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Abstract

In location-based services, it is common for a user to is-
sue a query based on his/her current position. One such
example is “find the available cabs within two miles of my
current location”. Very often, the query issuers’ locations
are imprecise due to measurement error, sampling error, or
message delay. They may also want to protect their pri-
vacy by providing a less precise location. In this paper,
we study the efficiency of queries that return probabilistic
guarantees for location data with uncertainty. We classify
this query into two types, based on whether the data (1)
has no uncertainty (e.g., shops and restaurants), or (2) has
a controlled degree of uncertainty (e.g., moving vehicles).
Based on this classification, we develop three methods to
improve the computational and I/O performance. The first
method expands the query range based on the query issuer’s
uncertainty. The second idea exchanges the roles of query
and data. The third technique exploits the fact that users
may only be interested in answers with probabilities higher
than some threshold. Experimental simulation over a real-
istic dataset reveals that our approaches improve the query
performance significantly.

1 Introduction

In recent years, positioning technologies like the Global
Positioning Systems (GPS), GSM, RF-ID and the Wire-
less LAN have undergone rapid development [21]. These
technologies allow locations of users to be determined ac-
curately, and enable a new class of applications known as
location-based services(LBS). An important LBS is the E-
911 system mandated by the U.S. (correspondingly E-112
in Europe), which requires cell phone companies to provide
an accurate location (i.e., within a few hundred feet) of a
cell phone user who calls for emergency help [21]. Other
LBS applications include downloading driving directions to
a gas station, receiving an alarm when a military adversary

has crossed the border, retrieving the current locations of
family members, and displaying the user’s location on the
map. All these applications require extensive use of loca-
tion data [13].

An important issue concerning the LBS is the uncer-
tainty of location data. In particular, location data ob-
tained from physical devices are inherently imprecise due
to measurement error, sampling error and network la-
tency [17, 7, 4]. Some recent works (e.g., [1, 6, 9]) have
suggested that location privacy can be protected by inject-
ing a controlled degree of spatial uncertainty into location
data, so that the actual location is hidden. In many situ-
ations, therefore, it is often impossible for the query pro-
cessing server to get an accurate location value. It is thus
reasonable to use a location uncertainty model to describe
the imprecision of the data values, and evaluate the loca-
tion uncertainty in order to provide probabilistic guaran-
tees over the validity of the query answers. A common
model for characterizing location uncertainty of an object
is a closed region together with a probability distribution of
the object in the region [17, 7]).Some previous work, such
as [17, 7, 4], used this model to compute probabilities of
each location object for satisfying a query, including the
range and nearest-neighbor queries. The probability values
provide confidence guarantees about the query answer, and
allow quality of service metrics to be defined [3, 6].

In this paper, we study the effect of uncertainty on
location-dependent queries, which takes into account the
location of the user who issues the query (called “query is-
suer”) in order to decide the query result [13, 8, 12]. For
example, the user may want to know the available cabs
within two miles of his/her current location. In addition to
the uncertainty of the data being queried, the imprecision of
the query issuer’s location further affects the validity of the
query answer. Our goal is to quantify the query answer va-
lidity by efficiently computing the qualification probability
of an object for satisfying this type of query i.e., the prob-
ability that the object can satisfy this query. To our best
knowledge, this has not been studied before.
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Specifically, we study the imprecise version of the
location-dependent range query. Based on the location in-
formation of the query issuer, together with a range region
centered at the query issuer’s location, the query returns the
identities of all objects that fall within the region. We pro-
pose efficient algorithms to compute qualification probabil-
ities. Moreover, we develop a set of novel filtering tech-
niques to determine quickly the region which contains ob-
jects that may satisfy the query. In particular, we classify a
query according to whether the location data being accessed
is (1) precise (e.g., locations of gas stations, schools etc.), or
(2) uncertain (e.g., locations of moving objects). Based on
this classification, we develop three fundamental concepts
to enhance the evaluation of the qualification probabilities:

• Query expansion: Incorporate the uncertainty infor-
mation of the query issuer’s location into the query
range by using computational geometry techniques, so
that query evaluation can take advantage of traditional
query processing methods.

• Query-Data duality: By interchanging the role of the
query issuer and that of the location object, simplify
the qualification probability formula and thus save the
query evaluation cost.

• Use of the probability threshold constraint: By ex-
ploiting the assumption that users are only concerned
about answers with high qualification probabilities,
special data constructs are pre-computed for uncertain
objects in order to facilitate pruning.

The aforementioned methods can be executed efficiently.
They can also deal with any type of probability distribution
about the object’s location. We perform detailed experimen-
tal evaluations to examine our approaches.
The rest of this paper is organized as follows. In Sec-

tion 2, we present the related work. Section 3 gives a formal
definition of the problems. In Section 4 we discuss how to
improve the performance of imprecise location-dependent
queries. Section 5 then presents algorithms that exploit the
probability threshold constraint. In Section 6 we report our
experimental results. Section 7 concludes the paper.

