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Abstract With the development of stem cell technology,
stem cell-based therapy for retinal degeneration has been
proposed to restore the visual function. Many animal
studies and some clinical trials have shown encouraging
results of stem cell-based therapy in retinal degenerative
diseases. While stem cell-based therapy is a promising
strategy to replace damaged retinal cells and ultimately cure
retinal degeneration, there are several important challenges
which need to be overcome before stem cell technology can
be applied widely in clinical settings. In this review,
different types of donor cell origins used in retinal
treatments, potential target cell types for therapy, methods
of stem cell delivery to the eye, assessments of potential
risks in stem cell therapy, as well as future developments of
retinal stem cells therapy, will be discussed.

Keywords Retinal degenerative diseases . Stem cell
therapy . Donor cells . Target cell types .Method of cell
delivery . Potential risks . Clinical applications

Introduction

Retinal degeneration culminating in retinal cell loss is a
major cause of permanent blindness in the world, leading to
the loss of human resources and imposing a great financial
burden of health care. Retinal degeneration can be found in
the entire age spectrum. Epidemiologic studies have shown
that retinitis pigmentosa (RP) affects predominantly the
pediatric and young adult population [1], while diabetic
retinopathy (DR) affects middle-aged adults [2], and age-
related macular degeneration (AMD) affects the elderly.

Current therapeutic strategies for retinal degenerative
diseases include pharmacological treatment, surgical inter-
vention, and cell replacement. Pharmacological treatment is
the commonest approach, but it is frequently ineffective for
degenerative diseases such as RP. Surgical intervention such
as autologous translocation of retinal pigment epithelium
(RPE) have been tried for the treatment of neovascular
AMD [3, 4], but outcomes are variable, and such surgical
intervention is technically difficult. More importantly, this
surgery is unable to regenerate damaged retinal. Poor
renewability of retinal neurons has further limited the
efficacies of the above therapies.

Recently, stem cell-based therapy for retinal degeneration
has been proposed with the development of stem cell
technology [5]. Stem cell–based therapy has been tested in
animal models for several retinal degenerative diseases [6].
In 2010, the Food and Drug Administration (FDA) approved
a phase I/II clinical trial using human embryonic stem cell
(hESC)-derived RPE cells for the treatment of dry AMD.
Transplantation of functional retinal cells or stem cells aims
to restore vision by repopulating the damaged retina via
rescuing retinal neurons from further degeneration. Although
this is a milestone in clinical therapeutics, ethical controver-
sies and risk of immune rejection have limited hESC-based

The authors have full control of all primary data, and agree to allow
Graefe’s Archive for Clinical and Experimental Ophthalmology to
review their data upon request.

I. Y.-H. Wong :Q. Lian (*) :D. Wong
Department of Medicine and Eye Institute,
Li Ka Shing Faculty of Medicine, University of Hong Kong,
Pokfulam, Hong Kong SAR, PRC
e-mail: qzlian@hkucc.hku.hk

M.-W. Poon :R. T.-W. Pang :Q. Lian
Cardiology Division, Department of Medicine,
University of Hong Kong,
Pokfulam, Hong Kong SAR, PRC

I. Y.-H. Wong :M.-W. Poon :Q. Lian :D. Wong
Research Centre of Heart, Brain, Hormone, and Healthy Aging,
Li Ka Shing Faculty of Medicine, University of Hong Kong,
Pokfulam, Hong Kong SAR, PRC

Graefes Arch Clin Exp Ophthalmol (2011) 249:1439–1448
DOI 10.1007/s00417-011-1764-z



therapy in clinics. Despite the possibility of curing the
degenerative process [7], there are still many obstacles
before stem cell technology can be applied in daily practice.
In this review, different types of donor cell origins used in
retinal treatments, potential target cell types for therapy,
method of delivery, assessments of potential risks in stem
cell therapy, and also future developments will be discussed.

