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ABSTRACT: This paper proposes a Linear Complementarity Problem (LCP) formulation for 
the reliability-based stochastic transit assignment problem with capacity constraints and non-
additive link costs, where in-vehicle travel times and waiting times are uncertain. The 
capacity constraints are developed via the notions of effective capacity and chance 
constraints. An equivalent route-based linear program (LP) for the proposed problem is 
formulated to determine the patronage of each line section, critical links, critical service 
frequencies, unmet demand and the network capacity, which considers the risk-aversive 
behaviour of travellers. A solution method is developed, utilizing the K-shortest path 
algorithm, the column generation technique, and the revised simplex method, to solve the 
proposed LP with guaranteed finite convergence. Numerical experiments are also set up to 
illustrate the properties of the problem and the application of the proposed model for 
reliability analysis.  
 
1. INTRODUCTION 
 
The planning of urban transit services relies on the use of transit assignment models for 
predicting the way in which transit travellers choose routes from their origins to their 
destinations (Cepeda et al., 2006). As a result, transit assignment models have received 
considerable attentions over the last two decades. Earliest models (e.g., Dial, 1967; Fearnside 
and Draper, 1971; Le Clercq, 1972; Nguyen and Pallottino, 1988; De Cea and Fernández, 
1989; Spiess and Florian, 1989) assumed that all transit lines have unlimited capacity to 
accommodate any amount of transit demand, and in-vehicle congestion effects over transit 
networks were not considered. This limitation does not permit an accurate representation of 
transit networks with high congestion levels due to insufficient capacity of services (De Cea 
and Fernández, 1993). 
 To deal with capacity-related congestion, two approaches have been developed in the 
literature: the congestion cost function approach and the capacity constraint approach.  The 
congestion cost function approach (e.g., De Cea and Fernández, 1993; Wu et al. 1994; 
Bouzaïene-Ayari et al. 1995; Cominetti and Correa, 2001) adopts an unbounded increasing 
convex function to model the effect of in-vehicle congestion due to insufficient capacity on 
waiting time. The concept of effective frequency is often used together with this approach.  
Earlier models such as De Cea and Fernández (1993), Wu et al. (1994), and Bouzaïene-Ayari 
et al. (1995) allowed the development of convergent solution algorithms under some 
monotonicity or uniqueness conditions, but these models allow the flow on a link to be 
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greater than its capacity, which is unrealistic. The model of Cominetti and Correa (2001) 
rectified this problem by introducing queue theoretic models, but the algorithm was not 
necessary convergent. 

The capacity constraint approach (e.g., Lam et al., 1999, 2002; Nguyen et al., 2001; Yin 
et al., 2003; Poon et al., 2003, 2004; Cepeda et al., 2006; Yang and Lam, 2006; Tian et al., 
2007a; Teklu, 2008) traditionally incorporates capacity constraints in transit assignment 
models to disallow the flow on a link to be greater than the corresponding capacity. In the 
frequency-based method, the excess flow is usually assigned either to a pedestrian arc with 
unlimited capacity connecting to the destination directly (e.g., Cepeda et al., 2006) or to a 
failure node (e.g., Kurauchi, et al., 2003; Schmöcker et al., 2008, 2011). In the schedule-
based method, the passengers who fail to board a vehicle are kept waiting until they can 
board the next arriving vehicle with sufficient capacity (e.g., Poon et al., 2004; Hamdouch et 
al., 2008). Recently, seat capacity has even been considered in the models of Tian et al. 
(2007b), Sumalee et al. (2009), Leurent and Liu (2009), Schmöcker et al. (2011) and Leurent 
(2011). This capacity constraint approach is more realistic. However, the resultant models are 
usually solved by the method of successive averages, which can guarantee convergence under 
specific conditions. However, these conditions may not be fulfilled by the models.  
 Other than the congestion effect, most existing transit assignment models do not consider 
network stochasticity. In fact, due to supply side uncertainty, in-vehicle travel times and 
waiting times, especially for buses and mini-buses, are highly uncertain. Moreover, most 
existing transit assignment models do not consider the influence of the variances of travel 
times on route choice. Indeed, empirical studies like Abdel-Aty et al. (1997) and Jackson and 
Jucker (1982) point out that travel time variability, which is one of the measures of travel 
time reliability, plays a major role in influencing the trip makers' route choice behaviour. The 
trip makers select their routes by considering the trade-off between travel time (or cost) and 
its uncertainty (Yin et al., 2004). It is essential to capture this realistic travel behaviour into 
the transit modelling framework. To our best knowledge, only Yang and Lam (2006), Li et al. 
(2008, 2009), Szeto and Solayappan (2009a, b), Sumalee et al. (2011), and Szeto et al. (2011) 
considered this behaviour in their models. These studies adopted the congestion cost function 
approach to model the effect of congestion. However, no convergent solution techniques have 
been developed for their models. Moreover, the capacity constraint approach has not been 
considered simultaneously with the uncertainties of in-vehicle travel time and waiting time.  
 This paper proposes a stochastic transit assignment problem with capacity constraints that 
takes into account the variabilities of in-vehicle travel times and waiting times. In our model, 
both in-vehicle travel times and waiting times are modelled as random variables. Their means 
and variances are incorporated in the modelling framework through the concepts of effective 
travel cost and reliability-based user equilibrium such that the network uncertainty and risk-
taking behaviour (including risk-aversive behaviour) of travellers can be captured. The 
capacity constraints are developed by the chance constraints, which are formulated based on 
the notion of effective capacity introduced in this paper.  
 The proposed problem is formulated as a Linear Complementarity Problem (LCP), which 
is later reformulated as a route-based linear programming problem. This reformulation allows 
us to determine critical links, critical service frequencies, met and unmet demand, and the 
transit network capacity. The network capacity considers the risk-averse behaviour of 
travellers, and it is not required to have any reference Origin-Destination (OD) matrix for 
determining the capacity. This capacity contrasts to the classical maximum network capacity 
(e.g., Ahuja et al., 1993) that only considers one OD pair and ignores the route choice 
behaviour of travellers. Our proposed network capacity also contrasts to the definition of 
network capacity that relies on a reference OD matrix (e.g., Asakura, 1992; Wong and Yang, 
1997; Morlok and Riddle, 1999; Liu and Wei, 2010). Moreover, our proposed capacity differs 
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from those considering route choice behaviour of travellers (Asakura, 1992; Ahuja et al., 
1993; Akamatsu and Miyawaki, 1995; Wong and Yang, 1997; Chen et al., 1999; Yang et al., 
2000; Ziyou and Yifan, 2002; Ge et al., 2003; Kasikitwiwat and Chen, 2005; Lee et al., 2006) 
in the sense that the risk averse behaviour of travellers is taken into account.  