2 Related Works

Location-Dependent Queries have been a subject of re-
search interest in these few years. In [13], a survey of re-
search problems related to location-dependent information
services has been presented. The problem of managing lo-
cation queries in a distributed manner has been studied in
[8], where the MobiEyes system is developed to answer
queries efficiently. In [12], the authors define location-
dependent query operators so that more complex queries

can be constructed. They also study how mobile agents can
be used to support distributed query processing.
Probabilistic Queries are queries that evaluate data un-

certainty and provide probabilistic guarantees. For location-
based services, the evaluation of probabilistic range queries
have been studied in [17, 7]. Efficient indexing methods
for these queries in one-dimensional and multi-dimensional
space are studied in [5] and [19]. In [4], efficient computa-
tion and indexing algorithms have been proposed for eval-
uating probabilistic nearest neighbor queries. The evalua-
tion and quality of different probabilistic queries in a sensor
database is studied in [3]. Notice that the location of the
query issuer considered by a probabilistic query is usually
precise. For imprecise location-dependent queries, the lo-
cation of the query issuer can also be uncertain.
For Imprecise Location-Dependent Queries, Song et

al. [18] study the evaluation of a a continuous nearest-
neighbor query for retrieving the nearest neighbors for all
points on a line segment. Their algorithm is further im-
proved in [20]. In [11], the range nearest-neighbor query
is proposed, which retrieves the nearest neighbor for ev-
ery point in a multi-dimensional rectangular range. In these
works, although the query issuer’s location is imprecise, the
data being queried has no uncertainty. Furthermore, they do
not consider the problem of computing qualification proba-
bilities. Recently, [15] considers both query and data uncer-
tainty for nearest-neighbor queries, but it does not compute
qualification probabilities.
To the best of our knowledge, none of the previous work

address the issue of providing probability guarantees for im-
precise location-dependent queries. In [6], we studied the
trade-off of location privacy, service quality, and the uncer-
tainty of location-dependent range queries. A service qual-
ity metric based on the objects’ qualification probabilities is
proposed. In this paper we address the efficiency issues of
evaluating this type of query.

3 Problem Definition

In this section we describe the location uncertainty
model, and definitions of queries studied in this paper. We
also investigate preliminary solutions for these queries.

3.1 Probabilistic Uncertainty Model

To capture location uncertainty, a data scheme known as
location uncertainty model was proposed in [17] and [7].
This model assumes that each location data item can be
represented by a region of possible values and their dis-
tributions. Formally, given an object Oi (which we called
uncertain object), the probabilistic uncertainty of the two-
dimensional location of Oi consists of two components:
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Definition 1 The uncertainty region ofOi, denoted by Ui,
is a closed region where Oi is located.

Definition 2 The uncertainty probability density func-
tion (pdf) of objectOi, denoted by fi(x, y), is a pdf of Oi’s
location, that has a value of 0 outside Ui.

Since fi(x, y) is a pdf, it has the property that∫
Ui

fi(x, y)dxdy = 1. The formula for the uncertain pdf is
application-specific. Wolfson et al. propose that the object
location follows the Gaussian distribution inside the uncer-
tainty region [17]. An important case of uncertainty pdf is
a uniform distribution [7], that is, fi(x, y) = 1

Ui
; essen-

tially, this implies a “worst-case” scenario where we have
no knowledge of which point in the uncertainty region pos-
sesses a higher probability. Our solutions are applicable to
any form of uncertainty pdf.
Without loss of generality, we denote O0 as the identity

of the query issuer, and O1, . . . , On as the identities of the
objects being queried. We also assume the uncertainty re-
gion is an axis-parallel rectangle. For objects with no uncer-
tainty (called point objects), we denote them S1, . . . , Sm.
In particular, object Si’s location is exactly a point (xi, yi)
(e.g., a non-moving user or a building).

3.2 Imprecise Location-Dependent Range
Queries

In this paper, we focus on a type of snapshot, location-
dependent query – the location-dependent range query.
Given an axis-parallel rectangle R(x, y) with center (x, y),
half-widthw and half-height h, and the location ofO0 as its
center, two types of queries can be defined:

Definition 3 An Imprecise Location-Dependent Range
Query over Point Objects (IPQ) returns a set of tuples
{(Si, pi)|i ∈ [1, m]} where pi > 0, called qualification
probability, is the non-zero probability that Si’s location,
(xi, yi), is inside R(x, y), with (x, y) ∈ U0.

