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Abstract: In this note we develop an extension of the Marčenko-Pastur the-

orem to time series model with temporal correlations. The limiting spectral

distribution (LSD) of the sample covariance matrix is characterised by an

explicit equation for its Stieltjes transform depending on the spectral den-

sity of the time series. A numerical algorithm is then given to compute the

density functions of these LSD’s.
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1. Introduction

Let {Xj}, j = 1, . . . , n be a sequence of p-dimensional real-valued random vectors
and consider the associated empirical covariance matrix

Sn =
1

n

n∑
j=1

XjX
>
j . (1)

The study of the empirical spectral distribution (ESD) Fn of Sn, i.e. the distri-
bution generated by its (real-valued) eigenvalues, goes back to Wishart in 1920’s.
A milestone work by Marčenko and Pastur (1967) states that if both sample size
n and data dimension p proportionally grow to infinity such that lim p/n = c for
some positive c > 0 and all the coordinates of all the vectors Xj ’s are i.i.d. with
mean zero and variance 1, then Fn converges to a nonrandom distribution. This
limiting spectral distribution (LSD), named after them as the Marčenko-Pastur
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distribution of index c has a density function

f(x) =
1

2πcx

√
(b− x)(x− a), a ≤ x ≤ b, (2)

with a = (1−
√
c)2 and b = (1+

√
c)2 defining the support interval and has a point

mass 1− 1/c at the origin if c > 1. Further refinements are made successively by
many researchers including Jonsson (1982), Wachter (1978) and Yin (1986).

An important work by Silverstein (1995) aimed at relaxing the independence
structure between the coordinates of the Xj ’s and considered random vectors of

form Yj = T
1/2
p Xj where (Tp) is a sequence of non-negative definite matrices.

Assuming that (Tp) is bounded in spectral norm and the sequence of ESD of
(Tp) has a weak limit H, he established a (strong) LSD for the sample covari-
ance matrix n−1

∑
YjY

>
j and provides a characteristic equation for its Stieltjes

transform. Despite a big step made by this generalisation, it still does not cover
all possible correlation patterns of coordinates. Pursuing these efforts, a recent
work by Bai and Zhou (2008) pushes a step further Silverstein’s result by allow-
ing a very general pattern for correlations between the coordinates of the Xj ’s
satisfying a mild moment conditions.

In this work, we extend such Marčenko-Pastur type theorems along another
direction by considering time series observations instead of an i.i.d. sample. Let
us first consider an univariate real-valued linear process

zt =
∞∑
k=0

φkεt−k, t ∈ Z, (3)

where (εk) is a real-valued and weakly stationary white noise with mean zero and
variance 1. The p-dimensional process (Xt) considered in this paper will be made
by p independent copies of the linear process (zt), i.e. for Xt = (X1t, . . . , Xpt)

>,

Xit =
∞∑
k=0

φkεi,t−k, t ∈ Z, (4)

where the p coordinate processes {(ε1,t, . . . , εp,t)} are independent copies of the
univariate error process {εt} in (3). Let X1, . . . ,Xn be the observations of the
time series at time epochs t = 1, . . . , n. Again we are interested in the ESD of
the sample covariance matrix Sn in (1).

The author should mention that a similar problem has been considered in Jin
et al. (2009). However we propose much more general results in this note since
firstly their results are limited to ARMA-type processes instead of a general
linear process considered here and secondly, they do not find a general equation
as the one proposed in Theorem 1 below except for two simplest particular cases
of AR(1) and MA(1).
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2. A Marčenko-Pastur type theorem for linear processes

Recall that the Stieltjes transform sµ of a probability measure µ on the real line
is a map from the set C+ of complex numbers with positive imaginary part onto
itself and defined by

sµ(z) =

∫
1

x− z
µ(dx), z ∈ C+.

We always employ an usual convention that for any complex number z,
√
z

denotes its square root with nonnegative imaginary part.

Theorem 1. Assume that the following conditions hold:

1. The dimensions p→∞, n→∞ and p/n→ c ∈ (0,∞);

2. The error process has a fourth moment: Eε4t <∞;

3. The linear filter (φk) is absolutely summable, i.e.

∞∑
k=0

|φk| <∞.