Donor cell origins

The success of stem cell therapy is highly dependent on the
ability of donor cells to migrate into the desired location, to
survive after transplantation, and to differentiate into retinal
cells to restore retinal function. Recent researches have
shown that several cell populations may be considered as
potential sources. These include fetal stem cells, pluripotent
stem cells (embryonic stem cells and induced pluripotent
stem cells) and adult stem cells.

Fetal stem cells

Fetal stem cells are fetal retinal cells, at the exact
developmental time when these cells are born and about
to form intrinsic connections. Previous studies have shown
that, before the formation of synaptic connections, retinal
ganglion cells can regenerate after axotomy and navigate
through the optic chiasm [8]. It has been proposed that
immature photoreceptors might also have the capacity to
reconnect themselves to the central neural system (CNS)
after transplantation. Fetal retinal progenitor cells (RPCs)
derived from a range of mammalian species, including rats
[9, 10], pigs [11], and humans, [12] have been tried. It has
been shown that rodent fetal RPCs are able to propagate
extensively, expressing photoreceptor markers. Transplanta-
tion of fetal RPCs resulting in the survival and differentiation
of the grafted tissue has been proven to be associated with
behavioral benefits in retinal dystrophic recipients [13, 14].
Fetal neurons appear to show higher survival capacities than
adult neurons [15]. For human fetal-derived retinal cells,
Young [12] isolated proliferating human retinal progenitor
cells (hRPCs) from 10th to 13rd week of gestation, and
demonstrated that they could be expanded in tissue culture.
However, their proliferating capacity was weak, and popu-
lation declined quickly. Recently, Aftab et al. [15] have
shown that donor tissues taken from 16th to 18th week of
gestation give the longest in-vitro survival time, and the
highest number of cells. After transplantation, these cells
were integrated into the recipient retina, and differentiated
into rhodopsin positive cells. This result supported the
potential of hRPC transplantation for degenerative diseases.
Nevertheless, ethical issues still exist, and the supply of such
cells is still limited.

Embryonic stem cells and induced pluripotent stem cells

An alternative is to use embryonic stem cells and induced
pluripotent stem cells (ESC/iPSC). ESCs/iPSCs have a
great potential to differentiate into any of the 200 or more
adult cell types. Hence ESC/iPSC provides potentially
unlimited cell sources for the generation of retinal cells.
In-vitro differentiation of ESC/iPSC into functional retinal
cell types is achievable by defined step-wise protocols [16–
19]. ESCs could be induced to differentiate into eye-like
structures that contained cells with properties of crystalline
lens, neural retina, and RPE [20]. Further studies have
indicated that cells from these eye-like structures could be
further differentiated into RGCs when transplanted into the
vitreous of an injured adult mouse retina [21]. Recently, the
success of defined differentiation of human ESC-derived
RPE cells (hESC-RPE) has been reported [22]. Following
transplantation in animal models, restoration of vision had
been reported and no tumor formation was seen [19, 23]. In
2010, the FDA approved the first clinical trial using hESC-
RPE for the treatment of dry AMD and Stardgart’s disease
(STGD) in humans. Hopefully results will be available in the
near future. The main advantage over adult-derived RPE cell
lines is the ability to produce differentiated RPE cells in
vitro, which is less immunogenic.

Transplantation of hESC-derived RPE cells has proved
to be a milestone in clinical therapeutics. Nevertheless, its
use is still limited by ethical controversies and the risk of
rejection. Induced pluripotent stem cells (iPSC) offer an
alternative cellular source for patient-specific treatment
without the risk of rejection and ethical problems [24, 25].
Nonetheless, clinical application of iPSCs is limited by the
risks of proviral integrations and potential insertional
mutagenesis during delivery of reprogrammed factors using
virus. To overcome these issues, efforts toward the generation
of “clinical grade” iPSC have been proposed. Recently, the
reprogramming technologies in iPSC generation have been
rapidly improved by the use of chemicals, plasmids, synthe-
sized mRNAs, and direct protein delivery [26–29]. In the
future, transplantation of photoreceptors with or without RPE
cells derived from these sources provides enormous potential
for treating retinal degenerations. Personalized treatment
strategy is potentially possible with the use of iPSCs,
assuming that the risks associated are minimized.

