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Abstract Using ammonia monooxygenase α-subunit
(amoA) gene and 16S rRNA gene, the community structure
and abundance of ammonia-oxidizing archaea (AOA) and
ammonia-oxidizing bacteria (AOB) in a nitrogen-removing
reactor, which was operated for five phases, were charac-
terized and quantified by cloning, terminal restriction
fragment length polymorphism (T-RFLP), and quantitative
polymerase chain reaction (qPCR). The results suggested
that the dominant AOB in the reactor fell to the genus
Nitrosomonas, while the dominant AOA belonged to
Crenarchaeotal Group I.1a in phylum Crenarchaeota.
Real-time PCR results demonstrated that the levels of
AOB amoA varied from 2.9×103 to 2.3×105 copies per
nanogram DNA, greatly (about 60 times) higher than those
of AOA, which ranged from 1.7×102 to 3.8×103 copies per
nanogram DNA. This indicated the possible leading role of
AOB in the nitrification process in this study. T-RFLP results
showed that the AOB community structure significantly
shifted in different phases while AOA only showed one
major peak for all the phases. The analyses also suggested
that the AOB community was more sensitive than that of
AOA to operational conditions, such as ammonia loading
and dissolved oxygen.

Keywords Ammonia monooxygenase α-subunit (amoA)
gene . Ammonia-oxidizing archaea (AOA) .

Ammonia-oxidizing bacteria (AOB) . T-RFLP. qPCR

Introduction

Nitrification, the key and often rate-limiting step in nitrogen
removal, includes two steps, i.e., oxidation of ammonia to
nitrite catalyzed by ammonia-oxidizing bacteria (AOB), and
nitrite to nitrate by nitrite-oxidizing bacteria. AOB are
thought to be largely responsible for the oxidation of
ammonia to nitrite in wastewater treatment plants (WWTPs)
and natural environments. In particular, members of the
betaproteobacterial genera Nitrosomonas and Nitrosospira
are considered as the most important AOB in activated
sludge (Purkhold et al. 2000).

Recently, however, it was discovered that autotrophic
oxidation of ammonia is not restricted to the Bacteria
domain (Treusch et al. 2005; Könneke et al. 2005). The first
cultivated representative of ammonia-oxidizing archaea
(AOA), named Nitrosopumilus maritimus, which, like AOB,
grows chemolithoautotrophically by oxidizing ammonia to
nitrite, was isolated from a marine aquarium tank (Könneke
et al. 2005). Both AOA and AOB have ammonia mono-
oxygenase (AMO), one of the key enzymes responsible for
the conversion of ammonia to nitrite. AMO is composed of
three subunits encoded by genes of amoA, amoB, and amoC
(Klotz et al. 1997). Among these three genes, the amoA gene
has been much more extensively used for the study of
ammonia oxidizers and has a well-established database,
compared with amoB and amoC (Francis et al. 2005; Okano
et al. 2004).

By using culture-independent DNA-based techniques,
AOA has been found quite diverse and abundant in various
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natural environments, such as marine sediment (Francis et
al. 2005; Park et al. 2008), soil (He et al. 2007), estuary
(Beman and Francis 2006), and seawater (Coolen et al.
2007). So far, most studies on AOA have been focused on
their diversity and quantity in various natural environments,
revealing its high diversity and widespread distribution.
However, only very limited works on the presence of AOA
in wastewater treatment reactors/plants have been done
(Park et al. 2006; Zhang et al. 2009). Most studies of
nitrifying activated sludge only focused on the presence and
abundance of AOB (Dionisi et al. 2002; Geets et al. 2007).
So far, there was only one new report to indicate that AOB
was predominant rather than AOA in targeted full-scale
bioreactors (Wells et al. 2009). Lacking more data, it
remains unknown whether it will be the same or not in
other bioreactors.