 This paper proposes a new convergent solution approach, utilizing the column generation 
technique, the K-shortest path algorithm, and the revised simplex method, to solve the 
proposed linear programming problem. Numerical examples are also set up to illustrate the 
properties of the proposed problem and the application of the proposed model for reliability 
analysis.  
 The rest of the paper is organized as follows. Section 2 describes the general 
representation of transit networks, the particular network used for the illustration, and the 
assumptions that are relevant to our work. Section 3 elucidates the various cost components 
of the travel cost. Section 4 describes the idea of effective travel costs, and Section 5 
postulates the problem formulation. The proposed solution method is detailed in Section 6, 
whereas Section 7 discusses the computational results. Finally, Section 8 provides concluding 
remarks and identifies directions for future research. 
 
2.  NETWORK REPRESENTATION AND ASSUMPTIONS 
 
Following the method in Lam et al. (1999), a general transit network is represented by a set 
of transit lines and a set of stations (nodes) where passengers can board, alight or transfer. For 
the simplicity of presentation, a walk link is also represented as a transit line with high 
frequency. To handle the common line problem and reduce the number of paths handled by 
the model proposed in Section 3, the line-node transit network is transformed into a link-node 
network. 
 To facilitate the discussion, a transit network adopted for the purpose of analysis is shown 
in Figure 1, which approximates the existing bus network in Singapore. JE, BL, HF, TP, and 
EU denote five nodes, namely Jurong East, Boon Lay, Harbour Front, Toa Payoh, and Eunos, 
respectively. Figure 2 shows the same network coded by links (or route sections).  In this 
example, there are four origin-destination (OD) pairs (with HF being a transfer hub) 
connected by ten routes, and the ten routes are serviced by nine different transit lines. The 
details are given in Table 1. The fleet sizes of the transit lines as well as the means, variances 
and covariances of the in-vehicle travel times of the line segments of each line are given in 
Table 2.  

As in the literature (e.g., Spiess and Florian, 1989, De Cea and Fernández, 1993, Szeto et 
al., 2011), the following classical assumptions are made throughout this paper. A1) 
Passengers are assumed to arrive at transit stops at a random time. A2) A passenger waiting at 
a transfer node considers an attractive set of lines before boarding. The set of attractive lines 
can be determined via the method in Chriqui and Robillard (1975). A3) The waiting time for 
a transit line on a link is independent of other lines on the same link. A4) Stochastic vehicle 
headways with the same distribution function are assumed for vehicles servicing different 
lines. However, different vehicle headways for different lines could be achieved by varying 
the parameters of the distribution function. A5) A passenger boards the first arriving bus if 
possible. A6) The passenger knows the mean and variance of in-vehicle travel time of each 
line (see Szeto et al., 2011). A7) The passenger selects the transit route that minimizes his/her 
effective travel cost. A8) The travel demand between each OD pair in the system is assumed 
to be known and fixed. This assumption is reasonable for strategic planning when the day-to-
day variation is small and neglectable. A9) Time and cost are used interchangeably 
throughout this paper by assuming that the value of time is equal to $1 per minute. This can 
be generalized easily by incorporating the value of time into the model. A10) For simplicity, 
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the capacity of each transit vehicle is assumed to be the same. However, there is no 
conceptual difficulty in modelling a scenario in which vehicles of different capacities traverse 
on different routes.  

 
 
 
 
 

Table 1. Transit route and links

 
O-D Pairs  Transit Routes Links (Transit Lines) 

1 JE-EU R1 JE-HF-EU S2(L1, L2), S5(L1, L3, L4)
   R2 JE-EU S7(L1) 

2 JE-TP R3 JE-TP S1(L5) 
    R4 JE-TP S9(L2) 
     R5 JE-HF-TP S2(L1, L2), S3(L2, L6, L9)

3 BL-TP R6 BL-HF-TP S4(L4, L6), S3(L2, L6, L9)
     R7 BL-TP S8(L6) 

4 BL-EU R8 BL-EU S6(L7, L8) 
    R9 BL-EU S10(L4) 
   R10 BL-EU S4(L4, L6), S5(L1, L3, L4)

 
Table 2. Fleet sizes, and the mean, variance and covariance of in-vehicle travel times 
Transit Line L1 L2 L3 L4 L5 L6 L7 L8 L9 

Fleet size (veh) 18 22 10 20 16 25 18 12 14 
Mean (min) 44+45 35+34 37 41+32 65 55+35 70 75 37 

Variance (min2) 6+8 4+3 4 7+6 12 8+11 10 8 6 
Covariance (min2) 2 3 - 2 - 1 - - - 

 
Moreover, the following basic assumptions are made. A11) The in-vehicle travel time on 

a link is subject to randomness due to supply uncertainty. A12) Different buses travelling on 
the same link can have different scales of travel time variability on that link and their travel 
times are independent of each other because they can travel on different roads between the 
two transfer nodes. However, the travel times of the same lines on different links are 

  

 

S1 (L5) 

S7 (L1) 

S3 (L2, L6, L9) 

S4 (L4, L6) S5 (L1, L4, L3) 

S6 (L7, L8) 

S2 (L1, L2) 

S8 (L6) 

S9 (L2) 

S10( L4) 

L5 

L2 

L1 L6 

L9 

L6 L4 

L3 

L7 

L8 

JE TP 

HF 

JE TP 

BL EU 

HF 

L4 

 BL EU 

Figure 1. Transit network representation 
using transit lines 

Figure 2. Transit network representation 
using links 
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dependent because a delay on a link will lead to a delay on a subsequent link. A13) The 
headway between transit vehicles is exponentially distributed with mean / lf , where lf  is 

defined as the expected frequency of line l , and  is a constant for unit conversion. This 
assumption is very close to the classical one except that the expected frequency is used to 
define the headway distribution. Expected frequency is used to model the relationship 
between stochastic frequency and stochastic in-vehicle travel time. A14) The dwell times are 
assumed to be constants, which is reasonable when the variabilities of boarding and alighting 
flows are small. This assumption allows for the development of the formulation that can be 
solved by convergent algorithms without restrictive assumptions on path cost functions. A15) 
Unlike Szeto et al. (2011), we assume passengers consider the transfer penalty, which is more 
realistic. 
 
