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Background: Development of anticancer drugs is challenging. Indeed, much research effort 

has been spent in the development of new drugs to improve clinical outcomes with minimal 

toxicity. We have previously reported that a formulation of lipid gold porphyrin nanoparticles 

reduced systemic drug toxicity when compared with free gold porphyrin. In this study, we 

investigated the delivery and treatment efficiency of PEG surface-modified lipid nanoparticles 

as a carrier platform.

Methods: We encapsulated antitumor drugs into PEG-modified lipid nanoparticles and these 

were characterized by size, zeta potential, and encapsulation efficiency. The delivery efficiency 

into tumor tissue was evaluated using a biodistribution study. To evaluate antitumor efficacy, 

gold porphyrin or camptothecin (a DNA topoisomerase I inhibitor) were encapsulated and 

compared using an in vivo neuroblastoma (N2A) model.

Results: We showed that drug encapsulation into PEG-modified lipid nanoparticles enhanced 

the preferential uptake in tumor tissue. Furthermore, higher tumor killing efficiency was observed 

in response to treatment with PEG-modified lipid nanoparticles encapsulating gold porphyrin 

or camptothecin when compared with free gold porphyrin or free camptothecin. The in vivo 

antitumor effect was further confirmed by study of tumor inhibition and positive apoptosis 

activity. Surface modification of lipophilic nanoparticles with PEG increased the efficiency of 

drug delivery into tumor tissue and subsequently more effective antitumor activity.

Conclusion: This specific design of a chemotherapeutic agent using nanotechnology is impor-

tant in the development of a safe and effective drug in cancer therapy.
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Introduction
Chemotherapy is essential for the treatment of a variety of cancers. Although the use 

of modern anticancer drugs has improved the clinical outcome for patients with a wide 

range of cancers, the same could not be said for neuroblastoma, which is the most 

common solid tumor in childhood.1 This is because this tumor often presents with 

only few symptoms in the early clinical stages. Furthermore, patients often become 

refractory to available drugs very quickly. Thus, there is an urgent need for newer 

agents if we are to improve the overall survival of these patients.

It has been estimated that approximately one third of potent anticancer drugs are 

hydrophobic. A recently developed chemotherapeutic agent, gold (III) porphyrin 

(GP), is a water-insoluble inorganic metal complex and has been demonstrated to have 

efficacy against a wide range of cancers.2–4 Indeed, its antitumor activity is 100-fold 

more potent than cisplatin, an agent commonly used for treating neuroblastoma.2,3 
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Possible mechanisms of tumor killing include induction of 

apoptosis, the mitochondria-mediated apoptotic pathway, and 

production of reactive oxygen species.5 Similarly, another 

potent anticancer drug, camptothecin, features a closed hydro-

phobic lactone ring.6 Although the hydrophobicity of camp-

tothecin results in more favorable antitumor activity, such as 

against hepatocellular, ovarian, breast, and renal tumors,7–10 

its clinical application is limited because of severe systemic 

organ damage associated with significant side effects.6 Its 

in vivo toxicity has been reported to be correlated with low 

solubility and instability in the aqueous environment.11

Drug encapsulation via an optimal delivery system is an 

integral part of drug design to overcome the issues of systemic 

toxicity as well as to improve the efficiency of drug delivery. 