AOB are highly sensitive to several environmental
factors, such as temperature, salinity, pH, dissolved oxygen
(DO), ammonium concentration, and hydraulic retention
time (HRT; Limpiyakorn et al. 2007; Lydmark et al. 2007).
Any improper condition may result in nitrification failure in
wastewater treatment. Although the study on the factors
affecting AOA is quite limited, it is believed that AOA
responds to different environmental conditions (Erguder et
al. 2009). Therefore, knowledge on the diversity and
dynamics of AOA and AOB in wastewater treatment will
be helpful to improve the reactor performance.

In this study, a laboratory-scale nitrogen-removing
reactor was carefully controlled to gradually change the
running conditions (DO, ammonium concentration, and
HRT) in five phases in order to investigate the response of
AOA and AOB. Using culture-independent DNA-based
approaches, the goals of this study are (1) to investigate the
diversity of AOA and AOB, as well as the total archaeal
and bacterial community based on clone libraries of 16S
rDNA and amoA, (2) to monitor changes of composition of
AOA/AOB populations under different running conditions

using terminal restriction fragment length polymorphism
(T-RFLP), and (3) to quantify the AOA/AOB amoA gene
copies using quantitative polymerase chain reaction (qPCR).

Materials and methods

Reactor operation

Nitrifying activated sludge was collected from Hong Kong
Shatin sewage treatment plant, which treats 150,000 m3

saline sewage containing an average of 6,000 mg Cl−/L,
300 mg COD/L, and 20 mg NH4

+–N/L, and used as the
sludge seed for an automatically controlled continuous
stirred-tank reactor (CSTR) of 2.6 L (working volume)
followed by a cylindered sedimentation separation unit of
300 ml (length 15 cm and diameter 9 cm). The influent of
the reactor was synthesized by deionized water (67%) and
seawater (33%) to simulate the salinity of sewage in Hong
Kong. NH4Cl was added at different concentrations in the
five phases. For each gram of NH4

+-N in the synthetic
wastewater, 7 g of NaHCO3 and 0.07 g of phosphorus were
added. Table 1 shows the detailed operational conditions
and the wastewater compositions in five different phases.
The pH was kept at 7.0 by adding NaHCO3 solution. DO
was controlled by the combination of aeration and stirring.
Temperature was 23±2°C throughout the whole operation.
Mixed liquor suspended solid (MLSS), nitrate, nitrite, and
ammonium were measured accordingly to the standard
method (APHA 2005).

DNA extraction and PCR

Genomic DNA was extracted from 1.5 ml of sludge sample
using a FastDNA® SPIN Kit for Soil (MP Biomedicals, LLC,
Illkirch, France) following the instruction of the producer.
The amount of DNA was determined by NanoDrop®

Table 1 Operational conditions for nitrogen-removing CSTR

phase I phase II phase III phase IV phase V

Time range (days) 1–45 46–86 87–142 143–204 205–286

Feed flow rate (L day−1) 5 5 5 5 7.5

HRT (h) 12.5 12.5 12.5 12.5 8.3

Feed nitrogen concentration (mg NH4
+–N L−1) 100 100 100 200 200

Feed COD concentration (mg COD L−1) 100 100 0 0 0

DO (mg L−1) 1.0 0.5 0.5 0.5 0.5

Nitrogen loading rate (mg NH4
+–N L−1 day−1) 192 192 192 384 576

Ammonium-oxidizing rate (g N g SS−1 day−1) No data No data 0.13 0.21 0.26

Nitrogen removal rate (g N g SS−1 day−1) No data No data 0.09 0.17 0.20

MLSS concentration (g L−1) 1.1 1.7 1.5 1.8 2.2
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Spectrophotometer ND-1000 (Thermo Fisher Scientific,
USA). The primers used were listed in Table 2. The PCR
was performed in a total volume of 25 µl containing 20 ng
of DNA template, 1 U of AmpliTaq® DNA polymerase
(Applied Biosystem, Branchburg, USA), 0.1 µM of each
primer, and 12.5 µl FailSafe™ PCR Premix F (EPICENTRE
Biotechnologies, Madison, USA). Thermal cycling was
carried out by an initial denaturation step at 94°C for
4 min. The major cycling program for each primer set was
listed in Table 2. The presence and sizes of the PCR
amplification products were determined by agarose (1%) gel
electrophoresis.