3.  INDIVIDUAL COST COMPONENTS 
 

Link cost consists of in-vehicle travel time, the waiting time for the first arriving vehicle, 
and the passenger overload delay due to insufficient capacity. The following subsections 
describe these individual cost components. 
 
3.1 In-vehicle Travel Time 
 
Let the random variable l

sT  be the in-vehicle travel time for line l  on link s . Then, the 

weighted average of l
sT  of all the lines on link s  is the average in-vehicle travel time on link 

s , sT :  

 = ,    ,l l
s s s

l As

T T s


    (1) 

where sA  is the set of attractive lines associated with link s . l
s  is the relative frequency 

defined as follows:  
 , , .l l

s s sf f l A s       (2) 

[ ]l lf E F  is the expected frequency of line l ; lF  is the service frequency of transit line l ; 

,
s

l
s

l A

f f


   and  is the set of links. 

Since the expected service frequency is known, the expected in-vehicle travel time can be 
obtained by taking expectation on both sides of Eq. (1):  

 [ ] = [ ],    .l l
s s s

l As

E T E T s


  � (3) 

 Due to assumption A12, [ ]sVar T  and '[ , ]s sCov T T  can be respectively expressed as  

  2
[ ] = [ ],    ,l l

s s s
l As

Var T Var T s


    and  (4) 

'

' ' ', = , ,    , ' .
s s

l l l l
s s s s s s

l A A

Cov T T Cov T T s s 
 

           (5) 

lf  in (2) can be derived as follows. Let the random variables lF , lN , and l  be the line 

frequency, fleet size and round trip time of transit line l  respectively, where   is the set 
of transit lines. Then, by definition, l l lF N  .  By Li et al. (2008), we have 
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2

1 ,   
ll

l l

l l

VarN
f E F l

E E

                    
 .  (6) 

By definition, 0 1
l

l l l l l l
s

s

t n t T


    


, where l  is an indicator variable, which equals 1 when 

line l  is a circular line and 2 otherwise. 0
lt  is the layover time of transit line l ; 1

lt  and ln  are 

respectively the dwell time and the number of line segments in the line-node network visited 
in the round trip of transit line l . l  is the set of links in the link-node network 
corresponding to the set of line segments in the line-node network that are visited by transit 

line l  in the round trip. Hence, lE    and lVar     in (6) can be expressed as   

 0 1 ,   
l

l l l l l l
s

s

E t n t E T l


            


, and (7) 

 '
' , '

[ ] , ,   
l l l

l l l l
s s s

s s s s s

Var Var T Cov T T l
   

             
  

. (8) 

 
3.2 Waiting Time 
 
Waiting time on a link is defined as the time a passenger waits at a transit stop (the origin 
node of the link) for the arrival of the first vehicle belonging to the attractive set considered 
by the passenger. Under assumptions A1-A4 and A13, the mean and variance of the random 
waiting time sX  on link s can be derived as (see Szeto et al., 2011): 

 

[ ] = ,    ,s
s

E X s
f


 

 

and (9) 

 

2( ) = [ ],    .s sVar X E X s   (10) 

where  is a constant for unit conversion. 
 

3.3 Passenger overload delay  
 
Due to the limited capacity of each transit vehicle, passengers may not be able to board the 
first arriving vehicle at a station (the origin node of a link) and may experience extra delay 
due to passenger overload. Hence, it is important to consider the effects of passenger 
overload delay. When congestion exists in a transit network, it is difficult (if possible) to 
derive an analytical formula to model the overload delay due to the existence of various 
stochastic effects of both passenger behaviour and overcrowded vehicle arrivals (Lam et al., 
1999). Hence, the passenger overload delay in a congested transit network is determined 
endogenously and described by an equilibrium condition as shown below. 

The random capacity sK on link s  is given by  

 = ,    ,s
s

k
K s

H


   (11) 

where k  is the capacity of the vehicle (in passengers/vehicle); sH is the random headway of 

vehicles servicing link s ; and   is a unit conversion factor.   = 60 min/h if the unit for 
headway is minutes and the unit for the capacity of a line is passengers per hour.  
  Equation (11) implies that each headway value sh  is related to one and only one capacity 

value sk  and vice versa. Therefore, we have 
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 = ,    ,s
s

k
h s

k


   and (12) 

 
2

.s

s s

dh k

dk k


   (13) 

 Based on the superposition of Poisson processes for all the bus lines on link s , the 
random headway sH  in (11) follows an exponential distribution: 

   ,    .
s s

s

f h
s

H s

f
f h e s




      (14) 

Since sH  is a continuous random variable and (11) defines a one-to-one correspondence 

between the values of sH  and sK , according to Proposition 7.3 in Walpole et al. (2007), the  

density function of the random capacity sK  of link s  can be obtained by  

 
  ,    

s s

s
K s H

s s

dh k
f k f s

dk k

 
   

 
 ,       (15) 

By substituting (13)-(14) into (15), we get the density function of sK : 

 
  2

,   .
s

s

s

f k

ks
K s

s

fk
f k e s

k








    (16) 

The distribution function of sK  is therefore equal to 

   20
,    ,

s s
s

s s

f fk k

ks
s s s

s

fk
F K e dk e s

k

 
   



 

                             (17) 

where s  is the effective link flow on s , which can be defined as 

 , ,
s s m

l l
s s s s sm m

l A m l A A

v v v v s 
   

        


 (18) 

where sv  is the flow on link s; sv  is the total flow on the competing links of s; l
sv  is the flow 

of line l on link s; sm  is an indicator variable, which equals 1 if link m competes with link s, 

and 0 otherwise (In particular, 0ss  ). Link m is a competing link of s if link m contains at 

least one attractive line of link s and one of the two conditions is satisfied: 1) The origin node 
of m is before that of s and the destination node of m is after the origin node of s, or 2) the 
origin node of m is the same as s but the destination nodes of the two links are not the same. 
This effective link flow captures the interaction between links and the passengers on different 
links who compete for the residual capacity of the same set of attractive lines. 

