix Φk as VkΛkV

T
k where Λk is a diagonal matrix

containing all eigenvalues of Φk and Vk is an orthogonal ma-
trix containing the corresponding eigenvectors. The eigen-
values in Λk are sorted in descending order. Denote the di-
agonal sub-blocks of Λk containing the positive, zero and
negative eigenvalues as e+

k ∈ R
2×2, 06×6, e−

k ∈ R
2×2, re-

spectively.
Each constraint can be expressed as

∣∣qT Φkq
∣∣ =

∣∣∣∣∣∣q
T Vk

⎡
⎣e+

k 0 0
0 06×6 0
0 0 e−

k

⎤
⎦V T

k q

∣∣∣∣∣∣

≤
∣∣∣∣∣∣q

T Vk

⎡
⎣e+

k 0 0
0 06×6 0
0 0 −e−

k

⎤
⎦V T

k q

∣∣∣∣∣∣ .

We then define

Φ∗
k = Vk

⎡
⎣e+

k 0 0
0 06×6 0
0 0 −e−

k

⎤
⎦V T

k . (27)

Note that Φ∗
k is a positive semi-definite matrix. We can ob-

tain an upper bound of (26) by a minimization problem

ε∗
Q = min‖q‖=1

M∑
k=1

qT Φ∗
k q

= min‖q‖=1
qT

(
M∑

k=1

Φ∗
k

)
q = min‖q‖=1

qT Φ∗q, (28)

where Φ∗ = (
∑M

k=1 Φ∗
k ). As each Φ∗

k is previously normal-
ized so its largest eigenvalue is 1, the relationship between
εQ and ε∗

Q can be written as

0 ≤ εQ ≤ ε∗
Q ≤ M. (29)

The minimum of (28) is equal to the smallest eigenvalue of
Φ∗ in (28) and its corresponding eigenvector is chosen as q.
As Φ∗ ∈ R

10×10, to obtain a unique solution to the mini-
mization problem (28), Φ∗ should be close to rank-9. From
our experiments in real and synthetic data, the minimization
problem (28) always returns a relatively small value of the
order of 10−5 for each constraint.

Algorithm 1 Determining Absolute Dual Quadric Q and
projective distortion H

1. Obtain P̂i and X̂j by the projective reconstruction algo-
rithms;

2. Solve for H2 from (11) as a least-squares problem;
3. Solve for absolute dual quadric Q:

(a) Form Φz and/or Φu by (44) and (47) for each view
to give M 10 × 10 rank-4 symmetric matrices (ad-
ditional constraints (48), (49), (53) and (55) can also
be added for specific views);

(b) Compute each Φ∗
k by taking absolute values of non-

zero eigenvalues of Φk as in (27);
(c) Normalize each Φ∗

k so that the largest eigenvalue is
equal to 1;

(d) Compute Φ∗ = ∑M
k=1 Φ∗

k in (28);
(e) Solve for q as the singular vector of V corresponding

to the smallest singular value of Φ∗;
(f) Form Q from q as in (12);

4. Solve for H1 from Q:
(a) Decompose Q = USUT by means of singular value

decomposition;
(b) Compute H1 as in (30);

5. Form H = [H1 H2].

6.3 Decomposing H1 from Q

To compute H1 from the estimated absolute dual quadric Q,
Q must be a rank-3 positive semi-definite matrix. Empiri-
cally, when the number of views is large enough, Q formed
from q by (12) and (13) will be close to rank-3 satisfying the
positive semi-definite condition.

By means of singular value decomposition, the computed
absolute dual quadric Q can be factorized as Q = USUT .
Take

H1 = U3(S3)
1
2 ∈ R

4×3 (30)

where U3 is the first three columns of U and S3 is the left
upper 3 × 3 matrix of S.

The proposed algorithm is shown in Algorithm 1.