Definition 4 An Imprecise Location-Dependent Range
Query over Uncertain Objects (IUQ) returns a set of tu-
ples {(Oi, pi)|i ∈ [1, n]} where pi > 0, called qualification
probability, is the non-zero probability that Oi is located
within R(x, y), with (x, y) ∈ U0.

Figure 1 illustrates the IUQ and IPQ. For convenience,
we may use R to represent R(x, y).
Sometimes users are more concerned about answers with

sufficiently high probability values. In fact, it is useful to
define a ”probability threshold constraint”, which restricts
queries to return answers with probability values higher
than a certain pre-defined value. We call this parameter the
probability threshold (Qp in short), which is a real value be-
tween 0 and 1. The following queries can then be defined:

(x0, y0)
w

h

S1(x1, y1)

O1

IPQ over S1

IUQ over O1 Query Issuer

Uncertain Region of 

Query Issuer (U0)

Figure 1. Evaluating IPQ and IUQ.

Definition 5 A Constrained Imprecise Range Query over
Point Objects (C-IPQ) returns a set of tuples {Si|i ∈
[1, m]} such that pi ≥ Qp, where pi is the qualification
probability of Si for satisfying the corresponding IPQ.

Definition 6 A Constrained Imprecise Range Query over
Uncertain Objects (C-IUQ) returns a set of tuples {Pi|i ∈
[1, n]} such that pi ≥ Qp, where pi is the qualification
probability of Oi for satisfying the corresponding IUQ.

Later we will show how to use the probability threshold
to improve query performance. Table 1 describes the nota-
tions used in this paper.

Symbol Meaning

Oi An uncertain object (i = 1, . . . , n)
Ui Uncertainty region of Oi

fi(x, y) Uncertainty pdf of Oi

Si A point object (i = 1, . . . , m)
(xi, yi) Position of Si

O0 Query issuer (an uncertain object)
R(x, y), w, h Range query with half-width w and half-height h,

centered at (x, y)
pi Qualification probability
Qp Probability threshold

Table 1. Notations and their meanings.

3.3 Basic Evaluation Methods

Let us now present a basic solution for evaluating IPQ
and IUQ. They form the foundation for further discussions.
For IPQ, the qualification probability of Si can be ob-

tained by conceptually examining every point (x0, y0) ∈
U0, and then checking whether the location of Si is within
R(x0, y0). Figure 1, for example, illustrates that S1 satisfies
R(x0, y0). The final result can be obtained by integrating
the uncertainty pdf of all the points (x, y) in U0 at which Si
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satisfies R(x, y). Formally, we define a boolean function,
bi(x, y) (for i = 1, . . . , n), as follows:

bi(x, y) =
{

1 if Si is inside R(x, y)
0 otherwise

(1)

The qualification probability of Si for satisfying the IPQ
is then given by

pi =
∫

U0

bi(x, y)f0(x, y)dxdy (2)

For IUQ, we examine the probability that an uncertain
object Oi satisfies the query at each point in U0. This is
given by integrating the uncertainty pdf of Oi in the over-
lapping area of Ui and R(x, y), i.e.,

pi(x, y) =
∫

Ui∩R(x,y)

fi(x, y)dxdy (3)

Figure 1 shows that the probability of O1 satisfying
R(x0, y0), given that O0 is at point (x0, y0), is the integral
of f1(x, y) over the shaded region. Considering the uncer-
tainty pdf ofO0, the following gives the general formula for
computing pi.

pi =
∫

U0

pi(x, y)f0(x, y)dxdy (4)

In practice, Equations 2 and 4 are costly to implement.
Both equations may necessitate the use of numerical inte-
gration. For example, in order to obtain pi in Equation 2,
U0 is first represented by a set of sampling points; for each
sampling point, Equation 2 is evaluated. A large number
of sampling points will be needed to produce an accurate
answer. This is required even if the uncertainty pdf is as
simple as a uniform distribution. Let us investigate how this
situation can be improved.

4 Efficient Evaluation of Imprecise Queries

We just see that straightforward computation of proba-
bilities for IPQ and IUQ can lead to expensive integral op-
erations. This section illustrates how such operations can be
avoided, by (1)expanding the range query, and (2) exploit-
ing the duality between the locations of the query issuer and
data being queried. We also examine indexing techniques
for these queries.

4.1 Query Expansion

The first technique performs an inexpensive filtering
over objects that have no chance of being included in the
query answer. The main idea is to expand the query range
R with the query issuer’s position information. Any object
that does not touch this expanded query range (called the
Minkowski Sum [2]) can be pruned.

Lemma 1 The qualification probability of a point object
(an uncertain object) is non-zero if and only if its location
(uncertainty region) lies within (overlaps) the Minkowski
Sum of R and U0.