Like De Cea and Fernández (1993), l
sv  in (18) can be calculated through 

 , , .l l
s s s sv v l A s     (19) 

By using the chance constraint approach, a relation between the effective capacity and the 
effective link flow s  can be derived. Let s  be the maximum violation probability of link s  

with 0 1s  , which is the largest probability that the flow on link s  can be greater than or 

equal to the link capacity. s  is a parameter defined by the modeler.  A smaller value of s  
implies a more stringent requirement on the link flow. Then, 

   ,    
s

s

f k

s s sF K e s


  


     .  (20) 

By rearranging (20), we get the capacity constraint: 
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,    

ln
s

s
s

kf
s

 
 

    .  (21) 

The term on the left hand side of (21) is referred to as the effective capacity of link s , and is 
nonnegative since ln s  is always non-positive for 0 1s  .  

Based on (21), the equilibrium conditions for passenger overload delay on link s can be 
defined as follows. The passenger overload delay, sd , is positive if the effective link flow s  

on link s  is greater than the effective link capacity given on the left hand side of Eq. (21), 
and equals zero if the effective link flow is less than or equal to the effective link capacity. 
The rationale is that when there is insufficient capacity in the first arriving vehicle, some 
passengers cannot board this vehicle, thereby, causing delays. Mathematically, the 
equilibrium condition can be expressed as follows: 

 0,    ,sd s    (22) 

 
0,    ,

ln
s

s s
s

kf
d s


 

 
     
 

  and (23) 

 
0,       .

ln
s

s
s

kf
s


 

       (24) 

 Due to sharing the capacity of the same set of lines between passengers on different links, 
the flow on link s experiences overload delay due to its own link, sd , as well as overload 

delay due to competing link m. The overload delay of link s from competing link m is the 
overload delay of the competing link md  times the proportion of the capacity of link s shared 

by the two links, 
s m

l
s

l A A


 
 . The total overload delay of link s from all competing links m is 

therefore 
s m

l
sm m s

m S l A A

d 
  
  , where 1sm   if link m competes with link s, and 0ms   

otherwise. Hence, the total overload delay on link s is 
s m

l
s s sm m s

m S l A A

d d d 
  

   . This total 

overload delay is the extra waiting time for the passengers boarding at the origin node of link 
s . 
 
4.  EFFECTIVE TRAVEL COST 
 
The variabilities associated with the in-vehicle travel time and waiting time, along with the 
delay due to congestion, causes variability in trip time. Consequently, a passenger cannot 
determine the exact trip time to complete his/her journey. The passenger counters the 
variability in trip time by an early departure to allow for additional time for the trip and avoid 
being late. The additional time is referred to as the safety margin, and depends on both the 
purpose of the trip and the individual's risk taking behaviour. This safety margin plus the 
expected trip time is the effective travel cost, which has been applied in Lo et al. (2006), 
Shao et al. (2006), Lam et al. (2008), Siu and Lo (2008), and Szeto et al. (2012). 
Mathematically, the effective travel cost associated with route r  between OD pair w , w

r , 
can be expressed as:  

 = [ ] [ ],  , ,w w w w
r r rE C Var C r w       (25) 

where  w
rC  is the trip time (including total in-vehicle travel time and total waiting time for the 

first arriving vehicle for the trip) on route r  connecting OD pair w  and is a random variable. 
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w  denotes the set of routes connecting OD pair w , the set of which is denoted by  .   is 
the parameter representing the degree of risk aversion of passengers. A higher value of   

means a more risk-aversive passenger and leads to a larger safety margin, [ ]w
rVar C .  

According to Lo et al. (2006), the parameter   relates to the probability   that the actual 
trip time is less than the effective travel cost:  

 { = [ ] [ ]} = ,  , .w w w w w
r r r rP C E C Var C r w         (26) 

This probability can be regarded as the within cost budget reliability, in which the cost budget 
is defined by the effective travel cost. Then, a higher value of   implies that the passenger is 
willing to have a higher probability of arriving on time or equivalently the actual travel cost 
not being greater than the actual effective travel cost.  
 The route cost in (25) is the sum of the total transfer penalty cost, the total dwell time, and 
the costs of links on the route. The total penalty cost represents the discomfort cost due to the 
transfer inconvenience. Let P  be the penalty cost for each transfer, and srb  be the link-path 

incidence indicator variable, which equals 1 if link s  is a part of transit route (path) r , and 

equals 0 otherwise. Then, the total transfer penalty on route r is 1r sr
s S

P b P


   
 
  .  

 The dwell time at the tail node of the link is the weighted average of the dwell time 

1

s

l l
s

l A

t

 . Hence, the total dwell time on route r is 1

s

l l
sr s

s l A

b t
 
 


. 

The link cost, sC , is the sum of in-vehicle travel time, waiting time and total delay due to 

passenger overload. That is, =s s s sC T X d   . 