7 Self-calibration (Decomposition of K, R, t)

After the projective distortion matrix H has been recovered,
all the projection matrices P̂i in the projective frame can be
upgraded to a Euclidean frame as

P̃i = P̂iH (31)

and the projective shape X̂ can be upgraded to the Euclidean
frame as

X̃j ∼ H−1X̂j . (32)
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Algorithm 2 A Flexible Self-calibration Algorithm

1. Obtain P̂i and X̂j by the projective reconstruction algo-
rithms;

2. Apply Algorithm 1 on the transformed projection matri-
ces {P̂i} with selected constraints to determine the pro-
jective distortion matrix H ;

3. Upgrade the transformed projection matrices as P̃i =
P̂iH and the 3D points X̃j ∼ H−1X̂j , ∀i, j ;

4. Partition P̃i = [M̃1
i |M̃2

i ], where M̃1
i ∈ R

3×3 and M̃2
i ∈

R
3×1;

5. Decompose M̃1
i to get K̃i and R̃i ;

(a) Apply QR factorization on M̃1
i such that M̃1

i = KR;
(b) Define a diagonal matrix D ∈ R

3×3 whose diagonal
values are ±1 with sign equal to the corresponding
entries of K ;

(c) Update K = KD and R = RD;
(d) Calculate the scaling factor αi = K(3,3) · |R|;
(e) The intrinsic parameters and rotational matrix can

be computed as K̃i = 1
αi

K and R̃i = R/|R| respec-
tively;

6. Compute the translation of the camera by t̃i =
− 1

αi
R̃iK̃

−1
i M̃2

i ;

7. The upgraded projection matrix is P̃i = αiK̃i[R̃T
i |

−R̃T
i t̃i].

To extract the intrinsic parameters and extrinsic parameters
from projection matrices in the Euclidean frame, we can ap-
ply the QR factorization [10] to decompose the left-most
3 × 3 matrices of P̃i to αiK̃iR̃i . The decomposition should
satisfy that all the diagonal values of K̃i must be positive,
K̃i(3,3) = 1 and the determinant of the rotational matrix
R̃i should be equal to 1, i.e. |R̃i | = 1. All the requirements
can be enforced during the decomposition. Then the trans-
lation of the cameras can be easily obtained by applying
− 1

αi
R̃iK̃

−1
i to the last column of P̃i . The upgraded Eu-

clidean projection matrices are in the form of

P̃i = αiK̃i

[
R̃T

i |−R̃T
i t̃i

]
.

The Self-Calibration Algorithm is summarized in Algo-
rithm 2.

8 Experimental Results

In this section, the proposed method is evaluated using syn-
thetic data and real data. The reconstructed projective spaces
are computed first by the methods proposed by Tang and
Hung [13, 28] for minimizing the 2D reprojection error.

8.1 Synthetic Data

A synthetic scene has been constructed with 3 virtual grid
planes (i.e. three planes of the blue dotted box) as shown in

Fig. 1 Self-calibration: the configuration of the synthetic scene

Fig. 1. On each plane, there are 25 lattice points of a 4 × 4
grid and the dimension of the grid is 0.4 m × 0.4 m, so there
are a total of 75 3D points in the scene. Each plane is per-
pendicular to the other two planes. The intrinsic parameters
for all cameras are fixed as⎡
⎣2000 0 500

0 2000 500
0 0 1

⎤
⎦ .

There are 10 cameras randomly located within the red
dashed box (of size 3 m × 3 m × 2 m) with fixed intrin-
sic parameters and pointing towards the centroid of the 3D
points such that the images of the 3D points almost fully
occupy an image size of 1000 × 800 for all the views. The
yellow pyramids in the Fig. 1 are the cameras. We will only
apply the zero-skew and unit aspect-ratio constraints in the
experiments. There are two sets of evaluation results. The
first set is to evaluate the reconstructed scene. The angles
between any two planes are then computed for assessing
the orthogonality of the upgraded scene. The second set is
a comparison between the estimated intrinsic parameters of
the cameras and ground truth at different levels of Gaussian
noise. Gaussian noise with standard deviations from 0 to 4
pixels are added to images with increments of 0.5 pixel. The
tests are repeated 50 times and the mean values are com-
puted.

8.1.1 Orthogonality of Planes in the Upgraded Scene

There are three orthogonal planes for this synthetic scene.
In each trial, each plane is computed by minimizing the ge-
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Fig. 2 Performance on synthetic data

ometric error of the normal distances from the 3D points to
the plane. RMS error of deviations of the angles from 90◦
are calculated, as shown in Fig. 2(a). The maximum deriva-
tion of angles is less than 0.14◦ even when the 2D points
are contaminated by Gaussian noise with σ = 4 pixels. The
error of the angles is gradually increased with the level of
added noise.