A number of studies have focused on the design of carriers for 

delivery to provide optimal incorporation of drugs.12–14 To the 

best of our knowledge, effective encapsulation of hydrophobic 

drugs into a carrier for the treatment of neuroblastoma has 

not yet been reported. With evolution in nanotechnology, 

the design of a drug delivery system with more controllable 

physical properties has shown promising results in enhanc-

ing antitumor activity in target tumor tissue.15 Tumor vas-

culature is characterized uniquely with leaky blood vessels, 

which allow nanoparticles greater than 100 nm in diameter 

to pass through.16 Thus, larger nanoparticles of 100–200 nm 

in diameter are ideal for delivery into tumor tissue and 

consequently can reduce renal clearance and uptake by the 

reticuloendothelial system.17 This phenomenon is called the 

“enhanced permeability retention” effect.15

For our delivery system, we used lipid nanoparticles 

consisting of cetyl alcohol and Brij 78 to incorporate 

GP, because they have been shown to have excellent 

biocompatibility in blood.18 The formulation strategy was 

to incorporate a microemulsion into a lipid nanoparticle 

carrier in distilled water as opposed to the organic solvents 

used in the synthesis of most other formulations. The sol-

vent was carefully chosen in order to address the common 

problem of additional toxicity associated with use of an 

organic solvent. In our previous study, surface modification 

of lipid nanoparticles was shown to reduce the toxicity of 

GP, both in vitro and in vivo.19 In this work, we investigated 

the treatment efficiency of a lipophilic carrier by physical 

characterization, tumor accumulation, systemic distribution, 

and antitumor activity. To examine further the efficiency of 

a lipophilic carrier platform for delivery, we encapsulated 

camptothecin into the lipophilic carrier and investigated the 

activity and therapeutic effect of lipophilic-encapsulated 

camptothecin.

Materials and methods
Synthesis of PEGylated nanoparticles
Gold (III) porphyrin 1a was manufactured and kindly provided 

by the Department of Chemistry at Hong Kong University.20 

Camptothecin was purchased from Sigma-Aldrich (St Louis, 

MO). The GP and camptothecin nanoparticles were prepared as 

previously described using an oil/water (o/w) microemulsion.19 

Briefly, the drug was melted into the oil phase of cetyl alcohol 

at 60°C. Brij 78, a surfactant, was added to the oil phase and 

stirred for 5 minutes. Methoxypoly(ethylene glycol) (mPEG 

750–2000 Da, 5 mol%) was added to the nanoparticle tem-

plate and mixed well by stirring. The particle size and surface 

charge of the nanoparticles was measured using a Zetasizer 

Nanoseries (Malvern, Westborough, MA). Then, 10 µL of 

each sample was added to 1 mL of 1:100 (v/v) phosphate-

buffered saline (pH 7.4) in distilled water for the zeta potential 

study, as previously described.21

Encapsulation efficiency
Drug entrapment efficiencies were determined by separat-

ing free GP from the GP nanoparticles (GPNP) using a 

Centrisart I centrifugal ultrafiltration unit (Supleco, Belle-

fonte, PA) with a filter membrane (molecular weight cutoff 

10 kDa) as described elsewhere,22 and then measuring the 

GP in nanoparticle-containing supernatants using induc-

tively coupled plasma-mass spectroscopy. About 1 mL of 

the formulation solution was put in the outside chamber 

and in the recovery chamber at the top. After separation by 

centrifugation at 4000 rpm for 30 minutes, GPNP remained 

in the outer chamber while free GP was in the recovery 

chamber. To ensure mass balance, the filtrates were also 

assayed for GP. GP loading and entrapment efficiency were 

calculated as follows:

Percent drug entrapment efficiency = (GP entrapped in NP) 
   /(Total GP added into NP preparation) × 100%

Tumor cell lines and in vitro  
cytotoxicity test
A murine glioblastoma (D54) or neuroblastoma (N2A) 

cell line was seeded in a 96-well plate at a density of 

8  ×  103  cells/well and cultured in Dulbecco’s Modified 

Eagle Medium supplemented with 10% fetal bovine serum 

and 1% penicillin/streptomycin at 37°C. An MTT assay was 

performed after incubation of the lipophilic nanoparticle-

encapsulated drugs for 24 and 72 hours. Normal fibroblasts 

was seeded at a density of 8000  cells/well in a 96-well 

plate. The MTT assay was performed according to the 
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manufacturer’s protocol after incubation of the lipophilic 

nanoparticle-encapsulated drugs for 4 hours. Briefly, 10 µL 

of MTT substrate was added into each well and incubated 

for 4 hours at 37°C, after which 100 µL of solubilization 

buffer was added to each well and incubated overnight. The 

absorbance measurement was performed at 540 nm with the 

reference filter at 650 nm using an absorbance microplate 

reader (BioRad, Hercules, CA).