The cost on route r  can be expressed as  

1= ,  , .
s

w l l w
r sr s s s r sr s

s S s l A

C b T X d P b t r w
  

           


   (27) 

 By taking the expectation and variance on both sides of Eq. (27) and substituting the two 
resulting expressions into Eq. (25), we get 

 

 

   

1

' '
' , '

= [ ] [ ]

    [ ] [ ] , , , .

s

w l l
r sr s s s r sr s

s s l A

w
sr s s sr s r s s

s s s s s

b E T E X d P b t

b Var T Var X b b Cov T T r w

 



  

   

   

     

  

  

 
 

  

 
 (28)

 

This route cost can be decomposed into the effective uncongested travel cost w
r  and the 

route’s overload delay w
rd . Hence,  w w w

r r rd     where w
r sr s

s S

d b d


  , and 

 
 

   

1

' '
' , '

= [ ] [ ] 1

    [ ] [ ] , , , .

s

w l l
r sr s s sr sr s

s S s S s l A

w
sr s s sr s r s s

s S s s s s

b E T E X b P b t

b Var T Var X b b Cov T T r w

 



   

   

 
    

 

     

   

  




 

 
 (29)

 

 
5. RELIABILITY-BASED STOCHASTIC TRANSIT ASSIGNMENT FORMULATION 
 
5.1 Linear Complementarity Problem Formulation 
 
Under assumption A7, we can define the reliability-based user equilibrium (RUE) as follows: 
The transit network is said to be at RUE for each OD pair, if the effective travel cost of routes 
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with non-zero flows are equal to each other and not greater than that of any route with no 
flow. The RUE conditions can mathematically be stated as follows:  

 0,    ,  ,w w
ry r w        (30) 

 0,    ,  ,w w w
r u r w        and (31) 

 ( ) = 0,    ,  ,w w w w
r ry u r w       (32) 

where wu  is the reliability-based equilibrium travel cost over all the routes that connect OD 
pair w  and w

ry  is the passenger flow on route wr .  
Apart from the above RUE conditions (30)-(32), the overload delay conditions (18)-(19), 

(22)-(24), the effective travel cost condition (28), and the conditions of the means and 
covariances of in-vehicle travel and waiting times (2)-(10), the proposed problem includes 
the flow conservation constraints and the relationship between link flows and route flows: 

 

0,    ,
w

w w
r

r

y q w


   


  and   (33)

 
 ,   

w

w
s sr r

w r

v b y s
 

   
 

 , (34) 

where wq  is the demand for OD pair w .  
In fact, (33) can be reformulated into the complementarity condition: 

 0,    ,wu w      (35) 

 

0,    ,
w

w w w
r

r

u y q w


 
    

 



  and

 

 (36) 

 

0,    ,
w

w w
r

r

y q w


   


    (37)

 
because at optimality, 0,wu   and hence (33) must hold. Then, the proposed problem can be 

expressed as a Linear Complementarity Problem (LCP).  

 The LCP is to find
 

, ,
TT T T   Z Y D U  such that, 

 Z 0 , and (38) 
  ,  0T MZ + V 0 Z MZ + V , (39)

 
where w

ry   Y  with dimension w

w

 


  ;  sdD  with dimension  ; wu   U  

with dimension  ; 

 
  
  

T

0 B A

M = H 0 0

A 0 0
 

 with dimension              ; 

, ,
TT T T    V C F Q  with dimension      ;  srbB  with dimension   ; 

w
ra   A  with dimension   , with w

ra = 1 if route r connects OD pair w and 0 

otherwise; H  is a matrix with  
 
such that  sHY  with dimension 1  or 

equivalently   1
( ) T

L Ldiag
                    

T THY G E f B Y 1 E 1 B Y
Ef

  ; lf   f  with 

dimension 1 ; sm   G  with dimension    ; l
se   E  with dimension   , l

se  

= 1 if line l is attractive on link s, and 0 otherwise;  1L 1 with dimension 1 ; 
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ln
s

s

kf
 
 

  
 

F  with dimension  ; wq   Q  with dimension  ; w
r   C   with dimension 

  and w
r  follows (29). 

 
5.2 Linear Programming Reformulation 
 
The problem formulation detailed above can be expressed as a Linear Program (LP): 

 
Min  

w

w w
r r

w r

y
 
 

Y


 

 (40) 

s.t.  the non-negativity constraint (30), the flow conservation constraint (33) and 

 
0,       .

lnw w
s m

w l w s
sr r sm m mr r

w m l A A wr r s

kf
b y b y s

 
      

 
      
 
     
  




  (41) 

In this formulation, the objective is to minimize the sum of the effective uncongested travel 
costs of all passengers. Let wu  and sd  be the multipliers attached to constraint (33) and 

capacity constraint (41), respectively. Then, the first-order conditions can be expressed as 
(22)-(23), (30)-(33), and (41) where s  is defined by (18)-(19) and (34), and  w

r is defined 

by (28). In other words, this LP is equivalent to the LCP (38)-(39). wu  and sd  are the dual 

solution of the LP.  In particular, sd  can be interpreted as the rate of the reduction of the total 

effective uncongested travel cost at equilibrium with respect to the increase in the effective 
capacity of link s. It is the decrease in the total effective uncongested travel costs at 
optimality when one unit of effective capacity is added to link s. 

The LP can be written in matrix form as shown below: 
Problem P 

Min  T
pZ  C Y  (42) 

Subject to               TA Y = Q , (43) 

   H Y F 0 ,
 
and (44) 

 Y 0 . (45) 
Problem P may not have a solution because the effective capacity of certain links may be 

insufficient to handle a large demand. In case we need to know which link has insufficient 
effective capacity, analyzing problem P is not enough. To ensure the existence of solutions 
for analysis, we create an artificial problem using the following assumption. 

Assumption 16: There is one direct virtual (or artificial) path connecting each origin and 
destination with the capacity at least equal to the corresponding OD demand. Each direct 
virtual path has a huge effective travel cost M, where M is much larger than the effective 
travel cost on any actual (or real) paths. 