Then almost surely the ESD of Sn tends to a non-random probability distribution

F . Moreover, the Stieltjes transform s = s(z) of F (as a mapping from C+ into

C+) satisfies the equation

z = −1

s
+

1

2π

∫ 2π

0

1

cs+ {2πf(λ)}−1
dλ , (5)

where f(λ) is the spectral density of the linear process (zt):

f(λ) =
1

2π

∣∣∣∣∣
∞∑
k=0

φke
ikλ

∣∣∣∣∣
2

, λ ∈ [0, 2π). (6)

The proof of the theorem is postponed to Section 4. Let us mention that
although the case c = 0 is beyond the scope of Theorem 1, Equation (5) leads in
this case to the solution s(z) = 1/(γ0 − z), that is the LSD would be the Dirac
mass at γ0 = Var(Xit). This conjectures an extension of Theorem 1 to the so-
called “very large p and small n” asymptotics where one assumes p→∞, n→∞
and p/n → 0. Indeed, in this scenario taking into account that the population
covariance matrix of Xt equals γ0Ip, one can expect that the sample eigenvalues
of Sn stay close to the population ones (all equal to γ0). Note that such results
exist for i.i.d. sequence (Xt) with i.i.d. components (see Bai and Yin, 1988).

imsart-generic ver. 2008/08/29 file: lp-ss.tex date: August 16, 2011
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Figure 1. Determination of the support [x1, x2] of the LSD. Left panel c > 1 and right panel
c < 1.

2.1. Support of the LSD F

Starting from Eq. 5 and following the techniques devised in Silverstein and Choi
(1995), we can describe precisely the support of the LSD F in previous theorem.

Let a and b be respectively the minimum and the maximum of the function
2πf over [0, 2π]. As f is infinitely differentiable and positive everywhere, both
a and b are attained and the range of 2πf is exactly the interval [a, b]. We
will always exclude the situation a = 0 since it corresponds to a special class
of linear processes, namely non-invertible ARMA processes, see Grenander and
Szegö (1958, chap. 9), which has no practical interest for applications. Therefore
the map s 7→ z = g(s) in Eq.(5) has a trace for real-valued s providing s /∈
[− 1

ac ,−
1
bc ]. Figure 1 depicts this map for both c < 1 and c > 1 cases.

The following proposition is a straightforward application of results from
Silverstein and Choi (1995) and we then omit its proof.

Proposition 1. With the map g : s 7→ z = g(s) in Eq.(5) restricted to real

s /∈ [− 1
ac ,−

1
bc ] (Figure 1) the following holds:

1. The LSD F has a compact support [x1, x2] ⊂ [0,∞) on which it has a

continuous density function. In case of c > 1, F has an additional point

mass 1− 1/c at the origin.

2. When c > 1, the map g has an unique maximum s1 on (−∞,− 1
ac) and

an unique minimum s2 on (− 1
bc , 0) and we have The edges of the support

interval are given by these local extrema: x1 = g(s1) and x2 = g(s2).

3. When c < 1, the map g has an unique maximum s1 on (0,∞) and an

unique minimum s2 on (− 1
bc , 0). The edges of the support interval (for the

absolutely continuous component) are again given by these local extrema:

x1 = g(s1) and x2 = g(s2).
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2.2. Application to an ARMA process

For simplicity, we consider the simplest causal ARMA(1,1) process for the coor-
dinates:

zt = φzt−1 + εt + θεt−1, t ∈ Z,

where |φ| < 1 and θ is real. The aim is to find a simplified form of general
equation (5). We have

1

2πf(λ)
=

∣∣∣∣1− φeiλ1 + θeiλ

∣∣∣∣2 ,

and

I =
1

2π

∫ 2π

0

1

cs+ {2πf(λ)}−1
dλ =

1

2πi

∮
|ξ|=1

1

cs+
∣∣∣1−φξ1+θξ

∣∣∣2
dξ

ξ
.

By a lengthy but elementary calculation of residues detailed in Section 4, we find

I =
θ

csθ − φ

{
1− (φ+ θ)(1 + φθ)

θ(csθ − φ)

ε(α)√
α2 − 4

}
, (7)

with

α =
cs(1 + θ2) + 1 + φ2

csθ − φ
, ε(α) = sgn(=α) . (8)

Therefore for an ARMA(1,1) process, the general equation (5) reduces to

z = −1

s
+

θ

csθ − φ
− (φ+ θ)(1 + φθ)

(csθ − φ)2
ε(α)√
α2 − 4

. (9)

Let us mention that it is important to have an explicit formula for the integral
in (5) to implement numerical algorithms like the one proposed in Section 3 in
order to compute the density function of the LSD F .