Cloning and sequencing

The PCR products were purified by using PCRquick-spin™
PCR Products Purification Kit (iNtRON Biotechnology,
Seongnam-Si, Korea). Then the PCR products were cloned
using InsT/Aclone™ PCR Cloning Kit (Fermentas, Vilnius,
Lithuania). White colonies were picked for insert screening
using PCR with M13F and M13R primers, and then
grouped by RFLP with restriction enzymes RsaI and/or
MspI. For each RFLP group, representatives were selected
and sequenced. The sequencing was performed using M13F
primer on ABI 3730xl capillary sequencers (PE Applied
Biosystems, Foster City, USA).

Phylogenetic analyses

The nucleotide sequences were compared with those from
the GenBank using BLASTn in the National Center for the
Biotechnology Information server (http://www.ncbi.nlm.
nih.gov). The sequences in this study and the reference
sequences retrieved from the GenBank were aligned by
ARB (http://www.arb-home.de; Ludwig et al. 2004) to
construct phylogenetic trees using the neighbor-joining
method (based on Jukes–Cantor corrected distance). Boot-
strap value was calculated based on 1,000 replications.

Quantitative PCR

qPCR was performed using an iCycler IQ System (Bio-Rad,
Hercules, USA), two replicates for each sample. For AOA,
the PCR was performed in a total volume of 30 µl containing
15 µl of FailSafe™ PCR Premix F, 5 µl of DNA template,
0.1 µM of each primer, 1.5 U of AmpliTaq® DNA
polymerase, 15 mM MgCl2, and 0.5× SYBR® Green I
(Invitrogen, Eugene, USA). For AOB, the PCR was
performed in a total volume of 30 µl containing 15 µl of
iQ™ SYBR® Green Super Mix (Bio-Rad, Hercules, USA),
5 µl of DNA template, and 0.1 µM of each primer. The
real-time PCR thermocycling steps were set as follows:
95°C for 4 min and 45 cycles at 95°C for 45 s, 55°C for
45 s, and 72°C for 45 s. Cycling was completed by a final
elongation step at 72°C for 10 min. The negative control
containing no DNA was subjected to the same procedure
to exclude or detect any possible contamination. After
real-time PCR assay, the specificity of amplification was
verified by generation of melting curves and agarose gel
electrophoresis.

T-RFLP analysis

PCR was performed by using fluorescently labeled primers
amoAR-Hex and amoA-2R-Hex for AOA and AOB,
respectively. PCR conditions were the same as those for
clone library construction. RsaI and HhaI were selected to
digest PCR products of AOA and AOB amoA gene
purified with PCRquick-spin™ PCR Products Purification
Kit, respectively, as these two enzymes may classify the
different operational taxonomic units (OTUs) of AOA or
AOB into unique terminal restriction fragments (T-RFs) as
shown in the Table 3.

The restriction–digestion mixture, containing 17 µl of
purified PCR product (about 200 ng DNA), 2 µl of buffer,
and 1 µl of restriction enzyme (10 U/µl), was incubated at
37°C for 5 h. The digested DNA was directly precipitated

Table 2 Primers used for PCR amplification

Target gene Primer Sequence (5′–3′) PCR program Reference

16S rRNA Bacterial EBU8F AGAGTTTGATCMTGGCTCAG (94°C, 60 s; 55°C, 45 s;
72°C, 60 s)×30

Heuer et al. 1997

UNIV1392R ACGGGCGGTGTGTRC Ferris et al. 1996

Archaeal ARC23F TGCAGAYCTGGTYGATYCTGCC (94°C, 45 s; 56°C, 45 s;
72°C, 60 s)×35

Burggraf et al. 1991

ARC934R GTGCTCCCCGCCAATTCCT Giovannoni et al. 1998

amoA AOA cren amo_F ATGGTCTGGCTAAGACGMTGTA (94°C, 45 s; 55°C, 45 s;
72°C, 45 s)×35