To explain the above lemma, let us consider the IUQ
(similar arguments can be applied to IPQ). First, notice that
the Minkowski Sum is defined as follows:

A ⊕ B = {x + y|x ∈ A, y ∈ B}
where A and B are two given polygons, and x and y are
points [2]. Conceptually, the Minkowski Sum is the union
of all translations of A by a point y located in B. We can
view the Minkowski Sum of the query range R and the un-
certainty region U0, that is, R ⊕ U0, as the union of all
range queries, by considering all the possible positions of
O0 who resides somewhere in U0. If the uncertainty region
of any object being queried does not overlap R ⊕ U0, we
can be assured that this object does not have any chance
of satisfying any range query issued at any position in U0.
Thus we can use R ⊕ U0 as a query range to obtain objects
that have non-zero qualification probability of satisfying the
IUQ (i.e., their uncertainty regions overlap with the query
range).
Figure 2 illustrates the Minkowski Sum of R and U0,

which can simply be obtained by extending U0 by w on the
left and right, and by h on the top and bottom.1 Hence, the
Minkowski Sum can be derived in a linear time. As shown
in the same figure, the expanded query range allows objects
with zero qualification probability (i.e., objects O1) to be
pruned immediately.

U0

O1w

h

R(xi,yi)

w
h R  U0

Si(xi,yi)

Figure 2. Illustrating the evaluation of IPQ. The thick line
is the expanded query using the Minkowski Sum.

4.2 Query-Data Duality

The second method exploits the fact the role of the query
issuer and the data being queried can be changed. Specif-

1If U0 and R are m-sided and n-sided polygons, the Minkowski Sum
is a convex polygon with at mostm + e edges, which requires O(m + e)
time to compute [2].
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ically, the following observation describes this “query-data
duality” property:

Lemma 2 Query-Data Duality Given two point objects
Si and Sq (with locations (xi, yi) and (xq , yq) respectively),
Si satisfies R(xq, yq) if and only if Sq satisfies R(xi, yi).

R xi, yi

M

N

Si xi,yi

R xq, yq

Sq xq,yq

h

w

Figure 3. The Duality of Query and Data.

Proof : Construct a rectangle with verticesM, Si, N , and
Sq, as shown in Figure 3. If Si satisfies R(xq, yq), then
|SiM | ≤ w and |SiN | ≤ h. This implies |SqN | ≤ w and
|SqM | ≤ h. Hence Sq must satisfy the query R(xi, yi).
Conversely, if Sq satisfies R(xi, yi), we can construct the
same rectangle and prove that |SiM | ≤ w and |SiN | ≤ h.
Hence Si must also satisfy R(xq, yq).

In other words, if a point object Si satisfies the range
query issued by Sq, then Sq must also satisfy the range
query issued by Si. This leads us to the following result.

Lemma 3 The qualification probability pi of a point object
Si for satisfying an IPQ can be computed by

∫
R(xi,yi)∩U0

f0(x, y)dxdy (5)

Proof : Consider the overlapping region of U0 and the
range query R(xi, yi) issued by Si, as shown in the shaded
area in Figure 2. Obviously, any point (xe, ye) ∈ U0 ∩
R(xi, yi) satisfies the query R(xi, yi). Using Lemma 2,
Si also satisfies the range query R(xe, ye). Moreover, Si

does not satisfy any range queries centered at points out-
side the overlapping region. Hence only the queries is-
sued at points (xe, ye) can have Si in their answer, and the
qualification probability of Si is simply the integration of
the uncertainty pdf of O0 in the overlapping region, i.e.,∫

R(xi,yi)∩U0
f0(x, y)dxdy.

Compared with the original formula for IPQ (i.e., Equa-
tion 2), we can see that Equation 5 is simpler to evaluate.
This is because now we do not need to form a query at each
point in U0 and test whether Si satisfies the query at that
point, as in Equation 2. More importantly, if the uncertainty
pdf of the query issuer is a simple function, the integration
operation of Equation 2 can be eliminated. As an important

example, if f0(x, y) is a uniform distribution, pi is simply
the fraction of U0 that overlapsR(xi, yi), i.e.,

pi =
Area(R(xi, yi) ∩ U0)

Area(U0)
(6)

When the position of Si is at different positions relative to
U0, the exact formula for calculating the overlapping region
U0∩R(xi, yi) (and hence Equation 6) can also vary. In par-
ticular, the 2D space can be partitioned into nine regions,
and depending on which regions that Si is located, a differ-
ent algebraic expression is needed. Interested readers are
referred to our technical report. 2

Lemma 3 can also be used to compute the qualification
probability of an uncertain objectOi for satisfying the IUQ.
We can conceptually treat every point (x, y) ∈ Ui as a
point object, and compute the qualification probability of
each individual point (x, y) for satisfying the IPQ (termed
Q(x, y)), with Lemma 3. The qualification probability of
Oi is then simply equal to the integral of all these Q(x, y)
values, weighted by the uncertainty pdf of Oi at (x, y), i.e.,

pi =
∫

Ui

fi(x, y) · Q(x, y)dxdy (7)

Hence, Equation 7 provides an alternative to Equation 4 for
computing IUQ. Although it is not immediately clear which
method is better, we note that the performance of Equation 7
can be further improved when combined with our results
about query expansion.