Case of an AR(1). For this particular case, we have θ = 0 and α = −(cs +
1 + φ2)/φ. As =s > 0, ε(α) = sgn(−φ). It follows that

−(φ+ θ)(1 + φθ)

(csθ − φ)2
ε(α)√
α2 − 4

=
sgn(−φ)

−φ
1√

(cs+1+φ2)2

φ2
− 4

=
1

|φ|
1√

(cs+1+φ2)2

φ2
− 4

=
1√

(cs+ 1 + φ2)2 − 4φ2
.

Therefore the Stieltjes transform s of the LSD is solution to a simpler equation

z = −1

s
+

1√
(cs+ 1 + φ2)2 − 4φ2

. (10)
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It is worth noticing that if we further assume φ = 0, this equation reduces to
z = −1/s + 1/(cs + 1) which characterises the standard Marčenko-Pastur law
with i.i.d. coordinates. Furthermore, for the determination of the support [x1, x2]
of the LSD, we notice that

2πf(λ) =
1

|1− φeiλ|2
,

so that its extrema are a = 1/(1 + |φ|)2 and b = 1/(1− |φ|)2 (see Figure 1).

Case of an MA(1). Here we have φ = 0 and

α =
1

θ

(
1

cs
+ 1 + θ2

)
.

Hence ε(α) = − sgn(θ) and it is readily checked out that the Stieltjes transform
of the LSD is solution to the equation

z = −1

s
+

1

cs
+

1

c2s2
1√(

1
cs + 1 + θ2

)2 − 4θ2
. (11)

Again if we further assume θ = 0, this equation reduces to the one for the stan-
dard Marčenko-Pastur law. Furthermore, for the determination of the support
[x1, x2] of the LSD, we notice that

2πf(λ) = |1 + θeiλ|2,

so that its extrema are a = (1− |θ|)2 and b = (1 + |θ|)2 (see Figure 1).

3. A numerical method for computing the LSD density function

In this section we provide a numerical algorithm for the computation of the
density function h of the LSD defined in Eq.(5) through its Stieltjes transform
s. We have

s =
1

−z +A(s(z))

with

A(s(z)) =
1

2π

∫ 2π

0

1

cs+ {2πf(λ)}−1
dλ .

The algorithm we propose is of fixed-point type.
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Algorithm For a given real x, let ε be small enough positive value and set
z = x+ iε.
Choose an initial value s0(z) = u + iε and iterate for k ≥ 0 the above
mapping

sk+1(z) = {−z +A(sk(z))}−1 ,

until convergence and let sK(z) be the final value.
Define the estimate of the density function h(x) to be

ĥ(x) =
1

π
=sK(z) . �

It is well-known that this iterated map has good contraction properties guar-
anteeing the convergence of the algorithm. There are however two issues which
need a careful consideration. First the integral operator A is usually approxi-
mated by a numeric routine and because of a high number of calls to A, the
resulting algorithm is slow. In this aspect analytic formula for A when available
are well acknowledged as Eq.(9) in the case of an ARMA(1,1).

A second issue is that overall we first need to determine the support interval
[x1, x2] of the density function h. This is handled with the help of description of
xj ’s given in Proposition 1.

For four ARMA(1,1) models listed in Table 1, we have used this algorithm
with the map A defined in (9) to get the density plots displayed in Figure 2.

Table 1
ARMA(1,1) models for density plots. Reference support interval for Marčenko-Pastur law of

index c = 0.2 is [0.306, 2.094].

Parameters (φ, θ, c) Estimated support [x1, x2]

(0.4, 0, 0.2) [0.310, 2.875]

(0.4, 0.2, 0.2) [0.319, 3.737]

(0.4, 0.6, 0.2) [0.382, 6.186]

(0.8, 0.2, 0.2) [0.485, 13.66]

Compared to the reference standard Marčenko-Pastur law with the same
dimension to sample ratio c, the above density functions from ARMA models
share a similar shape with however a support interval getting larger and larger
with increasing ARMA coefficients φ and θ.
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4. Proofs

Proof of Theorem 1

Recall that the p coordinates of the vectors X1, . . . ,Xn are i.i.d. while the tem-
poral covariances Cov(Xis, Xit) are by definition those of (zt): for all 1 ≤ i ≤ p,

Cov(Xis, Xit) = Cov(zs, zt) = γt−s, 1 ≤ s, t ≤ n .