Introducing virtual paths with their individual capacity not less than the corresponding 
demand can ensure solution existence. However, if the effective (uncongested) travel costs on 
the virtual paths were low, including these paths in the formulation could affect the optimality 
due to the fact that the virtual paths are more attractive than the actual paths. This will result 
in a scenario where there are positive flows on the virtual paths even when the network 
capacity is sufficient. Therefore, the travel costs on all virtual paths must be large enough to 
make these paths unattractive even when sufficient network capacity exists. These virtual 
paths can then be interpreted as pedestrian links that the passengers walk to their destinations. 
The cost on these paths is so huge that the passengers prefer to travel by bus in case the 
capacity is sufficient. 
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With the above assumption, a more general problem is stated below:  
Problem P(M) 

Min   T
M aZ M C Y Y       (46) 

subject to        (44)-(45) 
T

aA Y Y = Q ,       (47) 

a Y 0 ,      (48) 

where aY  is the path flow vector for virtual paths. Note that in this problem, the capacity 

constraint a Y Q  for the virtual paths is redundant as the first equality constraint (47) and 

two non-negativity constraints (45) and (48) imply the capacity constraints for virtual paths.   
 Problem P(M) has the following properties:  
(i) P(M) has at least one optimal solution (see propositions 1 and 2 in the Appendix). 
(ii) If there are no flows on all virtual paths at optimality, the flows on actual paths form an 

optimal solution for problem P. Otherwise, there is no feasible solution for problem P 
(see proposition 3 in the Appendix), and 

(iii) The maximum possible number of used paths in problem P(M) is    (see 

proposition 4 in the Appendix). 
Property (ii) implies that problem P(M) includes problem P as a special case. To obtain 
optimal solutions of P or to show that P has no feasible solution, we can solve P(M) instead. 
Property (iii) implies that for large networks, most paths carry no flows. This property has an 
important implication on developing efficient solution methods. We do not need to have a 
complete path set for obtaining optimal solutions. Instead we need a systematic procedure to 
exclude the paths with zero flows at optimality. This leads to the idea of incorporating the 
column generation procedure in the solution method.  

Compared with using the Big-M method to solve problem P directly, our proposed 
method of solving P(M) using the column generation method (discussed in the next section) 
introduces the concept of virtual paths to the proposed transit assignment problem. The 
notion of virtual paths gives some physical meaning to the artificial variables normally used 
in the big M-method. The proposed method also gives some useful information like the 
unmet demand, the met demand, and the deficit capacity of each OD pair, total met demand, 
network capacity, critical links, and critical service frequencies for transit network reliability 
analysis. The unmet demand of an OD pair w is the positive optimal flow *w

ay on the virtual 

path of that OD pair, where w
ay  is the element of aY  and the asterisk denotes the solution at 

optimality. This unmet demand numerically equals the deficit capacity of that OD pair. To 
handle the unmet demand, extra capacity (which at least equals the unmet demand) must be 
added to that OD pair by say, increasing the frequency of the bus line or the capacity of the 
buses serving that OD pair. The sum of optimal flows on all paths wr  between OD pair w 
(i.e., *

w

w
r

r

y




) gives the met demand of that OD pair, and the sum of the met demand of each 

OD pair gives the total met demand (i.e., *

w

w
r

w r

y
 
 
 

). In the extreme case, when all virtual 

paths carry flows at optimality (i.e., * 0,w
ay w  ), the total met demand gives the network 

capacity maxQ  and is equal to the difference between the total demand and the total unmet 

demand. Mathematically, the maximum capacity can be represented as 
*

max  if 0,
w

w w
r a

w r

Q y y w
 

   
 

or  *
max if 0,w w w

a a
w

Q q y y w


   


. Finally, the critical 

links can be obtained by finding the links with zero residual capacities or the links with 
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positive overload delays (i.e. 0sd  ) whereas the frequencies on the critical links are critical 

service frequencies that should be increased to improve the network capacity. 
 
6. SOLUTION METHOD  
 
The proposed problem P(M) creates several challenges for obtaining solutions. First, the LP 
proposed here is path-based and cannot be reformulated as link-based, because the standard 
deviation of path travel cost is path-specific and not equal to the sum of the standard 
deviations of the link travel costs on the path. Therefore, the existing link-based LP solution 
methods cannot be employed for solving this problem. Second, existing path-based solution 
methods for LP require that path costs are additive of link costs. However, in our problem, the 
effective path travel costs are not the sum of effective link travel costs. Hence, existing path-
based methods cannot be used for solving the proposed problem. Third, path-based 
formulations normally require a complete path set. For large networks, it is very time 
consuming to determine all paths. Fourth, the existence of many path flow variables for large 
networks may pose the computer storage problems and impact the computational speed. 

In this paper, we develop a new solution algorithm to solve the proposed problem P(M), 
which does not require generating a complete path set and storing all route flow variables. 
This algorithm generates a path only when needed. This algorithm relies on the K-shortest 
path algorithm and the revised simplex method. The K-shortest path algorithm forms the 
backbone of the column generation procedure to generate real paths (i.e., non-virtual paths) 
for the reduced path-based LP at every iteration i , RPi(M): 
Problem RPi(M) 

Min  = T
i i i aZ MC Y Y  (49) 

Subject to   ,T
i i aA Y Y = Q  (50) 

,i i  H Y F 0

 

(51)

 ,  andi Y 0

 

(52)

 ,a Y 0

 

(53) 

where , , ,  and i i i iC Y A H  correspond to , , ,  and C Y A H  but only include a subset of paths in 

the whole network, and the i -th row is for the paths added in iteration i . The revised simplex 
method is used to solve each reduced problem. The proposed algorithm is terminated only 
when one of the following conditions is satisfied:   

(i) For each OD pair where not all paths are generated, the largest mean travel cost of 
the generated but not included path is larger than the largest effective travel cost 
found with the paths included so far.  

(ii) All paths in the network are generated. 
Otherwise, the algorithm selects an OD pair that does not satisfy the above conditions, and 
then generates a single path that connects the OD pair. The new path is added to the reduced 
problem to form RPi+1(M) for re-optimization and the solution obtained is checked for 
convergence again.  

The detailed algorithmic steps are as follows: 
1. Set 0i  , 0wk  , 0wP  , ,  0,  w w

i iu M w    �, where w
iu  and w

i are the largest 

effective uncongested travel cost on the used path between OD pair w  and the largest 
mean travel cost of OD pair w  at iteration i, respectively. wP  is an indicator variable, 
which is equal to 1 if all paths between w are generated and 0 otherwise. Let the set of 
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paths for OD pair w ,  w w
i a , where wa  is the virtual path of OD pair w . Assign the 

demand of each OD pair on the corresponding virtual paths. 
2. If (i) w

i  > ,w
iu w   , or (ii) 1wP  , w  , then stop.  