In vivo neuroblastoma model
Six- to eight-week-old male A/J mice weighing 20 ± 2 g 

were obtained and housed in the Laboratory Animal 

Unit, University of Hong Kong. The experimental proto-

col was approved by the Committee on the Use of Live 

Animals for Teaching and Research, University of Hong 

Kong (CULATR 1901-09). The animals were cared for 

humanely. N2A tumor-bearing mice were created by sub-

cutaneous injection of 200 µL of a mouse neuroblastoma 

cell line (N2A) at a density of 1.5 × 106/mL suspended in 

phosphate-buffered saline into the right flank of the mouse. 

At 8–11 days after inoculation, tumor mass became vis-

ible and measurable at the injection site. Tumor growth 

was evaluated by measuring the tumor volume using 

morphometric analysis with calipers every other day 

until 21 days.

Chemotherapy using 3–5  mg/kg of free GP, GPNP, 

or GPNP surface-coated with PEG (GPNP-PEG) was 

administered intraperitoneally after the tumor became 

visible and the dose was chosen according to our previous 

report.19 Intraperitoneal administration was selected because 

this route has been demonstrated to be an effective and 

well tolerated systemic route as compared with intravenous 

administration to treat neuroblastoma.23–26 Tumor volume 

was calculated as height × weight ×  length. Body weight 

was measured every other day until 21  days. Percentage 

survival was determined by the number of mice surviving 

at the designated time points.

Biodistribution study of gold porphyrin
The liver, kidneys, and tumor tissue were harvested from 

each mouse, which was either untreated or had received 

3 mg/kg (0.06 mg/20 g) of free GP or GPNP conjugated 

with or without PEG at 6 and 24 hours. The harvested tissues 

were acid-digested as previously described.27 Biodistribution 

analysis was conducted by measuring the gold isotope 

concentration (ppb) with inductively coupled plasma-mass 

spectroscopy in the Bioengineering Department at the 

University of Science and Technology, Hong Kong.

TUNEL assay
A TUNEL assay was performed on 5 mm tumor paraffin 

sections using a commercially available kit (Roche 

Applied Science, Gilroy, CA) according to the manufac-

turer’s instructions. Briefly, the tissue was fixed in 4% 

paraformaldehyde, dehydrated, paraffin-embedded, and 

sectioned. The section was then deparaffinized, rehydrated, 

and pretreated with 0.02 mg/mL of proteinase K in 0.1 mM 

Tris-HCl pH8 buffer for 10 minutes. The TUNEL assay was 

performed by incubating fluorescein-conjugated terminal 

deoxynucleotidyl transferase in enzyme solution for 2 hours. 

The stained section was viewed using a fluorescent 

microscope under a blue filter.

Statistical analysis
The statistical analyses were performed using Student’s paired 

t-test; a P value ,  0.05 was considered to be statistically 

significant. The α value adjustment was made by Bonferroni 

correction for multiple comparisons. The data are presented 

as the mean ± standard deviation.

Results and discussion
We synthesized lipophilic nanoparticles using cetyl alcohol 

and Brij 78 surfactant. This lipophilic formulation had been 

developed earlier in our laboratory to incorporate lipophilic 

GP, and we showed that GPNP had a significant reduction in 

side effects when compared with free GP in a neuroblastoma 

model.19 Nonetheless, prolonged administration of this 

early formulation still resulted in systemic toxicity due to 

accumulation in the liver.

In this study, we surface-coated GPNP with PEG 

to investigate if this modification could enhance drug 

delivery into tumor tissue and also reduce systemic 

uptake. The lipophilic nanoparticles with or without 

surface modification were first characterized (Table  1). 