Hallam et al. 2006

amoARa GCGGCCATCCATCTGTATGT Francis et al. 2005

AOB amoA-1F GGGGTTTCTACTGGTGGT (94°C, 60 s; 55°C, 45 s;
72°C, 60 s)×40

Rotthauwe et al. 1997

amoA-2Ra CCCCTCKGSAAAGCCTTCTTC Rotthauwe et al. 1997

a Primers used for T-RFLP analysis were labeled by Hex
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with 50 µl 100% ethanol by centrifugation at 14,000×g for
15 min at 4°C. The DNA pellets were washed with 100 µl
70% (v/v) ethanol and then air dried. The precipitate (about
70–100 ng) was dissolved in 15 µl of distilled water. The
fluorescently labeled T-RFs were run through an ABI 3730xl
capillary sequencer in the GeneScan mode. T-RFLP data
was analyzed using GeneMarker V1.6 (SoftGenetics LLC,
Pennsylvania, USA). Because of the detection range of
internal marker GS500, T-RFs smaller than 50 bp and larger
than 500 bp were excluded from further analysis. The peaks
were first selected by the default parameters setting of the
software GeneMarker with the threshold cutoff of peak
intensity of 100. The relative abundance of each T-RF was
determined by calculating the ratio between the area of each
peak and the total area of all peaks in one sample. The peaks
with relative abundance <1% were neglected in this study.

Accession number

The sequences reported in this study were deposited in the
GenBank under accession number FJ917560–FJ917595.

Results

Reactor performance

As shown in Table 1, the ammonium-oxidizing rate was
increased from 0.13 to 0.21 and 0.26 mg N g SS−1 day−1

from phase III to phase V. Correspondingly, the nitrogen
removal rates were 0.09, 0.17, and 0.20 mg N g SS−1 day−1

and the removal percentages were 64%, 70%, and 71%,
respectively.

Bacterial community

Eighteen OTUs were recovered from 75 clones of a library
based on bacterial 16S rRNA gene using 3% nucleotide
cutoff. Most of these sequences were closely related to
unidentified clones from environmental samples. Bacteria in
the sludge of this study belonged to four divisions: Proteo-
bacteria (11 OTUs), Chloroflexi (two OTUs), Bacteroidetes
(three OTUs), and Planctomycetales (two OTUs; Fig. 1). In

the subdivision of betaproteobacteria, the OTUs FN-4, 5, 7,
and 72 were affiliated with bacteria Nitrosomonas spp. at
similarities of 97% to 99%.

AOB community diversity based on amoA gene

As shown in Fig. 2 and Table 3, two AOB amoA OTUs
(based on the 3% nucleotide cutoff), i.e., AOB-OTU-1 and
AOB-OTU-2, obtained from the sludge formed two clusters.
The sequences of all these OTUs were closely related to those
of Nitrosomonas spp., instead of Nitrosospira spp., in
agreement with results of bacterial 16S rRNA gene clone
library. Most of the sequences in cluster II were from
activated sludges of different WWTPs. Especially, Nitro-
somonas sp. ML1 (AY958703) was isolated from a
bioreactor operated under low DO (0.12–0.24 mg L−1; Park
and Noguera 2007), which was even lower than DO levels
of 0.5–1.0 mg L−1 in this study.

Archaeal and AOA community

The results of the archaeal 16S rRNA gene clone library
showed very low diversity of archaeal community. RFLP
analysis of 16 clones showed only one OTU. Three repre-
sentatives were sequenced, as shown in Fig. 3a. It was
affiliated with an archaeon clone ZES-168 (EF367605)
from a tropical estuary, belonging to Crenarchaeotal Group
I.1a (CGI.1a) in phylum Crenarchaeota. As reported before
(Zhang et al. 2009), there were four AOA amoA OTUs (on
the basis of the 5% nucleotide cutoff) recovered by using
two primer sets in this sludge. As shown in Fig. 3b, they
were dominantly distributed in the CGI.1a cluster and only
one OTU fell in the CGI.1b cluster, according to the
classification of Park et al. (2008), in agreement with the
results of the archaeal 16S rRNA gene clone library.