8.1.2 Performance on Intrinsic Parameters

Figure 2(b) shows how the estimated intrinsic parameters
varies against noises. There are 50 trials for each noise level.
Figure 2(b) present the intrinsic parameters in an arrange-
ment similar to the matrix form of K . The unit aspect-ratio
constraint works well since the two diagrams at the posi-

tion (1, 1) and (2, 2) in Fig. 2(b) are almost the same and
slightly larger than the expected value 2000 (but by no more
than 0.5 %). The zero-skew constraint forces the skew fac-
tors to be around 0. The principal points are also around
(500, 500).

Histograms showing the distributions of the estimated in-
trinsic parameters (for the 50 trials) for the cases that 2D
points contaminated by low noise level and high noise level
are given in Figs. 2(c) and 2(d) respectively. When Gaussian
noise with standard deviation of 1 pixel is added, the vari-
ations of the parameters are highly concentrated around the
ground truth and the maximum derivation is less than 3 %
for the principal point and the focal length. When Gaussian
noise with standard deviation of 4 pixels are added, the dis-
tribution of the parameters are spread wider and the corre-
sponding maximum derivation is around 12 %.
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Fig. 3 Some reconstructed scenes in Euclidean space

8.2 Real Image Sequences

There are 12 real image sequences selected for testing the
proposed method. The first 7 standard image sequences are
obtained from the Visual Geometry Group (VGG) at Univer-
sity of Oxford. The remaining 6 image sequences are taken
with the same DSLR camera and lens. The image sequences,
‘Mickey Mouse’ and ‘Dr. Sun Statue’, are taken with ran-
dom motion while auto-focus function is enabled so that ob-
jects can be seen clearly and be located at the centers of each
image. The other 4 image sequences (i.e., ‘Tigger’, ‘Spider-
man’ and ‘Terra-cotta Warrior’) are taken with the objects
undergoing circular motion on a turn table and the camera
fixed on a tripod. Each shot is taken after the object is ro-
tated 10◦ degrees. For real image sequences, we use only
the zero-skew and unit aspect-ratio constraints since these
two constraints can be assumed to be well satisfied in high
quality cameras.

Figure 3 shows the results of two sets of VGG real data.
Figure 3(a) shows the 1st image of the Model House image
sequence. Most of the 2D corresponding points are lying on
the 3 main planes in the scene, i.e., the floor, the front wall
which is perpendicular to the floor and the front side of the
roof. After applied our method on the projective reconstruc-
tion result by Hung and Tang [13], one of the images is pro-

jected on the upgraded 3D points as a textured 3D model
and a side view of the textured model with the cameras are
shown in Fig. 3(b). Similarly, another set of results for Mer-
ton College II sequence is shown in 3(d).

Two more sets of results reconstructed from our own im-
age sequences are shown in Fig. 4. For the Dr. Sun Statue
image sequence, Fig. 4(a) shows the 6th image. The cameras
were moved around the statue by a photographer nearly on
an eye-sight level horizontal plane. The reconstructed scene
with cameras are shown in Fig. 4(b). From the side view
of the textured 3D model in Fig. 4(c), the shape of Dr. Sun
Statue can be seen clearly. Our method is also applied to
upgrade a projective reconstruction from a circular motion
image sequence as in Fig. 4(d). There are 36 images taken
surrounding the Terra-cotta Warrior on a turn table with ro-
tating angle in 10◦ degrees for every consecutive image. To
illustrate the reconstructed shapes of the sculpture, there are
3 different views captured from different angles of the 3D
cloud points from Fig. 4(e) to Fig. 4(g). The results from the
other image sequences are not shown here as they are similar
to the graphs shown.

Table 1 shows the performance of the proposed method
by means of two sets of numerical data. The first set is for
estimating the absolute dual quadric Q and the second set
is for solving H1. For the first results for estimating Q, the
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Fig. 4 Some reconstructed scenes in Euclidean space

Table 1 Performance on real image Sequences

Image
sequences

No. of
views

Q H1

M s1(Φ) s9(Φ) ε∗
Q = s10(Φ) εQ(q)

s3(Q)
s1(Q)

s4(Q)
s1(Q)

Merton College I 3 6 5.141 1.192 × 10−1 1.085 × 10−8 8.509 × 10−11 1.262 × 10−2 −1.112 × 10−6