More than 90% of hydrophobic GP was encapsulated into 

PEG-coated lipophilic nanoparticles. The zeta potential 

of GP, GPNP, and GPNP-PEG ranged from −4.13  mV 

Table 1 Biophysical characterization of lipophilic carrier for
mulations and free GP. The results are presented as the mean ± 
standard deviation

Formulations Particle size 
(nm)

Zeta potential 
(mV)

Encapsulation 
efficiency

GP   10.91 ± 6.02 -12.49 ± 6.03
GPNP   104.4 ± 18.5  - 4.13 ± 8.19
GPNP-PEG 164.47 ± 6.9   -  8.5 ± 2.72 98% of GP

Abbreviations: GP, gold porphyrin; GPNP, gold porphyrin nanoparticles; 
GPNP-PEG, gold porphyrin nanoparticles surface-coated with PEG.
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Another requirement of a carrier system in cancer 

therapy is the ability to facilitate the antitumor activity 

of the active drug. Our in vitro study investigated the 

activity of the encapsulated drug against tumor cells. Here, 

MTT assay showed that greater cell death was seen in the 

N2A neuroblastoma cell line using encapsulated GP in a 

dose-dependent manner (Figure 2A).

This would suggest that the lipophilic carrier facilitated 

antitumor activity against N2A. In order to confirm if our car-

rier template could enhance antitumor activity of other drugs, 

we tested camptothecin, another potent hydrophobic drug, 

using the same carrier system, whereby the PEG-coated lipo-

philic carrier also enhanced antitumor activity. The IC
50

 of 

N2A for GPNP was 0.002 mM as compared with 0.005 mM 

of GP, and was 0.0025 mM for camptothecin-NP or camp-

tothecin-NP-PEG and 0.03 mM for free camptothecin. This 

result indicated that lipophilic carrier enhanced drug efficacy 

by 2–10-fold.

On the other hand, because insertion of long-chained 

PEG provided steric hindrance to prevent cellular and serum 

protein interaction, we investigated whether the composition 
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Figure 2 (A) Dose-dependent antitumor activity against N2 A for GP and camptothecin 
with or without the lipophilic carrier formulation (n = 4, *P , 0.05 when comparing 
nanoparticle formulation with free GP or camptothecin). (B) Comparison of surface-
coated lipophilic nanoparticle carrier with different molecular weights (750 Da and 
2000 Da) of PEG.
Notes: Results are presented as the mean ± standard deviation (n = 4, *P , 0.05 for 
C-PEG 750 or C-PEG 2000 in comparison with C).
Abbreviations: C, camptothecin; GP, gold porphyrin; GPNP, gold porphyrin 
nanoparticles; GPNP-PEG, gold porphyrin nanoparticles surface-coated with PEG.

to −12.49  mV, suggesting a slight change in value but 

within a low negative range of net surface charge after 

PEG modification, possibly due to nanoparticle encap-

sulation. The low negative value of the surface charge 

would mean that the favorable binding affinity for cells 

remained unchanged after encapsulation.28 Direct light 

scattering measurements in Table  1  showed that encap-

sulation increased the size of GPNP compared with GP. 

The addition of PEG further increased the size of the 

lipophilic nanoparticles from 101.9 nm to 164.4 nm with-

out a significant change in zeta potential or morphology. 

This would benefit delivery into tumor tissue via the 

enhanced permeability retention effect. Because the pore 

sizes of the liver fenestrae are around 100 nm and the gap 

sizes of the tumor vessels are approximately 400 nm,29–31 

we hypothesized that GPNP-PEG could evade uptake 

by the liver, with enhanced tumor uptake. This is indeed 

shown in Figure 1. Here, accumulation of free GP in the 

liver was 336 ppb Au/g tissue at 6 hours, and decreased 

to 112 ppb Au/g tissue at 24 hours, while both the kidney 

and tumor tissue showed minimal uptake (,30 ppb Au/g 

tissue) at 6 and 24 hours, respectively. The unconjugated 

GPNP showed comparable uptake in the liver and kidney 

(18 ppb Au/g tissue and 52 ppb Au/g tissue, respectively) 

and relatively high tumor uptake at 6 hours. At 24 hours, 

uptake of unconjugated GPNP by the liver increased but 

was not significantly different from that in tumor tissue. 