Adult stem cells

It is known that lower vertebrates, such as teleosts or
amphibians, have the ability to regenerate new retinal neurons
throughout life, from a region called the ciliary marginal zone
(CMZ) [30, 31]. It was also thought that the adult
mammalian ciliary body (CB) might harbor retinal stem
cell. In 2000, two independent groups discovered that the
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ciliary epithelium (CE) of the murine eye contains multi-
potent retinal stem cells [32, 33]. It was shown that single
pigmented cells from the CE of mouse retina could clonally
proliferate in vitro and form sphere colonies. These cells
have the ability to be induced into retinal-specific cell
types, including rod photoreceptors, bipolar neurons, and
Müller glia.

Similar multipotent retinal stem cells were later identified
in other mammalian species, including pigs and humans [34,
35]. These cells were proliferative, but to a lesser extent than
fetal or ESC-derived retinal stem cells. When these cells
were transplanted into adult mice, new photoreceptors were
induced [35].

Another source of retinal stem cells was later discovered
within the iris epithelium by Haruta and colleagues in 2001.
The iris epithelium might harbor discrete heterogeneous
populations of cells endowed with innate neural stem cell
properties, including the ability to differentiate into retinal
specific neurons [36, 37].

After the discovery of adult retina-specific stem cells, a
number of laboratories have sought to expand numbers of
such adult retina-specific stem cells and optimize sub-retinal
differentiation. However, there are several obstacles to the use
of such cells. Firstly, the percentage of actively proliferating
cells in the CE is very few (<2%) [38]. Secondly, self-renewal
and proliferation rates would decrease gradually with
subsequent passages [35, 38]. Thirdly, there may be a risk
of tumour formation, as reported by Djojosubroto [39] in a
recent study. Furthermore, Gualdoni [40] found that the
expansion of CE-derived cells quickly led to the loss of
retinal progenitor cell markers and hence reduced the
potential of photoreceptor differentiation. Further investiga-
tions are needed to delineate the intrinsic mechanisms
governing adult stem cell self-renewal and differentiation,
as well as genetic stability.

Other adult stem cells have also been reported to be
capable of inducing retinal regeneration. These include
neural progenitor cells (NPC) [41, 42], hematopoietic stem
cells (hSC) [43], and mescenchymal stem cells (MSC) [44].
NPCs have been shown to promote the recovery from
retinal injury and to express retinal phenotypic neurochem-
ical markers [45]. However, reports have shown that NPC
lacks the ability to differentiate into mature retinal neurons
[46]. Furthermore, the shortage of adult NPC sources has
further limited its application.

Autologous transplantation using hSC or MSCs has the
advantage of reducing the risk of rejection and avoiding
ethical controversies. Using retinal ischemia-reperfusion
models, anatomical integration has been reported by intra-
vitreal injection of hSCs [43, 47] and MSCs [48]. Animal
studies have demonstrated that MSCs is capable of
integrating into the ganglion cells and nerve fiber layers.
Due to the fact that MSC derived from an elderly donor has

limited functions, MSC derived from human embryonic
stem cells or iPSCs serves as an alternative source [49, 50].

Functional retinal differentiation from hSCs or MSCs is
still highly debatable. More evidence has suggested that
improvements with the use of adult hSCs or MSCs may
actually be attributed to the secreted neurotrophic factors
and anti-inflammatory cytokines in situ, instead of direct
functional retinal differentiation [44, 51].

Retina-specific cell types can be derived from various
cell sources. Different cell sources and important growth
factors and chemical modulators used to promote retinal
cell differentiation are summarized in Table 1.