Merton College II 3 6 5.365 3.166 × 10−2 1.924 × 10−5 6.822 × 10−6 1.127 × 10−1 −4.385 × 10−2

Merton College III 3 6 5.366 1.776 × 10−2 1.063 × 10−4 3.204 × 10−5 1.072 × 10−1 −6.652 × 10−3

Wadham College 5 10 8.242 2.791 × 10−1 8.228 × 10−5 2.834 × 10−5 1.061 × 10−1 −3.093 × 10−2

University Library 3 6 5.449 2.480 × 10−3 1.333 × 10−5 3.281 × 10−6 1.980 × 10−1 −9.479 × 10−3

Oxford Model House 10 20 17.311 3.547 × 10−1 2.299 × 10−4 3.729 × 10−5 5.591 × 10−1 −1.661 × 10−2

Dinosaur 37 74 64.968 1.126 × 100 3.827 × 10−3 2.540 × 10−4 2.012 × 10−2 −6.610 × 10−4

Mickey Mouse 6 12 10.583 1.270 × 10−1 8.964 × 10−5 5.039 × 10−5 3.457 × 10−1 −8.959 × 10−3

Dr. Sun Statue 9 18 14.226 7.243 × 10−1 3.493 × 10−6 1.091 × 10−6 2.877 × 10−1 −1.145 × 10−3

Tigger 36 72 54.642 5.885 × 100 7.243 × 10−4 7.943 × 10−5 3.141 × 10−1 −3.644 × 10−3

Spiderman 36 72 62.076 1.812 × 100 1.048 × 10−3 6.792 × 10−5 1.807 × 10−2 −3.096 × 10−3

Terra-cotta Warrior 36 72 64.116 9.665 × 10−1 1.838 × 10−4 4.740 × 10−5 1.480 × 10−2 −2.050 × 10−3
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number of constraints, the 1st, 9th and 10th singular values
of Φ∗ are listed as M , s1, s9 and ε∗

Q = s10 respectively. The
results show that a distinctive null space of Φ∗ can be iden-
tified for each of the data sets, despite the relaxation of the
original minimization problem (26) to (28). The next col-
umn, εQ(q), denotes the values of the original cost func-
tion (26) applied with the singular vectors corresponding
to the smallest singular values s10. It shows that all results
satisfy the inequality relationship (29) and all ε∗

Q = s10 are
relatively very small compared with their corresponding s1

and s9. The rank-9 condition is fulfilled for estimating Q.
The second set, namely the ratio s3/s1 and s4/s1 of the sin-
gular values of Q, shows that Q is approximately of rank-3.

8.3 Comparison

A linear method proposed by Pollefeys et al. [19] is imple-
mented for comparison with simulation and real data. This
linear method assumes that the varying focal lengths across
multiple views are the only unknown. The zero-skew, unit-
aspect ratio and known principal point constraints are di-
rectly enforced in the formulation. The image sequence, Ox-
ford Model House from VGG is selected. The set of 2D
corresponding points ŵij across multiple images, the re-
constructed 3D points Mj , and reconstructed camera intrin-
sic K̂i and extrinsic parameters, R̂i and t̂i (i.e., the projec-
tion matrices P̂i = K̂iR̂

T
i [I3 |−t̂i]) are also provided and

taken as ground truth in this paper. The image sizes are
768 × 576 pixels. For the reconstructed cameras in Eu-
clidean space, the focal lengths are varying between 594
and 672 pixels and the maximum variation of the principal
points between the 10 images is 93.5 pixels.

8.3.1 Synthetic Data

To compare both methods with the reconstructed data for
simulation, we generated a random projective distortion ma-
trix H ∈ R

4×4 to downgrade the Euclidean space down to a
projective space. To satisfy the constraints of the method of
[19], 2D points and projection matrices are first transformed
by the known intrinsic parameters. Variations on the prin-
cipal points are denoted as (�cx

i ,�c
y
i ) on x- and y-axes

respectively. Hence, the projection matrices and 3D points
in the projective space and the corresponding 2D points for
ith view are as follows