AOA and AOB abundance

Figure 4 shows the change of AOA and AOB population
abundance in the whole microbial community of the CSTR
in terms of the amoA gene copy number per nanogram
DNA in the extract. AOA amoA gene copy number ranged
from 1.7×102 to 3.8×103 copies per nanogram DNA in the

T-RF OTU Clones

AOA 247 AOA-OTU-1, 4 D30-C-1, D30-C-8, D30-C-33

56 AOA-OTU-3 D30-C-3

AOB 214 AOB-OTU-1 F-AOB-5, F-AOB-19, F-AOB-40

371 AOB-OTU-3 AS-1

421 AOB-OTU-2 F-AOB-1, F-AOB-25

486 AOB-OTU-4 AS-60

Table 3 amoA OTUs and
clones of AOA and AOB and
their corresponding T-RFs
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whole process. It was firstly down from 8.9×102 to 1.7×
102 copies per nanogram DNA in the initial 20 days
(phase I), recovered slightly in phase II, subsequently
increased up to reach the highest 3.8×103 copies per
nanogram DNA in phase III, and finally decreased slightly
in last two phases. The average abundance for AOA was
1.9×103 copies per nanogram DNA for five phases.

The levels of AOB amoA varied from 2.9×103 to 2.3×
105 copies per nanogram DNA during the five phases,
fluctuating more significantly than that of AOA. In
phases I, II, and V, AOB abundance was over 1,000-fold
higher than that of AOA. In phases III and IV, the
abundances of AOA and AOB were in the same magnitude.
Overall, the average abundance for AOB was 1.2×105

I 

II 

III 

IV 

α 

δ 

β  

γ  

Fig. 1 Neighbor-joining tree based on Jukes–Cantor corrected DNA
distances showing the phylogenetic affiliation of bacterial 16S rRNA
gene sequences from activated sludge of CSTR and reference
sequences from other environmental samples or pure stains. The

sequences obtained in this study are printed in bold. All the sequences
were grouped as I Planctomycetales, II Chloroflexi, III Bacteroidetes,
and IV Proteobacteria
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copies per nanogram DNA for five phases. Thus, AOB
were about 60 times more abundant than AOA in terms of
amoA copy number. Assuming 2.5 copies of amoA gene
per AOB cell (Norton et al. 2002) and one copy per AOA
cell (Hallam et al. 2006), AOB cell numbers were about 24
times higher than that of AOA, indicating their dominance
in the nitrifying community and possible leading role in the
nitrification process of the CSTR in this study.

T-RFLP analysis of AOA and AOB

The AOA T-RFLP profiles showed that there was only one
major T-RF of 247 bp, corresponding to the dominant
AOA-OTU-1 and another AOA-OTU-4 (Table 3), which
were also derived from this bioreactor (Zhang et al. 2009).
This result indicated that AOA-OTU-1 was the most
dominant AOA in activated sludge for all phases, and the
AOA community was stable and had relatively low
diversity in this CSTR (Fig. 5).