Adult bone marrow stem cells

Cells of bone marrow origin have also been used for retinal
regeneration. Bone marrow contains subsets of non-
haematopoietic lineages, which are capable of multi-
lineage differentiation into cells of non-haematopoietic
capabilities. These include mesenchymal, endothelial, and
very small embryonic/epiblast-like stem cells (VSEL).
These cells proliferate and act in response to tissue injury
or damage. Although most of these cells are organ-
restricted, some appear to retain multipotential capacities
[52]. In a mouse model, Li [53] showed that adult bone
marrow-derived stem cells (BMSC) could be induced into
RPE lineage in vitro. When infused back in vivo, these
BMSC-derived RPE cells can home onto the focal areas of
RPE damage, and form a monolayer on Bruch’s membrane.

Potential target cell types for therapy

Retinal pigmented epithelial cells (RPE)

Retinal pigment epithelium is essential for the maintenance
of neural retinal function. There is evidence suggesting that
retinal degeneration can be treated with subretinal injections
of RPE cells. Transplantation of RPE was first reported in the
late 1980s [54, 55], on dystrophic Royal College of Surgeons
(RCS) rats. These rats have defective RPE cells, which
eventually lead to photoreceptor cell death. Since then,
significant progress has been made regarding autologous
RPE transplantation. Recent advances in stem cell culture
and differentiation techniques have made possible the
generation of RPE cells from pluripotent stem cells. It was
shown that using RPE cells derived from hESC lines
effectively improves photoreceptor survival in RPE-
defective RCS rats [56]. These RPE cells also prevented
the onset of secondary degenerative events [57].

Since the first case report of human homologous and
autologous RPE transplantation for the treatment of
exudative AMD in 1991 [58], more than 30 homologous

Graefes Arch Clin Exp Ophthalmol (2011) 249:1439–1448 1441



Table 1 Different cell sources and important growth factors/ chemical modulators used to promote retinal cell differentiation

Cell/ tissue type Growth factor/chemical modulator Primary differentiation Reference

Fetal stem cells

Retinal progenitors (r) EGF, FGF2, heparine Photoreceptors [9, 10]

Neural retina progenitor cells (r) FGF2 and NT3 (removal
from medium)

Glial cells, neurons expressing rhodopsin,
calbindin, calretinin

[82]

Progenitor cells neural retina (porcine) CNTF and no EGF and bFGF Photoreceptors [11]

Human retinal progenitor cells NT3, FGF2 Retinal cell (cell culture) [12]

Retinal progenitor cells (m) EGF Mature neurons, rhodopsin, or cone opsin [13]

Photoreceptor precursors (m) Transplantation of cells into
immature retina

Rod photoreceptors, synaptic connections [14]

Retinal progenitor cells (h) Transplantation of cells into 16 to
18 weeks G.A. B6 mice

Photoreceptors [15]

ESC and iPSC

ESCs (h) Stepwise treatment with
defined factors

Photoreceptors and RPE [16]

ESCs and iPSCs (h) Casein kinase I inhibitor, ALK4
inhibitor, the pho- kinase inhibitor

Retinal progenitors, retinal pigment epithelium
cells and photoreceptors

[17]

iPSCs (h) No bFGF RPE (cell culture) [83, 84, 85]

ESCs(h) KOM, nicotinamide ,TGF RPE (cell culture) [86, 87]

ESCs (m) bFGF, Dex, cholera toxin A structure consisting of lens, neural retina, and
pigmented retina(tissue culture)(cell culture)

[20]

ESCs(m) NMDA-treated eyes Eye-like structure [21]

ESCs(h) bFGF, xeno-free RPE (tissue culture) [88]

ESCs(m) No LIF, retinoic acid Neural progenitors , retinal cells [23]

iPSCs(h) KOS, zfbFGF, taurine, triiodo
thyronin, hydrocortisone

RPE [25]

Adult stem cells

Dissociated cells from the RPE
and the NR (m)

EGF, FGF2 Rod photoreceptors, bipolar neurons,
and Müller glia

[32]

Adult iris, pars plana, and ciliary
body progenitor cells

FGF2 Neurons and glia [34]

Pars plicata and pars plana of the retinal
ciliary margin progenitor cells(h)

FGF2, heparin, EGF Photoreceptors [35]