Pi =
⎡
⎣ f̄ �cx

i

f̄ �c
y
i

1

⎤
⎦ R̂T

i [I3 | − t̂i]H, Xj = H−1Mj (33)

and

wij =
⎡
⎣ f̄ �cx

i

f̄ �c
y
i

1

⎤
⎦ K̂−1

i ŵij (34)

where f̄ is the mean value of the ground truth focal lengths
and it is 638.52 pixels. Both methods are applied to upgrade
the projective space back to Euclidean spaces and their esti-
mated focal lengths in x- and y-axes for the ith view and
the kth trial are denoted as f x

ik and f
y
ik respectively. Our

method is used with the zero-skew and unit-aspect ratio con-
straints only. The root mean square error (RMSE) on the fo-
cal lengths, ε, across multiple views and trials for a given
level of variation on the principal points, it is expressed as

εF =
√√√√ 1

2mL

∑
k,i

{(
f x

ik − f̄
)2 + (

f
y
ik − f̄

)2} (35)

where the number of trials is L and the number of view is m.
After 200 trials (i.e., L = 200), the results are summarized in
Fig. 5. Except for the cases when added noise levels are less
than 10 pixels, there are cases that the method of [19] failed
to return reasonable solutions. The failed cases usually will
be rank-deficient on solving the least-square problem, the
reconstructed space is still as mess as a projective space or
becomes a planar object, etc. The ratio of failed cases versus
added noises on the principal points is shown in Fig. 5(a).
The percentage of failed cases can be more than 50 % in
some noise levels. After added 30 pixels shift on the prin-
cipal points, the percentage of failed cases become at least
30 %. However, in this test, our proposed method always
return a reasonable solution.

Figure 5(b) shows the RMSE of focal lengths εF versus
the added noises on the principal points. The failed cases
from the method of [19] are removed for plotting Fig. 5(b).
The method of [19] can return exact solutions when the
noise level is zero. The RMSE of focal lengths is almost
proportional to the added noise levels on the principal points
when the failed cases are taken out. Our method cannot re-
turn the exact solution even though there is no noise added.
It is because the original minimization problem (26) is re-
placed by its upper bound (28). There is nothing to force the
minimum values of both minimization problems to be the
same. Our method is almost invariant to the added noises
and the returned errors on the focal lengths maintain a cer-
tain amount. To illustrate how the upgraded 3D spaces look
like, we selected the results for the case that principal points
are shifted by 200 pixels and the method of [19] can return
a reasonable solution. The results of the two methods are
shown in Figs. 5(c) and 5(d). Our proposed method can re-
turn a better result that the wall is much closer to be perpen-
dicular to the floor plane.

8.3.2 Real Data

Based on the same set of Oxford Model House in the previ-
ous section, we use the projective bundle adjustment method
proposed by Hung and Tang [13] to reconstruct 3D points
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Fig. 5 Comparison on simulated distortion

from 2D correspondences across multiple views. The 2D
points in (34) is first shifted (the original 2D points also
contain 2D errors) by (�cx

i ,�c
y
i ) on the principal points

and passed into projective reconstruction method [13]. The
method of [19] and our method are then applied on the pro-
jective spaces for upgrading. There are also 200 trials for
each noise level. The results are shown in Fig. 6. The RMSE
2D reprojection errors from the projective bundle adjust-
ment [13] are around 0.5 pixels. From Fig. 6(a), our method
is more stable than the method of [19]. There is no failed
case reported for our proposed method. Figure 6(b) shows
that our method is still invariant to any variations on the
principal points while computing the absolute dual quadrics.
Similarly, the side views of the reconstructed 3D points from
our method and the method of [19] are shown in Figs. 6(c)
and 6(d) respectively.

9 Proof for Rank-4 Properties of Subspace Constraints

To prove the rank-4 properties, we first derive the dual image
of the absolute conic in term of H1H

T
1 and P . For simplicity,

all the sub-indices i will not be shown. The projective pro-
jection matrix P̂ can be denoted as P̂ = [p1 p2 p3]T , where

pk is the 4-vector of the kth row of P̂ . The dual image of the
absolute conic ω∗ can be expressed as

KKT ∼ MMT = P̂
(
H1H

T
1

)
P̂ T

=

⎡
⎢⎢⎢⎣

pT
1 (H1HT

1 ) p1 pT
2 (H1HT

1 ) p1 pT
3 (H1HT

1 ) p1

pT
1 (H1HT

1 ) p2 pT
2 (H1HT

1 ) p2 pT
3 (H1HT

1 ) p2

pT
1 (H1HT

1 ) p3 pT
2 (H1HT

1 ) p3 pT
3 (H1HT

1 ) p3

⎤
⎥⎥⎥⎦.