In contrast, the five major T-RFs in AOB T-RFLP profiles
varied significantly in the five phases in terms of the
percentage of each T-RF, indicating the dynamic shift of the
AOB community subject to change of operation conditions.
As shown in Table 3, two of five T-RFs (214 and 421 bp)
may correspond to AOB-OTU-1 and AOB-OTU-2, respec-
tively, which were recovered from the activated sludge in
this CSTR. The other two T-RFs (371 and 486 bp) may
correspond to AOB-OTU-3 and AOB-OTU-4, respectively,
which were recovered from the seed sludge of the CSTR.
For T-RF of 117 bp, there was no OTU related to it. From
20 to 180 days, T-RF of 214 bp, i.e., AOB-OTU-1, was the
most dominant AOB, accounting for 32–85% of the total
AOB, but showed low abundance (4–25%) in the following
100 days (Fig. 5). Oppositely, AOB-OTU-2 (i.e., T-RF of
421 bp) was themost dominant (48–70%)AOB after 200 days
although its relative abundance was lower than 10% in

previous phases. The other three T-RFs (117, 371, and
486 bp) also showed fluctuation in different phases, but not
as significantly as AOB-OTU-1 and AOB-OTU-2, and not
the dominant AOB in the sludge.

Discussion

Phylogenic analysis of microbial community

The reactor in this study was operated to conduct nitrifica-
tion of saline (about 1% salinity) wastewater. The bacterial
16S rRNA gene clone library revealed that sequences of
many clones, including OTUs FN-8, 11, 13, 15, 23, 58, 61,
66 and 88, were closely related to bacteria from seawater
and marine sediment, indicating that salinity was a key
factor shaping the bacterial community in this study.
Additionally, both 16S rRNA gene clone library and AOB
amoA gene clone library confirmed the presence of the
nitrifying genus Nitrosomonas, which had been identified as
the major AOB in many nitrifying bioreactors (Egli et al.
2003; Hallin et al. 2005; LaPara and Ghosh 2006;
Limpiyakorn et al. 2007; Park and Noguera 2004; Persson
et al. 2002; Wells et al. 2009). However, the sludge in this
study did not contain another AOB group, the genus
Nitrosospira, which was rarely found in nitrogen-removing
bioreactors (Schramm et al. 1998; Rowan et al. 2003).
Nitrosospira spp. preferred low temperatures of 4–10°C and
grew slowly (Avrahami et al. 2003; Siripong and Rittmann
2007) and may not be able to dominate in the reactor
operated at 23°C in this study.

Previous studies have suggested that most of AOA
belonged to clusters of CGI.1a and CGI.1b in the phylum
Crenarchaeota (Hatzenpichler et al. 2008). The clone
library of archaeal 16S rRNA gene in this study recovered
only one dominant OTU in CGI.1a, indicating the low

Fig. 2 Neighbor-joining tree
based on Jukes–Cantor
corrected DNA distances
showing the phylogenetic
affiliation of AOB amoA gene
sequences from activated sludge
of CSTR and other environ-
mental samples or pure strains.
The sequences obtained in this
study are printed in bold
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archaeal diversity. Although four OTUs were recovered
from clone libraries of the AOA amoA gene, the most
dominant AOA-OTU-1 also belonged to the CGI.1a cluster,
showing that the dominant OTU of 16S rRNA gene and amoA
gene might represent the same archaeal species. T-RFLP of
AOA amoA also showed only one major peak, confirming
the results of the two clone libraries. Possibly due to the low
abundances, the counterparts of the other three OTUs of
AOA amoAwere not detected in the T-RFLP profile and the
clone library of 16S rRNA gene.

AOA and AOB abundances

It was reported that AOA abundance was remarkably 1–3
orders of magnitude higher than AOB in soil and marine
environments (Leininger et al. 2006; Wuchter et al. 2006).
Oppositely, AOB was dominant than AOA in estuarine
sediment (Mosier and Francis 2008; Santoro et al. 2008).
However, little is known about AOA in biological nitrogen
removal reactors.

So far, only limited AOA-containing activated sludge
were reported for a few WWTPs operated with aerated-
anoxic processes in which extremely low DO concentra-
tions were maintained, enabling simultaneous nitrification
and denitrification (Park et al. 2006; Zhang et al. 2009).
Additionally, AOA-positive samples were collected from
WWTPs operating with sludge retention times longer than
15 days and HRT longer than 24 h. It seems that these
features (low DO levels and long retention times) might
facilitate the growth of AOA (Park et al. 2006).