Multipotent cells within the IPE of
postnatal and adult (r)

bFGF Neural retinal cells, RPE,
photoreceptors (cell culture)

[36]

Adult hippocampus-derived neural
progenitor cells (r)

N2, bFGF Retinal neurons [41]

Hematopoietic progenitor cells (m) SDF-1α RPE [43]

Hippocampus-derived neural stem cells (r) N2, bFGF Neurons and glia [46]

Adult CD90+MSC (r) activin A, taurine, and EGF Rhodopsin, opsin, recoverin [48]

UCB-MSCs (h) TGFβ, CNTF, NT-3, BDNF RGCs (superior colliculus) [89]

Ciliary body (m) bFGF, GDNF Photoreceptor, bipolar cell [90]

Iris(r) FGF2 Rod photoreceptor [91]

Key:

h — human

m — mouse

ESC — embryonic stem cells

iPSC — induced pluripotent stem cells

NR — neural retina

UCB — umbilical cord blood

MSC — mesenchymal stem cells

IPE — iris pigmented epithelium

RPE — retinal pigment epithelium

RGC — retinal ganglion cell
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and 230 autologous RPE grafts have been performed [59].
The technique of harvesting RPE–choroid patch graft from
the periphery, followed by insertion under the macula
through retinotomy, was first described by van Meurs in
2003 [60]. It is now the most popular method of choice for
RPE transplantation. Recent reports have shown that autolo-
gous RPE–choroid graft is able to produce sustainable long-
term improvement in terms of vision and microperimetry
performance, for neovascular age-relatedmacular degeneration
[61]. Other than autologous grafts, allogeneic and cultured
HLA-typed cadaveric RPE cells have also been proposed for
clinical application [62].

Photoreceptor

The mammalian retina contains highly specialized photo-
receptors that are capable of capturing photons and transducing
them into electrical signals. Replacing photoreceptors is much
more challenging than RPE cells because the connection
between photoreceptors and neurons are lost, and also because
of the potential scarring response elicited. In 1999, Kwan [63]
successfully transplanted photoreceptors in a mouse model of
retinal degeneration. Outer segment reconstitution was
observed in the recipient mice, and the mice were able to
perform a simple light–dark discrimination test. Improve-
ments in visual function have also been reported following
transplantation of multipotent retinal progenitor cells derived
from green fluorescent protein (GFP)-expressing mice [13].

Other transplantation strategies include grafting of retinal
sheets, with or without attached RPE, into eyes of various
rodent models of retinal degeneration [64]. Most recently, a
few reports have demonstrated the ability of human neonatal
photoreceptor precursors to differentiate and integrate into the
outer nuclear layer (ONL) in both the intact and the
degenerating retina of mature mice [14, 65]. Evidences has
shown that photoreceptors and embryonic retinal tissue,
when transplanted into the subretinal space, can form new
synapses with existing host neurons. However, at the moment,
photoreceptor transplants remain in the stage of laboratory
science. The development of a combined tissue-engineered
scaffold targeting both RPE and photoreceptors may be a
promising direction for future research. Recent studies on
stem cell therapy in retinal diseases are summarized in Table 2.

Methods of delivering stem cells

Currently the two most popular methods of delivering stem
and progenitor cells into the eye are the intravitreal route and
the subretinal route. The intravitreal route delivers stem cells
into the eye through an injection using a small-gauge needle
(e.g., 30-gauge). This method is technically easier and less

invasive. However, the cells have to migrate through the
vitreous and inner retina to the outer retina. There are also no
means of directing the cells toward the target treatment area.
Some studies have demonstrated that, compared to subretinal
injections, intravitreal injection of stem cells resulted in a
higher survival rate and fewer invasions by immune cells [66,
67]. On the other hand, the subretinal delivery method is
more technically demanding and more invasive. The cells are
injected through the sclera and choroid, into the subretinal
space, using a small-gauge needle. This method has the
advantage of directing the cells towards targeted treatment
areas. Some reports have shown that the subretinal route has
resulted in better localization and differentiation of neural
stem cells than the intravitreal route [68, 69]. Recently, there is
a report of delivering stem cells subretinally on a biodegrad-
able polymer composite graft [70]. Tomita and associates
have shown a 10-fold increase in the number of surviving
cells with this technique when compared to the conventional
technique. In general, both routes have proved efficacious and
are being routinely employed by stem cell researchers.