(36)

The 3×3 matrix in (14) is exactly the same as (36) element-
wise. The derivations for each constraint are shown with the
notation in (36).

9.1 Zero-Skew Constraint

The zero-skew constraint from (18) is expressed in notation
of (6) as

(m1 × m3) · (m2 × m3) = 0.

To relate this constraint to the quantities in (14), the cross
product operators should be transformed to dot product op-
erators. First, by applying a 3D cross product property,



J Math Imaging Vis

Fig. 6 Comparison on modified real data

A · (B × C) ≡ −C · (B × A), the zero-skew constraint be-
comes

−m3 · [m2 × (m1 × m3)
] = 0.

To expand the rest of cross product, another property A ×
(B × C) ≡ B(A · C) − C(A · B) is applied, then,

− m3 · {m1(m2 · m3) − m3(m1 · m2)
} = 0

(m1 · m3)(m2 · m3) − (m1 · m2)(m3 · m3) = 0.
(37)

Replacing the entries from (36), (37) becomes

[
pT

1

(
H1H

T
1

)
p3

][
pT

2

(
H1H

T
1

)
p3

]
− [

pT
1

(
H1H

T
1

)
p2

][
pT

3

(
H1H

T
1

)
p3

] = 0. (38)

Applying Kronecker product notation to (38), it becomes

hT (p3 ⊗ p1)
(
pT

3 ⊗ pT
2

)
h

− hT (p2 ⊗ p1)
(
pT

3 ⊗ pT
3

)
h = 0 (39)

where h is defined as the vector obtained by applying the
stack operator to H1H

T
1 (i.e. link up all the columns from

left to right into a single vector),

h = (
H1H

T
1

)S

= [q1 q2 q3 q4 q2 q5 q6 q7 q3 q6 q8 q9 q4 q7 q9 q10]T
∈ R

16×1. (40)

Let us define v1 = p3 ⊗ p1, v2 = p3 ⊗ p2, v3 = p2 ⊗ p1 and
v4 = p3 ⊗ p3. (39) can be simplified as

fz(h) = hT
(
v1vT

2 − v3vT
4

)
h = 0.

The quadratic forms, v1vT
2 and v3vT

4 can always be written
as a sum of squares of linear functions of h as

fz(h) = 1

4
hT

⎧⎪⎪⎨
⎪⎪⎩

(v1 + v2)(v1 + v2)
T

− (v1 − v2)(v1 − v2)
T

− (v3 + v4)(v3 + v4)
T

+ (v3 − v4)(v3 − v4)
T

⎫⎪⎪⎬
⎪⎪⎭

h.

fz(h) can be expressed as

fz(h) = 1

4
hT T T

z diag(1,−1,−1,1) Tzh (41)
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where

Tz = [
v1 + v2 v1 − v2 v3 + v4 v3 − v4

]T ∈ R
4×16.

Since H1H
T
1 is a symmetric matrix, among the 16 ele-

ments of h, only 10 are independent variables. Hence, h can
be expressed in terms of q ∈ R

10×1 by means of a binary
matrix, Z ∈ R

16×10 as

h = Zq. (42)

Substitute (42) into (41), we have

fz(q) = 1

4
qT ZT T T

z diag(1,−1,−1,1) TzZq

= qT Φzq (43)

where

Φz = 1

4
ZT T T

z diag(1,−1,−1,1) TzZ ∈ R
10×10. (44)

In general, the projection matrix P̂ = [p1 p2 p3]T is of full
rank so that its 3 row vectors are linear independent to each
other. Tz is then rank-4 since its 4 row vectors will also be
linear independent. By (44), the quadratic form fz(q) con-
sists of two positive squares and two negative squares. By
the law of inertia for quadratic forms [6], the number of pos-
itive and negative squares are invariant to the choice of basis.
Hence, Φz is a rank-4 10 × 10 symmetric matrix with two
positive and two negative eigenvalues.

9.2 Unit Aspect-Ratio Constraint

This constraint can be expressed in the form of cross product
as

|m1 × m3|2 = |m2 × m3|2. (45)

By applying the above two cross product properties, it can
be shown that (45) is equivalent to

(m1 · m3)
2 − (m2 · m3)

2

− (m1 · m1)(m3 · m3) + (m2 · m2)(m3 · m3) = 0.