3. Select an OD pair w  with 0wP   and w
i   w

iu . Set 1w wk k  . Solve the rsk -shortest 

path problem for OD pair w  based on the mean link travel cost 

1[ ] = [ ] [ ]
s

l l
s s s sr s

s l A

E C E T E X b t
 

  


 where [ ] and [ ]s sE T E X are calculated via (3)-(10). 

If no new real path can be generated, then set 1w  , and go to step 2.  

4. For new path r , compute   1[ ] [ ] [ ] 1
s

w l l
r sr s s sr sr s

s S s S s l A

E C b E T E X b P b t
   

      
 

    


. Set  

 1max [ ],w w w
i r iE C     and then determine the effective uncongested travel cost w

r  by 

(29). Set 1i i  , and  1
w w

i i r   . Form RPi(M) using ,w
i w   . Solve RPi(M) 

by the revised simplex method and update ,w
iu w   . Go to step 2. 

This algorithm adopts the revised simplex method to solve a sequence of reduced 
problems based on a subset of paths in the original network. To apply the revised simplex 
method, a feasible initial solution must be provided. The initial solution in the first iteration 
can be formed by setting each virtual path flow to be equal to the corresponding demand and 
the flows on the remaining paths to be zeros. The initial solution for the subsequent iterations 
can be formed by setting the flow of the newly added path to zero and the flows on remaining 
paths can be set at their optimal values found in the preceding iteration. This initial solution 
should be closer to the optimal solution for the complete network than the initial solution 
used in the first iteration. 

Over iterations, the algorithm shows the following characteristics: 
1. The optimal objective value calculated by the algorithm is non-increasing with every 

iteration (see proposition 5 in the Appendix).  
2. The optimal objective value obtained by the algorithm at the next iteration must be 

lower than that of the current iteration if the new path added for the next iteration has 
a positive residual effective capacity before re-optimization, (where the residual 
effective capacity of the new path is the minimum flow required to cause at least one 
link on this path to have its link flow equal to its effective capacity) and the virtual 
path connecting the same OD pair as the new path carries flow before re-optimization 
(see proposition 6 in the Appendix).   

3. The optimal objective value of the next iteration must be lower than that of the current 
iteration if all the following conditions are simultaneously satisfied before re-
optimization: 1) the virtual path connecting the same OD pair as the new path carries 
flow; and 2) all binding links (links with zero residual effective capacities) on this 
new path are part of another used route that is longer than the new path (see 
proposition 7 in the Appendix). 

4. The largest mean travel cost for each OD pair is non-decreasing with every iteration 
(see proposition 8 in the Appendix). 

As mentioned before, the algorithm can be terminated under two situations:  
1. When the algorithm is terminated due to condition (i), the flows on the used paths in 

the current reduced problem are the optimal flows on the corresponding used paths in 
problem P, the flows on other paths in problem P are zeros, and the current objective 
value is the optimal objective value (see Proposition 9 in the Appendix).  

2. When the algorithm is terminated due to condition (ii), whether an optimal solution is 
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obtained can be judged by the flows on virtual paths according to Proposition 3. If all 
these virtual paths carry no flows, an optimal solution is obtained. Otherwise, no 
solution exists to problem P.  

The revised simplex method and the K-shortest path algorithm guarantee finite 
convergence. Moreover, the column generation technique here only allows adding paths and 
in the worst case, the column generation technique builds all real paths, where the number of 
paths is finite. Hence, the column generation technique guarantees finite convergence, 
thereby allowing the proposed algorithm to guarantee finite convergence. Note that even if 
the maximum possible number of used paths at optimality is large, our algorithm guarantees 
finite convergence because the convergence proof does not rely on this number. 

  
7. NUMERICAL RESULTS 
 
Five studies will be carried out using the example network discussed in Section 2. The basic 
link data related to the network is given in Tables 1-2. All transit lines are assumed to be 
served by the single deck bus, Mercedes Benz O 405, which currently operates in Singapore 
to serve the entire network. This bus model has a total capacity of 85 passengers. The transfer 
penalty cost P  and the effective travel cost on virtual path are, respectively, set to be 30 and 
1000. The maximum violation probability, s , is set to 0.05 unless otherwise specified, and 

the headway is assumed to be exponentially distributed with mean 1/ .lf  The dwell time at 

each stop is set to 1 minute and the layover time is set to 15 minutes. 
 
7.1 Application to transit network reliability analysis 
 
This study aims to illustrate the applications of the proposed model for transit network 
reliability analysis. The demand is set to be 500 passengers/hr for each OD pair. A LP was 
developed for this scenario and solved by the solution method described in Section 6. The 
optimal results with 2.75r=  is presented in Tables 3 and 4. 

 

Table 3. Optimal solutions and effective travel cost 
 

Table 4 Residual capacity and 
overload delay 

w qw uw r w
ry  w

rE  w
r  w

r s ds Residual capacity

1 500.0 1000.0 1 0.0  1021.5 887.2 1 894.5 0.0 
     2  144.7 1000.0 862.8 2 862.8 0.0 
2 500.0 1000.0 3 168.3 1000.0 894.5 3 0.0 225.1 
   4 217.9 1000.0 897.5 4 872.8 0.0 
     5 0.0 1018.2 887.2 5 0.0 160.7 
3 500.0 1000.0 6 0.0 1019.2 880.6 6 904.0 0.0 
      7 199.1 1000.0 872.8 7 0.0 0.0 
4  500.0 1000.0 8 290.6 1000.0 904.0 8 0.0 0.0 
    9 189.4 1000.0 888.8 9 34.7 0.0 
      10 0.0 1022.9 880.6 10 16.0 0.0 

  
According to Table 3, the equilibrium effective travel cost found is the minimum of 

effective route travel cost for each OD pair, and only those routes with their effective travel 
costs equal to the equilibrium effective travel costs carry flows, thereby satisfying the 
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reliability-based user equilibrium (RUE) conditions. The flow conservation condition is also 
satisfied, which can be verified from the results reported in Table 3.  