Let f̃ = 2πf . It follows that the covariance matrix Tn of each coordinate process
(Xi1, . . . , Xin) equals to the n-th order Toeplitz matrix associated to f̃ :

Tn(s, t) = γt−s, 1 ≤ s, t ≤ n ,

and

f̃(λ) =

∞∑
k=−∞

γke
ikλ , λ ∈ [0, 2π).

We are going to apply Theorem 1.1 of Bai and Zhou (2008) for a strong

limit of the ESD of the sample covariance matrix Sn = 1
n

n∑
t=1

XtX
>
t . Under the

assumptions made, all the conditions of this theorem are satisfied except that we
need to ensure a weak limit for spectral distributions of (Tn).

The function f̃ belongs to the Wiener class, i.e. the sequence of its Fourier
coefficients is absolutely summable. Moreover note that f̃ is infinitely differen-
tiable, its minimum a and maximum b are attained. According to the fundamental
eigenvalue distribution theorem of Szegö for Toeplitz forms, see Grenander and
Szegö (1958, sect. 5.2), for any function ϕ continuous on [a, b] and denoting the

eigenvalues of Tn by σ
(n)
1 , . . . , σ

(n)
n , it holds that

lim
n→∞

1

n

n∑
k=1

ϕ(σ
(n)
k ) =

1

2π

∫ 2π

0
ϕ(f̃(λ))dλ .

Consequently, the ESD of Tn (i.e. distribution generated by the σ
(k)
n ’s) weakly

converges to a nonrandom distribution H with support [a, b] and defined by

H(x) =
1

2π

∫ 2π

0
1{f̃(λ)≤x}dλ , (12)

and we have for ϕ as above,∫ ∞
0

ϕ(x)dH(x) =
1

2π

∫ 2π

0
ϕ(f̃(λ))dλ . (13)
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Furthermore, by application of Theorem 1.1 of Bai and Zhou (2008), it holds
that the ESD of n

pSn converges almost surely to a nonrandom probability distri-
bution whose Stieltjes transform m solves the equation

z = − 1

m
+

1

c

∫
x

1 +mx
dH(x)

= − 1

m
+

1

2πc

∫ 2π

0

1

m+ 1/f̃
dλ ,

where we have used (13) in the last equation. The equation(5) follows by observ-
ing the relation s(z) = 1

cm(z/c).

Proof of Equation (7)

The aim is to evaluate the integral

I =
1

2πi

∮
|ξ|=1

1

cs+
∣∣∣1−φξ1+θξ

∣∣∣2
dξ

ξ
.

Let m = cs in this computation of residues. We have

I =
1

2πi

∮
|ξ|=1

1 + θ2 + θ(ξ + ξ−1)

m {1 + θ2 + θ(ξ + ξ−1)}+ {1 + φ2 − φ(ξ + ξ−1)}
dξ

ξ

=
θ

mθ − φ
1

2πi

∮
|ξ|=1

{
1

ξ
− (φ+ θ)(1 + φθ)

θ(mθ − φ)

1

ξ2 + 1 + αξ

}
dξ

=
θ

mθ − φ

{
1− (φ+ θ)(1 + φθ)

θ(mθ − φ)

1

2πi

∮
|ξ|=1

dξ

P (ξ)

}
,

with

P (ξ) = ξ2 + αξ + 1, α =
m(1 + θ2) + 1 + φ2

mθ − φ
.

Let ξ1, ξ2 be the roots of P (ξ) = ξ2 + 1 + αξ. Then

1

P (ξ)
=

(
1

ξ − ξ1
− 1

ξ − ξ2

)
1

ξ1 − ξ2
.

As ξ1ξ2 = 1, only one of the two poles is inside the unit circle. It is readily checked
that if =α > 0, then |ξ1| < |ξ2| and

1

2πi

∮
|ξ|=1

dξ

P (ξ)
=

1

ξ1 − ξ2
=

1√
α2 − 4

.
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Otherwise we have |ξ1| > |ξ2| and the integral has an opposite sign. Summarising
both cases we get

1

2πi

∮
|ξ|=1

dξ

P (ξ)
=

ε(α)√
α2 − 4

,

with ε(α) = sgn(=(α)). Equation (7) is proved.
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Figure 2. Densities of the LSD from ARMA(1,1) model. Left to right and top to bottom:
(φ, θ, c) = (0.4, 0, 0.2), (0.4, 0.2, 0.2), (0.4, 0.6, 0.2), and (0.8, 0.2, 0.2).
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