Potential obstacles and risks

Limitation of integration

Integration of graft cells into host tissue is another major
obstacle at the moment. Wang et al. [55] reported their results
following injection of both RPE cells of cell line ARPE-19
and human Schwann cells (hSC). By 15 weeks after injection,
only hSC was able to form a monolayer of cells at the level of
RPE. Despite displaying diploid properties and expressing
RPE-specific markers, ARPE-19 cells did not show properties
of RPE cells when injected and failed to form a monolayer of
cells [71]. Klimanskaya [72] also observed that ESC-derived
RPE cells remained aggregated when grafted, and failed to
form amonolayer over the defective RPE in the subretinal space.

The reason for the behavior of grafted cells in failing
subretinal expansion may be due to the high levels of retinoids
within the host RPE cells. Retinoid is known to be able to
inhibit cellular division, which may have also inhibited the
transplanted cells from integrating. To overcome this limited
integration, transplanting RPE cell sheets instead of RPE cells
has been proposed [73]. Concomitant pharmacological
modulations of the extracellular matrix may also improve
host integration [74]. As transplantation techniques advance,
future studies may incorporate more adjuncts to improve the
integration of grafted cells into the host.

Inflammation and immunoreaction

Inflammation is activated in retinal degeneration primarily
by microglia and macrophages [75, 76]. When a lesion is
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identified, these cells form a barrier around the lesion,
separating damaged tissue from the undamaged [77].
Activated microglia and macrophages produce inflammatory
cytokines including IL-1b, IL-6, tumour necrosis factor-alpha
(TNF-a), nitric oxide and reactive oxygen species [75].
Inflammatory cytokines have been implicated in signalling
migratory pathways for progenitor cells, in the hope of
replacing the defective or dead cells [78]. However,

excessive cytokines maybe toxic to grafted cells. They have
to overcome the pro-inflammatory reaction as well as gliotic
barriers, which may hinder its proliferation. Furthermore,
microglial cells can serve as antigen-presenting cells, and the
immune reaction produced may destroy allografts or xeno-
grafts. This poses a major obstacle to the long-term survival
of allogeneic RPE or photoreceptor grafts. The eye and brain
have been considered to be immune-privileged sites, partly

Table 2 Recent studies on stem cell therapy in retinal diseases

Retinal diseases Donor cell type (species) Target (species) Outcomes Ref.

Retinal
degeneration

h/mBM-SCs Retinal cells (m) Retinal degeneration rescued [92]

hBM- somatic cells Photoreceptors (r) These cells were differentiated into 3–6 layers
of photoreceptors

[93]

rBM- MSCs Retinal cells (r) Grafted cells expressed a rod photoreceptor
and bipolar and amacrine cell markers

[94]

Primate ESCs Primate retinal cells Co- culturing ESCs with ESC-derived RPE
cells is efficient for inducing photoreceptors

[95]

mESCs Retinal cells (m) ESCs differentiates to various retinal cell types [96]

Neural retina repair mPostmitotic rod
photoreceptor
precursor cells

Rod photoreceptors (m) Photoreceptors were present up to 12 months
post-transplantation

[97]

Retinitis pigmentosa mBM-MSCs Microglia (m) These microglia plays a protective role in
retinitis pigmentosa

[98]

Retinitis pigmentosa
and AMD

hiPSCs hRPE(culture) iPSCs differentiate into functional RPEs which
are comparable to fetal and ESC–RPE

[85]

AMD (clinical) Autologous hRPE Subfoveal space (h) Autologous RPE transplantation restores vision
in neovascular AMD

[99]

Autologous hRPE Macula (h) Postoperative vision ranged from 20/200 to 20/64,
with a 2-line increase in three patients.