Lemma 4 The qualification probability pi of an uncertain
object Oi for satisfying an IUQ can be computed by

pi =
∫

Ui∩(R⊕U0)

fi(x, y) · Q(x, y)dxdy (8)

The only difference between this equation and Equation 7 is
that Ui is replaced byUi∩(R⊕U0) – which potentially pro-
duces a smaller integration region and better computational
performance. How is this possible? Observe that for any
point (xt, yt) ∈ Ui − (R⊕U0), Q(xt, yt) must be zero, ac-
cording to Lemma 1. Hence it is fine to focus on the portion
of Ui that overlaps the expanded query region.

4.3 An Efficient I/O Solution

To improve the I/O performance of query processing,
spatial data indexes such as the R-tree [10] and the grid
file [16] are often used. In order to utilize these indexes
for processing imprecise queries, we first construct an ex-
panded query range online (i.e., find the Minkowski Sum
of R and U0). This expanded query range is then used to
query the spatial index. All the point objects or uncertain

2Available at http://www.comp.polyu.edu.hk/∼csckcheng/tech/cc2006.pdf.
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objects that lie completely outside the expanded range can
be pruned. The qualification probabilities of the remain-
ing objects can then be computed by using the lemmas de-
scribed in Section 4.2.

5 Constrained Imprecise Queries

So far we have addressed imprecise queries that pro-
duce answers with non-zero probabilities. In this section
we study how query performance can be improved by only
allowing objects with qualification probabilities higher than
a pre-defined threshold value to be returned. These queries,
called C-IPQ and C-IUQ, are the constrained version of IPQ
and IUQ, as defined in Section 3. Our main idea is to use
pre-computed boxes for uncertain objects, based on their
uncertainty pdf, in order to achieve better pruning effects.
In particular, we employ the concept of the p-bound [5, 19],
as described next.

5.1 Pruning Point Objects for C-IPQ

A p-bound of an uncertain object Oi is a function of p,
where p ∈ [0, 0.5]. It is composed of four line segments,
namely li(p), ri(p), ti(p), bi(p) in 2D space, as illustrated
by the hatched region in Figure 4. The requirement of li(p)
is that the probability of the location of Oi on the left of
li(p) has to be exactly equal to p (as shown by the shaded
area). Similarly, the probability ofOi on the right of the line
ri(p) is exactly equal to p. The remaining line segments
(ti(p) and bi(p)) are defined analogously. Notice that based
on this definition, the boundary of Ui can be represented by
li(0), ri(0), ti(0) and, bi(0). We will show that if p-bounds
have been pre-computed and stored for any value of p, better
pruning power can be achieved.
In practice, it is not possible to pre-compute a p-bound

for each value of p. Instead, a ”U -catalog” is created for
each object, which is a table of a small fixed number of
tuples {v, v-bound}, where v ∈ [0, 1] [19]. The tuples in
the U -catalog can then used for query pruning. For ease
of discussions, we assume that p-bound is created for each
object, for any value of p. However, we will revisit the issue
of U -catalog whenever appropriate.
Next, we define the p-expanded-query as follows:

Definition 7 A p-expanded-query is a rectangular region
such that any point object lying outside it has a qualification
probability of less than p for satisfying the IPQ.

Figure 5 illustrates a p-expanded-query, where by defi-
nition Sj has a probability of less than p of satisfying the
IPQ. Notice that the Minkowski Sum of R and U0 is equiv-
alent to a 0-expanded-query, outside which no object has a
qualification probability of more than zero. Also for any

li(p)

Ui

ri(p)

ti(p)

bi(p)

li(0)

p-boundp

Figure 4. Illustrating the p-bound of Oi.

p0 > 0, the p0-expanded-query is always enclosed by the
0-expanded-query. In general, pj ≥ pk if and only if the
pj-expanded-query is enclosed by the pk-expanded-query.

U0

Si

w d
d

R U0

l0(p)

v=lcb(p)

w

lcb(0)

w

R(xi,yi)

Sj
p-expanded-

query

0-expanded-

query

Figure 5. Pruning Si for C-IPQ.

Let us use lcb(p) to denote the left side of a p-expanded-
query. The following lemma states an important property of
lcb(p).

Lemma 5 lcb(p) is d units from the right of lcb(0), where d
is the distance between the two lines l0(0) and l0(p) of U0.