Similar to the development for zero-skew constraint, we can
apply the Kronecker product on (45) to express (45) in terms
of q as

fu(q) = qT ZT
{
(p1 ⊗ p3)(p1 ⊗ p3)

T

− (p2 ⊗ p3)(p2 ⊗ p3)
T

− (p1 ⊗ p1)(p3 ⊗ p3)
T

+ (p2 ⊗ p2)(p3 ⊗ p3)
T
}
Zq = 0. (46)

Let v5 = p1 ⊗p3, v6 = p2 ⊗p3 and v7 = p2 ⊗p2 −p1 ⊗p1.
Then (46) can be simplified as

fu(q) = qT ZT
{
v5vT

5 − v6vT
6 + v7vT

4

}
Zq = 0.

Reform the quadratic forms as a symmetric matrix, we have

fu(q) = 1

4
qT ZT

{
2v5vT

5 − 2v6vT
6 + (v7 + v4)(v7 + v4)

T

− (v7 − v4)(v7 − v4)
T
}
Zq

= 1

4
qT ZT T T

u diag(2,−2,1,−1) TuZq

= qT Φuq

where

Tu = [
v5 v6 v7 + v4 v7 − v4

]T ∈ R
4×16

and the symmetric matrix Φu between the qT and q can be
expressed as

Φu = 1

4
ZT T T

u diag(2,−2,1,−1) TuZ ∈ R
10×10. (47)

By the law of inertia for quadratic forms [6], Φu is also rank-
4 with two positive and two negative eigenvalues.

9.3 Partial Constant Principal-Point Constraints

For a camera with fixed intrinsic parameters, the princi-
pal point is the same across all the taken images. In auto-
focusing or zooming operations, the principal point may
vary. However, calibration experiments suggest the varia-
tion of the principal point is small. Applying this assump-
tion, any image pair from the same camera can provide two
additional constraints (i.e. for the two components of the
principal point in the 2D plane). As these constraints are
across a pair of two images, let us denote the principal points
as [ui vi 1]T for the ith view and [uj vj 1]T for the j th
view.

If ui = uj , we have

m1i · m3i

m3i · m3i

= m1j · m3j

m3j · m3j

where the subscript i and j are referred to ith and j th views
respectively. Expressed in terms of P̂ and H1 from (36), we
have

[
pT

1i

(
H1H

T
1

)
p3i

][
pT

3j

(
H1H

T
1

)
p3j

]
− [

pT
1j

(
H1H

T
1

)
p3j

][
pT

3i

(
H1H

T
1

)
p3i

] = 0.
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Using Kronecker product, this becomes

fx(q) = qT ZT
{
(p3i ⊗ p1i )(p3j ⊗ p3j )

T

− (p3j ⊗ p1j )(p3i ⊗ p3i )
T
}
Zq = 0.

Let v8 = p3i ⊗ p1i , v9 = p3j ⊗ p3j , v10 = p3j ⊗ p1j and
v11 = p3i ⊗ p3i and reform it as quadratic form. We have

fx(q) = 1

4
qT ZT T T

x diag(1,−1,−1,1) TxZq

= qT Φx
ij q = 0

where

Tx = [
v8 + v9 v8 − v9 v10 + v11 v10 − v11

]T ∈ R
4×16

and

Φx
ij = 1

4
ZT T T

x diag(1,−1,−1,1) TxZ ∈ R
10×10. (48)

Clearly, Φx
ij is at most of rank-4 and has two positive and

two negative eigenvalues. From the second constraint vi =
vj , we have

m2i · m3i

m3i · m3i

= m2j · m3j

m3j · m3j

.

Expressed in terms of P̂ and H1 from (36) and followed by
Kronecker product, we have

fy(q) = qT ZT
{
(p3i ⊗ p2i )(p3j ⊗ p3j )

T

− (p3j ⊗ p2j )(p3i ⊗ p3i )
T
}
Zq = 0.