[100]

Retinal dystrophy hESCs hRPE (r) Improvement in visual performance was 100%
over untreated controls

[101]

Glaucoma hMSCs Retinal ganglion cells (r) BM-MSCs deliver neurotrophic factors and neuroprotection [102]

Photoreceptor loss hUTC, hPTC,
hADF and hMSC

Photoreceptors (r) Umbilical tissue-derived cells gave large areas
of photoreceptor rescue; mesenchymal stem cells
gave only localized rescue

[103]

hRPE Photoreceptors, rods and
cones (r)

Partial preservation of rod and cone
electroretinogram function

[104]

hRPE/ hSCs Photoreceptors (r) hRPE and hSC grafts can survive and rescue photoreceptors [105]

Macular
degeneration

hESC- derived RPE Photoreceptors (m/r) The cells sustained visual function and photoreceptor integrity [106]

Key:

AMD — Age-reltaed macular degeneration

h — human (may added in before abbreviations)

m — mouse (may added in before abbreviations)

r — rat (may add in before abbreviations)

BM-SC — bone marrow stem cells

iPSC — induced pluripotent stem cells

ESC — embryonic stem cells

RPE — retinal pigment epithelium

UTC — umbilical cord tissue-derived cells

PTC — placenta tissue-derived cells

ADF — adult dermal fibroblasts

MSC — mesenchymal stem cells

SC — stem cells
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because of the existence of the blood–retinal, blood–brain
barrier. However, these barriers are often compromised in
injured or diseased retina, and blood vessels may become
‘leaky’ [79]. At present, many transplanted photoreceptor
progenitors die following allografts [14]. Graft rejection
without immunosuppression may lead to graft rejection [80].
Therefore, immunosuppression may be required at least until
the blood–retinal barrier has regained its function after surgery.

Tumorigenicity

At the moment, no evidences of tumorigenesis have
been reported when human ESC-derived retinal progen-
itor cells were used [23, 56, 68, 81, 82]. However, there
has been one report of tumor formation when neurally
selected mouse ESC was transplanted into rodent retina
[83]. Therefore, it is vital that a stringent selection process
to eliminate any undifferentiated ESC before applying into
human trials.

Another potential risk for tumorigenicety is if the cell
cultivation period has been prolonged. Djojosubroto [39]
reported that chromosomal aberration accumulated rapidly
upon prolonged cultivation in ciliary body-derived cells.
This maybe potentially tumorigenic; hence, great care must
be taken not to prolong the cultivation period.

Future developments

The use of stem cells in treating retinal degenerative disease
has clearly demonstrated great potential for restoring vision.
Several issues, however, remain unsolved. A well-defined
technique together with a more sustainable and acceptable
source of donor cell line have to be sought. At present, stem
and progenitor cells transplantation are popular, but in the
future, cell-sheet transplantation may be more applicable as
it has the advantage of overcoming the problem of
integration. However, surgical challenges and the shortage
of donor cells are yet to be solved. The continuing search
for a sustainable cell source is ongoing. ESC, iPSC,
marrow-derived stem cells, umbilical cord-derived cells,
and immortalized cell lines are potential candidates. To
improve therapeutic effects, an alternative strategy is to
combine cell transplantation with gene therapy. A combi-
nation of RPE and photoreceptor with anti-angiogenic
factors (e.g., anti-vascular endothelial growth factor) may
potentially increase cell viability and engraftment.

Conclusions

In this review, we have presented the current state as well as
possible future directions of stem cells therapy for degenerative

retinal diseases. While the great potential of stem cell
therapy for restoration of visual functions has been clearly
demonstrated, several issues are yet unresolved. Appropriate
cell sources, targeted cell types for therapy, delivery techni-
ques, and potential risks have to be carefully evaluated before
translating into clinical trials. With the development of stem
cell biology and technical breakthroughs, clinical translation of
RPE transplantation to reconstitute the subretinal anatomy and
improve photoreceptor function will hopefully bring hope to
the blind.
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