Proof : Consider a point Si, which is w units on the left
of l0(p) (Figure 5). If an IPQ is issued by O0, the qualifi-
cation probability pi of Si must be less than or equal to p.
This is because the integration of f0(x, y) over the (shaded)
common region ofR(xi, yi) and U0 cannot be larger than p,
and according to Lemma 3 this is exactly equal to pi. Next,
consider the vertical line v intersecting Si. We claim that
line v is lcb(p). This is because for any object Sj lying on
v or on the left of v, either (1) Ri(x, y) does not touch U0

at all, or (2)Rj(x, y)∩U0 is a portion of the shaded region.
Using Lemma 3,

pj =
∫

Rj(x,y)∩U0

f0(x, y)dxdy (9)

≤
∫
shaded region

f0(x, y)dxdy (10)

= p (11)
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Therefore, any point object on the left of the line v must
have a qualification probability less than or equal to v.
Hence v = lcb(p). Moreover, as shown in Figure 5, lcb(p)
is d units from lcb(0). Hence the lemma holds.
By using Lemma 5, we can construct a p-expanded-

query easily. As shown in Figure 5, lcb(p) is simply the
vertical line with a distance ofw units from l0(p). The other
sides of the p-expanded-query can be obtained analogously.
The p-expanded-querycan be used to prune point objects

for C-IPQ. Specifically, we first construct a Qp-expanded
query (where Qp is the probability threshold of C-IPQ).
Then, a point object Si can be pruned if it lies outside the
Qp-expanded query, since it is guaranteed to have a quali-
fication probability less than Qp. We note that this pruning
is often better than using the Minkowski Sum as described
in Section 4.1, since the p-expanded-query usually has a
smaller range.
If the U -catalog has to be used to find the p-expanded-

query, we can use the maximum value of M in the U -
catalog such thatM ≤ Qp. TheM -expanded-query, which
enclosesQp-expanded-query, can then be used for pruning:
any object pruned by the M -expanded-query must also be
pruned by the Qp-expanded-query.

5.2 Pruning Uncertain Objects for C-IUQ

Ui

ri(Qp)

lcb(0)

R U0

Ui

Qp-expanded-query

U0

R U0

(a) (b)

Figure 6. Pruning Oi for C-IUQ (a) using the ri(Qp)
bound of Oi; (b) using the Qp-expanded-query.

We now investigate how the concept of p-bound and p-
expanded-query can be used to facilitate pruning of an un-
certain object Oi for C-IUQ. Three pruning strategies are
possible.

• Strategy 1: Use the p-bound of Oi. Observe that we
can prune Oi if the common region of Ui and R ⊕ U0

is on the right of ri(Qp). As shown in Figure 6(a),
we can be sure that

∫
Ui∩(R⊕U0)

fi(x, y)dxdy ≤ Qp.
From Lemma 4, we have

pi =
∫

Ui∩(R⊕U0)

fi(x, y) · Q(x, y)dxdy (12)

≤
∫

Ui∩(R⊕U0)

fi(x, y)dxdy (13)

≤ Qp (14)

Therefore, Oi can be removed from the result. If
ri(Qp) cannot be found, then we find the maximum
value M in the U -catalog of Oi such that M ≤ Qp,
and then use ri(M) instead of ri(Qp). Notice that
ri(M) is on the right side of ri(Qp), so it may be
possible that the shaded region crosses ri(M) but not
ri(Qp). The same idea can be applied to other dimen-
sions. For example, if Ui ∩ (R ⊕ U0) is at the lower
part of bi(Qp), Ui can be pruned.

• Strategy 2: Use the p-expanded-query. Oi can be
pruned if Ui is completely outside the Qp-expanded-
query (Figure 6(b)). Recall from Definition 7 that any
point object outside the p-expanded-query cannot have
a qualification probability higher than p. Therefore, by
Lemma 4,

pi =
∫

Ui∩(R⊕U0)

fi(x, y) · Q(x, y)dxdy (15)

≤ Qp

∫
Ui∩(R⊕U0)

fi(x, y)dxdy (16)

≤ Qp (17)

If U -catalog is to be used, the M -expanded-query
should be chosen, where M is the maximum value in
the catalog such thatM ≤ Qp. Notice that this query
range may be larger than that of Qp-expanded-query,
resulting in less efficient pruning.

Notice that both methods create more pruning oppor-
tunities than the query expansion technique described
in Section 4.1, since Oi can be pruned even if they
overlap with the Minkowski Sum of R and U0.