On the other hand, GPNP-PEG showed only minimal liver 

and kidney uptake (6–44 ppb Au/g tissue), whilst uptake 

in tumor tissue was significantly higher (468 ppb Au/g 

tissue and 392 ppb Au/g tissue, respectively, P ,  0.05) 

at 6 and 24 hours. This finding would explain the reduced 

systemic toxicity after encapsulation into a PEG surface-

coated lipophilic carrier.
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Figure 1 Tissue residence of free GP, GPNP, and GPNP-PEG at 6 and 24 hours. 
Notes: Data are presented as the ppb Au/g tissue ± standard deviation (*P , 0.05, n = 3). 
Abbreviations: GP, gold porphyrin; GPNP, gold porphyrin nanoparticles; GPNP-PEG, 
gold porphyrin nanoparticles surface-coated with PEG.
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Figure 4 Apoptotic activity of (A) GP formulations and (B) camptothecin formulations 
using Tunel assay in neuroblastoma tissue harvested at 21 days after treatment. 
Notes: Green represents positive apoptotic cells and blue represents the DAPI nuclei 
stain. Magnification 100×  (left column) or 200×  (right column); n = 5, *P , 0.05 for  
4 mg/kg or 5 mg/kg of GPNP-PEG in comparison with untreated controls in Figure 4A.
Abbreviations: GP, gold porphyrin; GPNP-PEG, gold porphyrin nanoparticles 
surface-coated with PEG.
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of PEG would interfere with the antitumor activity of the 

encapsulated drug. Indeed, less antitumor activity was 

found when the nanoparticle carrier was coated with higher 

molecular weight PEG (PEG 2000), as compared with lower 

molecular weight PEG (PEG 750), as shown in Figure 2B.

We next investigated the in vivo therapeutic effect of 

GPNP-PEG using a neuroblastoma model. As shown in 

Figure  3, GPNP-PEG doses of 3, 4 and 5  mg/kg all had 

a significant antitumor effect by inhibiting the growth of 

N2A cells when compared with the control (P , 0.05). The 

antitumor effect decreased after the first 7 days but could be 

sustained by repeated doses.

Because evasion of cell death is an indicator of drug 

resistance,32 we further studied tumor cell apoptosis using the 

TUNEL assay after treatment with the lipophilic nanoparticle 

carrier. Figure 4 demonstrates that apoptotic activity was 

significantly higher in the GPNP-PEG-treated neuroblas-

toma line than in the untreated neuroblastoma line. Similar 

findings was also recorded when camptothecin-PEG was 

given. Taken together, positive tumor inhibition as well as 

apoptosis indicates that our nanoparticle carrier system was 

effective against neuroblastoma.

Nonetheless, a logical extension of our carrier system 

would be to show its usefulness against other aggressive 

cancers. Here we have shown that our lipophilic carrier 

enhanced the efficacy of GP and camptothecin against D54, 

an aggressive glioblastoma cell line (Figure 5). This would 

suggest that our lipophilic nanoparticle system is adaptable, 

and therefore promising as a new therapeutic approach 

against a range of cancers. Further work has indeed been 

planned in this direction.
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Figure 5 Dose-dependent antitumor activity against D54.
Notes: Results are presented as the mean ± standard deviation (n = 4, *P , 0.05 for 
C-NP or C-PEG 2000 compared with C).
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To summarize, drug encapsulation into a PEGylated 

lipid nanoparticle carrier may further improve drug accu-

mulation inside tumor tissue with low accumulation in the 

liver and provide effective antitumor activity in vitro and 

in vivo.

Conclusion
Our GPNP-PEG formulation offers a new strategy for the 

development of a safe and effective carrier for drug treatment 

of cancer. Clinical studies are eagerly awaited.
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