This study determined the AOA/AOB abundance and
ratio of AOA/AOB in activated sludge. The range of AOA
amoA gene copy number was from 102 to 103 copies per
nanogram DNA at the high end of the levels for marine
sediments which was 10−1 to 103 copies per nanogram
DNA (Mosier and Francis 2008). The fluctuation of AOA
abundance in five phases was <10-fold. However, the AOB
amoA copy number fluctuated from 103 to 105 copies per
nanogram DNA, much larger than that of AOA. Overall,
the abundance of AOA was relative stable, indicating that

Fig. 3 Neighbor-joining tree
based on Jukes–Cantor
corrected DNA distances
showing the phylogenetic
affiliation of sequences from
activated sludge of CSTR and
reference sequences from other
environmental samples or pure
stains: a archaeal 16S rRNA
gene; b AOA amoA gene. The
sequences obtained in this study
are printed in bold
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the change of reactor conditions did not significantly affect
AOA, in good agreement with the conclusion by Wells et
al. (2009). In contrast, the great change of AOB indicated
that AOB might be more sensitive to bioreactor conditions
than AOA. It was suggested that AOA are adapted to a broad
range of growth conditions and, therefore, have a more
versatile metabolism than AOB (Leininger et al. 2006).

The results of phases I to II indicated that lower DO
possibly decreased the AOB abundance, while the results of
phases IV to V showed that higher ammonia concentration
and feeding rate were beneficial for AOB. Similarly, a
previous study also suggested that AOB abundance was
higher at an ammonia load of 250 mg N–NH4 day−1 than
that of 130 mg N–NH4 day−1 (Cydzik-Kwiatkowska and
Wojnowska-Baryła 2008).

The average abundance of AOB in five phases was much
higher (averagely 24 times) than AOA, indicating that AOB
played more important roles than AOA in this study.

However, in phases III and IV, AOA and AOB were almost
equally important, judging from their amoA abundance.
Compared to the initial activated sludge (day 0), AOB was
enriched more significantly than AOA, suggesting that the
overall conditions in this study were more favorable for
AOB than AOA.

AOA and AOB community shift

Generally, the AOA community was relatively less diver-
sified and stable than AOB in this reactor. The T-RFLP
profile showed that only one AOA amoA OTU remained
dominant in activated sludge during the five phases.
Another OTU, AOA-OTU-3, only appeared in the clone
library with relatively low abundance (Zhang et al. 2009).

In contrast, the AOB community showed obvious shift
through the five phases, indicating that AOB were more
sensitive to bioreactor conditions, i.e., ammonium concentra-
tion and loading rate, than AOA. Previous studies suggested
that bioreactors with low or high ammonia loadings enriched
different species of Nitrosomonas (Limpiyakorn et al. 2007).
The same phenomenon was observed in this study although
the specific species identities of these two Nitrosomonas
spp., corresponding to T-RFs of 214 and 421 bp, respec-
tively, were still unknown. The AOB-OTU-1 (T-RF of
214 bp) might prefer the lower ammonium loading, while
the higher ammonium loading was favorable to AOB-OTU-
2 (T-RF of 421 bp).

The DO level may have also significantly affected the
AOB community (Wen et al. 2008). However, in this study,
when DO was decreased in the first two phases, the AOB
community did not show obvious shift although the total
abundance of AOB decreased. Wells et al. (2009) reported
that the Nitrosospira lineage showed strong negative
correlations to DO while the Nitrosomonas-like phylotype
showed no significant correlation to DO. In this study, the
dominant AOB belonged to genus Nitrosomonas. Thus, the
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separated by vertical dashed lines
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Fig. 5 Temporal dynamics of
five AOB OTUs detected from
the bioreactor in the five phases
(total 280 days). Relative abun-
dance (in percent) of each AOB
OTU was determined by the
corresponding normalized
T-RFLP peak area
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results were consistent with their finding, indicating that
various AOB might have different responses to DO change.
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