• Strategy 3: Use both the p-bound and the p-
expanded query. The third pruning strategy can be
used when both Strategy 1 and Strategy 2 do not work.
An example scenario is shown in Figure 7, where
R ⊕ U0 crosses the ri(Qp) line, and Ui crosses the
lcb(Qp) line. Hence, both pruning methods cannot be
applied. We now show that it is still possible for Oi to
be pruned. Let dmin be the minimum value in the U -
catalog of Oi such that dmin ≥ Qp and R ⊕ U0 is on
the right of ri(dmin). Also let qmin be the minimum
value in the U -catalog ofO0 such that qmin ≥ Qp and
Ui is on the outside of the qmin-expanded query. By
using Lemma 4, we have

pi =
∫

Ui∩(R⊕U0)

fi(x, y) · Q(x, y)dxdy (18)

≤ qmin

∫
Ui∩(R⊕U0)

fi(x, y)dxdy (19)
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≤ qmin · dmin (20)

Therefore, if the product of qmin and dmin is smaller
thanQp, Oi can be pruned.

ri(Qp)

Ui

lcb(Qp)
R U0qmin-expanded-query

ri(dmin)

Qp-expanded-query

Figure 7. PruningOi for C-IUQ using both bounding box
information of Oi and the expanded query.

The three strategies just described involve some simple
condition testing, and the size of an object’s U -catalog is
usually small (for example, in our experiments, we store six
probability values and their p-bounds). Hence these meth-
ods can be used to prune uncertain objects efficiently.

5.3 Efficient I/O Solutions

To improve the I/O performance of constrained impre-
cise queries, the steps presented for Section 4.3 can be read-
ily used. The only difference is that the expanded query
range (i.e., the Minkowski Sum of R and U0) is replaced by
theQp-expanded-query. The performance of query pruning
is potentially better, since theQp-expanded-query is usually
smaller than R ⊕ U0.
The performance of C-IUQ can be further improved by

using a data structure designed for storing uncertain data.
Called Probability Threshold Index (PTI) in [5], the U -
catalog information of uncertain objects under the same par-
ent node of the R-tree is summarized . In each intermedi-
ate node, the minimum bounding rectangle (MBR(m)) for
each probability value ofm in the U -catalog is stored. This
MBR(m) should be tight and enclose all the m-bounds for
all children in the node. For example, suppose a nodeX that
consists of two objects, O1 and O2, and in their U -catalogs
the 0.3-bounds are stored. The left sides of their 0.3-bounds
are l1(0.3) and l2(0.3) respectively. If l2(0.3) is on the left
of l1(0.3), then l2(0.3) is assigned to be the 0.3-bound for
the nodeX .
With the aid of the PTI, we can apply the pruning tech-

niques described in Section 5.2 in the index level. As de-
scribed in Section 5.2, the U -catalog of an object can be

used for pruning. We can use the same techniques with
the U -catalog that resides in the intermediate node. This
is because every p-bound stored in this U -catalog must en-
close the p-bounds for each children. Moreover, our prun-
ing techniques rely on the fact that the uncertainty region of
the objects lie outside the p-bound. In Figure 6, for exam-
ple, if R ⊕ U0 is on the right side of the m-bound of the
U -catalog in the intermediate node,R⊕U0 must also be on
the right side of ri(Qp), assuming Ui is stored under that
intermediate node. In other words, if the p-bound in the in-
termediate node level satisfy the pruning condition, so does
its children.

6 Experimental Results

We have performed experimental evaluation on the effec-
tiveness of our approaches. We first present our simulation
model, followed by the detailed results.

6.1 Experiment Setup

We use two realistic data sets, namely California and
Long Beach.3 The California data set contains 62K points.
The Long Beach data set contains 53K rectangles. The
objects in both data sets occupy a 2D space of 10, 000 ×
10, 000 units. We use the California data set as a point ob-
ject database, and the Long Beach data as an uncertain ob-
ject database. We also assume that the uncertainty pdf of
any uncertain object (including the query issuer) is a uni-
form distribution. Each uncertain object is associated with
a U -catalog, which consists of ten p-bounds for the proba-
bility values 0, 0.1, . . . , 1. The size of an R-tree node is 4K.
Unless stated otherwise, R-tree is used for data indexing.
The datasets above are evaluated by the imprecise

queries. As an example scenario, a policeman may wish to
look for suspect vehicles (in the database) within some dis-
tance from his (imprecise) location. For each query tested,
both the uncertainty region of the query issuer (U0) and the
range query (R) have square shapes. For convenience, we
denote the size of U0 and R as u and w. Here, the term
”size” refers to the half of the length of a square. By default,
u = 250 and w = 500. The center point of U0 is uniformly
distributed in the data space. We also assume the probabil-
ity threshold of an imprecise query is 0 (i.e., Qp = 0).
The performance metric used here is the total amount

of time for executing a query (called “response time”, T in
short). Each data point is an average over 500 runs. All
our experiments are run on a sunfire4800 server with four
US-III+900MHz CPUs and 4096MB of memory. We use
the R-tree provided by the Spatial Index Library version
0.44.2b [14].We also use this library to implement the PTI.