Let v12 = p3i ⊗ p2i , v13 = p3j ⊗ p2j and reform it as
quadratic form. We have

fy(q) = 1

4
qT ZT T T

y diag(1,−1,−1,1) TyZq = qT Φ
y
ij q = 0

where

Ty = [
v12 + v9 v12 − v9 v13 + v11 v13 − v11

]T ∈ R
4×16

and

Φ
y
ij = 1

4
ZT T T

y diag(1,−1,−1,1) TyZ ∈ R
10×10. (49)

Clearly, Φ
y
ij is at most of rank-4 and has two positive and

two negative eigenvalues.
The above two constraints on the x, y-coordinates of the

principal point can be applied independently and the con-
straints can be applied to any image pair captured by the
same camera. There is, however, no restriction that the same
camera is used to capture the whole image sequence.

10 Additional Constraints

In this section, we develop some additional constraints for
a priori information about the cameras. The previous con-
straint expressing technique can be further applied on the
new constraints. They can also be related in the same frame-
work so that different constraints can be applied on different
cameras even the new constraints are linear to the absolute
dual quadric Q but not in quadratic form.

10.1 Known Principal Points

When the principal points are known for some views (or
all views), it is possible to apply an 2D translation for
those views such that the translated principal points become
(0, 0). Assuming that the principal point of the ith view
is known, after the translation of the principal point to the
origin, the dual image of the absolute conic of the ith view
becomes

KiK
T
i =

⎡
⎣f 2

i + s2
i siαifi 0

siαifi α2
i f

2
i 0

0 0 1

⎤
⎦ . (50)

Comparing (50) with (14), we can deduce two constraints
on q as

m1i · m3i = 0 and m2i · m3i = 0. (51)

Both conditions are linear in q and can be expressed as

Φx0
i q = 0 and Φ

y0
i q = 0 (52)

where Φx0
i and Φ

y0
i ∈ R

1×10. Expressing these conditions
by Kronecker product, we get

Φx0
i = (

pT
3i ⊗ pT

1i

)
Z and Φ

y0
i = (

pT
3i ⊗ pT

2i

)
Z. (53)

Both Φ
x0
i and Φ

y0
i are first scaled to unit norm vectors

as |Φx0
i | = |Φy0

i | = 1. To integrate with the previous con-
straints in (26), the above linear constraints (52) should be
transformed as qT {(Φx0

i )T Φx0
i }q = 0, where (Φx0

i )T Φx0
i ∈

R
10×10 is rank-1 matrix. These constraints can also be used

independently to determine Q by at least 5 (>9/2) cameras
having known principal points instead.

10.2 Known Principal Points and Euclidean Image Planes

An Euclidean image plane satisfies the zero-skew constraint
and unit aspect-ratio constraint. Applying these two more
constraints to (50), we have

KiK
T
i =

⎡
⎣f 2

i 0 0
0 f 2

i 0
0 0 1

⎤
⎦ .
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It follows from (14) and (50) that the zero-skew constraint
can be simply expressed as

m1i · m2i = 0

and the unit aspect-ratio constraint can be written

m1i · m1i = m2i · m2i .

Both conditions can be transformed as

Φz0
i q = 0 and Φu0

i q = 0 (54)

where

Φz0
i = (

pT
2i ⊗ pT

1i

)
Z ∈ R

1×10

and

Φu0
i = (

pT
1i ⊗ pT

1i − pT
2i ⊗ pT

2i

)
Z ∈ R

1×10. (55)

After scaling both Φz0
i and Φu0

i to unit norm vectors as
|Φz0

i | = |Φu0
i | = 1, they can also be rewritten in quadratic

form as rank-1 matrices and integrated with the previous
constraints in (26). Combining these two constraints with
(52), Q can be solved independently by at least 3 views
(>9/4) having known principal points and Euclidean image
planes.

11 Conclusion

A flexible self-calibration algorithm is proposed to deal with
the problem of recovering projective distortion matrix to up-
grade a projective frame to a Euclidean frame. The common
metric constraints for self-calibration have been unified in a
common framework where they are represented as 4D ruled
quadrics in a 10D space. This common framework is very
flexible for customizing different metric constraints in dif-
ferent camera configurations. The projective distortion ma-
trix can be obtained by minimizing a single cost function,
namely (26). In practice, we proposed to minimize an upper
bound of the cost function, and experiments show that the
results are very satisfactory both in the case of synthetic data
given in Sect. 8.1 and real data given in Sect. 8.2. The results
should be further refined using different types of iterative
non-linear algorithms or Euclidean bundle adjustment. The
proposed method can provide a flexible and reliable starting
point for further Euclidean bundle adjustments.
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