3Available at http://www.census.gov/geo/www/tiger/.
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Figure 8. Basic vs. Enhanced (IUQ)
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Figure 9. T vs. c (IPQ)
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Figure 10. T vs. c (IUQ)

Our simulation is written in j2sdk1.4.2 11. Table 2 sum-
marizes the parameters used in the experiments.

Param Default Meaning

u 250 Size of U0

w 500 Size of range query
fi(x, y) 1/|Ui| Oi’s uncertainty pdf (uniform)
Qp 0 Probability threshold
T −− Query response time

Table 2. Parameters and baseline values.

6.2 Results

Comparison with the basic solution. We first com-
pare the performance of the basic solution described in Sec-
tion 3.3, with our other techniques. Our experiments reveal
that the basic solution is much more costly. Figure 8, for
example, illustrates that the basic solution for calculating
qualification probability (Equation 4) performsmuch worse
than our solution (Equation 8). Similar results can be con-
cluded for other queries. Next, we focus on the methods
developed in Sections 4 and 5.
IPQ and IUQ. Let us examine the performance of

IPQ using the methods developed in Section 4. Figure 9
presents the relationship between T and u, under different
values of w. We observe that T varies from 20 to 220 ms,
under a wide range of values of u and w. Also, T increases
with both parameter values. Recall that the expanded query
range is essentially the Minkowski Sum of R and U0. It is
enlarged when either w or u increases. As a result, more
candidates are captured by the expanded query and more
probability computations are required. Figure 10 shows a
similar behavior for IUQ.
C-IPQ and C-IUQ. Next, we compare the perfor-

mance of C-IPQ, using (1) the Minkowski-Sum, and (2) the
p-expanded-query, which considers the probability thresh-
old (Qp) of the C-IPQ. Figure 11 shows the performance
under different values ofQp. In general, the performance of

p-expanded-query improves with an increasing value ofQp.
As discussed in Section 5.1, the p-expanded-query shrinks
with a higher value of Qp. Hence the number of candi-
dates that satisfy the p-expanded-query decreases, render-
ing a much better performance than using the Minkowski
Sum alone (e.g., three times of improvement atQp = 0.6).

In Figure 12 we investigate the performance of C-IUQ.
The R-tree is used with the Minkowski Sum, while the PTI
is used with the p-expanded-query. Again, we see the ben-
efits of using p-expanded-query and PTI over methods that
do not utilize probability threshold constraints, because they
allow much more data pruning for all values of Qp. For ex-
ample, at Qp = 0.6, the performance gain is around 60%.
Notice that this gain is smaller compared to C-IPQ. The
reason is that it is usually harder to prune uncertain ob-
jects, whose uncertainty regions may occupy large amount
of space, than point objects.

Non-Uniform Distribution. Finally, we examine the
performance of queries when the uncertainty pdf is not
uniform. We choose the Gaussian distribution, which is
a common distribution used in modeling location uncer-
tainty [17, 4]. For each object, the mean of the Gaussian
distribution is the center of its uncertainty region, while the
variance is one-sixth of the size of its uncertainty region.

When the uncertainty pdf is non-uniform, it is more ex-
pensive to evaluate than uniform distribution. In particular,
Equations 5 and 8 may not have closed-form solutions, and
numerical techniques are often required. We have used the
Monte-Carlo technique for evaluation, where the positions
of the query issuer and uncertain objects are sampled for a
number of times, and the average result is obtained. In order
to achieve an accurate result, we have performed a sensitiv-
ity analysis: we need at least 200 samples for evaluating a
C-IPQ, and 250 samples for C-IUQ. Figure 13 shows the
result for C-IPQ. We again see that the use of p-expanded-
query achieves a better performance by exploiting the prob-
ability threshold constraint.
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Figure 13. T vs. Qp (C-IPQ)

7 Conclusions

Computing qualification probabilities for imprecise
location-dependent queries by using their definitions di-
rectly can be expensive. In this paper, we proposed several
techniques for improving the query performance. The use
of the Minkowski Sum as the expanded query range enables
pruning techniques developed for traditional range query
processing (such as pruning with a R-tree) to be used. The
Query-Data Duality Theorem simplifies the cost of comput-
ing qualification probabilities for both IPQ and IUQ. When
the Minkowski Sum and the Query-Data Duality Theorem
are combined appropriately with the probability threshold
constraint, more pruning opportunities can be created. Par-
ticularly, if the probability information about the uncer-
tain objects is pre-computed and stored in the PTI, prun-
ing based on the objects’ uncertainty information can be
done in the index level. In our future work, we will study
how other location-dependent queries (such as the nearest-
neighbor queries) can be supported. We will also consider
queries and uncertain regions with non-rectangular shapes.
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