One can observe that the complementarity condition for capacity constraints are satisfied 
in table 4: The passenger overload delay, sd , is positive only when the corresponding link’s 

residual capacity (defined as the difference between the effective link capacity and the 
corresponding link flow) is zero; when the residual capacity is positive, the passenger 
overload delay is zero. For links 7 and 8, although their overload delays equal zero, their 
residual capacities also equal zero because passengers on link 7 (8) competes line capacity 
with those on link 2 (4), and links 2 and 4 have been used up their effective capacities. 

Not all the demands are met in this scenario. For OD pair 1, the virtual path carries flow 
and the equilibrium cost equals the predefined virtual path cost of M = 1000.  It is therefore 
expected that there are critical links. In fact, the unsatisfied demand of OD pair 1 is due to 
insufficient bus service starting from JE, as links 1, 2, and 9 are all highly congested without 
residual capacities. Therefore, to increase the network capacity and the total met demand, the 
(critical) frequencies of bus service on these links 1, 2, and 9 have to be increased.  For 
example, when the frequency of line 2 is increased from 7.7 to 12 veh/hr, the network 
capacity and the total met demand increase from 1209.9 to 1332.7 passengers/hr and the total 
unmet demand decreases from 790.1 to 667.3 passengers/hr. 

When we determined the residual capacity of any path, which is the minimum of all the 
residual capacities of links on the path, we found that the path’s residual capacity equals zero. 
This observation is consistent with the definition of the maximum network capacity that can 
be obtained only if all paths’ residual capacities are used up.  

Although the residual capacities of all routes including routes 5 and 10 equal zero, only 
the residual capacities of links 2 and 4 on R5 and R10 respectively equal zero (and their 
overload delays, sd , are greater than zero). The residual capacities of links 3 and 5 are greater 

than zero because of the flow conservation condition and other critical links. For example, the 
residual capacity of 160.7 passengers/hr for link 5 cannot be utilized because the flow on link 
5 must pass through either link 2 or link 4, but links 2 and 4 are carrying flow equal to their 
effective capacity. 

The scenario also illustrates that the overload delay w
rd  on a route, the difference between 

effective travel cost and effective uncongested travel cost ( w
r  w

r ), does not equal to the 

sum of the overload delays sd on the links on that route, even if a route only contains one 

link, because the route’s overload delay considers the interaction between competing links. 
Taking route 2 (with only link 7) as an example, the overload delay sd  on link 7 is zero, but 

route 2’s overload delay is 862.8 passengers/hr, which is the same as the overload delay sd  

on link 2. The reason is that links 2 and 7 are competing and sharing the capacity of line 1. 

However, the total overload delay sd of link 7, which is the sum of the overload delays of 

links 2 and 7, is equal to the route 2’s overload delay. 
 
7.2 Effect of demand on equilibrium cost 
 
To illustrate the effect of demand on equilibrium cost, Figure 3 is plotted. The demand for all 
OD pairs was varied from 50 passengers/hr to 250 passengers/hr. From this figure, it can be 
inferred that the equilibrium cost is stepwise increasing with demand in general. This is 
reasonable because the increase in demand may cause in-vehicle congestion and hence may 
cause the passengers to wait for the next arriving vehicle. Another reason is that the critical 
links belonging to the shorter routes are congested when demand increases, guiding 
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passengers to take a longer route, which results in delay in the shorter routes. 
 It should also be noted that the two graphs for OD pairs 1 and 2 show step functions but 
the other two graphs show horizontal lines. The reason is as follows: For OD pair 1, when the 
demand is low, the routes’ overload delay is zero and does not influence the equilibrium cost. 
The equilibrium travel costs are only functions of the means and variances of in-vehicle 
travel and waiting costs which are not functions of demand. However, when the demand 
increases above a certain level, the routes’ overload delay is positive and adds up the 
equilibrium cost. Hence, a step function can be seen with the jump occurring at certain 
demand level. The demand level at which the delay plays a role depends on the effective 
capacities of the links that serve the particular OD pair. For instance, consider OD pair 2, the 
equilibrium cost is 102.5 minutes until the demand is 136.5 passengers/hr. When the demand 
exceeds 136.5 passengers/hr, the cost increases to 105.5 minutes and then jumps to 107.3 
minutes at the demand level of 241.5 passengers/hr. It is because when the demand does not 
exceed 136.5 passengers/hr, only R4(S9) carries flow and this path (link) has enough 
effective capacity to deal with the total demand of OD pair 2 and its competing link, link 2, 
also has enough capacity to cater the demand of OD pair 1.  In order to fulfil the demand in 
excess of 136.5 passengers/hr, R3(S1) has to carry flow and the equilibrium cost of R4(S9) is 
increased from 102.5 to 105.5. This increment equals the routes’ overload delay of 3.0 
minutes on link 9 which operates at full effective capacity. Similarly, the second step increase 
is because the effective capacity of R3(S1) is reached, and the route’s overload delay of 1.7 
minutes is added to the equilibrium cost. In particular, the demands of OD pairs 1 and 2 at 
which the jumps occur are the same because the active routes in the two OD pairs contain the 
same competing and critical links (i.e., S2 and S9). 
   

 

Figure 3 Equilibrium cost for various levels of demand 
 
In the case of OD pair 4, the demand between each of these pairs is met without the 

routes’ overload delay coming into play under the demand range considered. This means that 
the links connecting these OD pairs carry flows less than their effective path capacities. 
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Hence, the corresponding graph in Figure 5 is a straight line unlike the step function that was 
plotted for OD pairs 1, 2 and 3. If the demand range were wider, we could observe jumps as 
well. Moreover, if a more complicated and congested network with more paths between each 
OD pair were considered, more jumps on the equilibrium cost for each OD pair would be 
expected, where the number of jumps in each graph equals the number of used paths minus 
one, assuming all paths are not identical.   
 
7.3 The effect of maximum violation probabilities and the degree of risk aversion of 
travellers on the flow pattern  
 
This section illustrates the effect of maximum violation probabilities on flows and the degree 
of risk aversion of travellers on route choice. Figure 4 shows the residual capacities for 
various values of maximum violation probabilities when the demand of each OD pair is held 
at 250 passengers/hr. With an increase in the maximum violation probability of each link, we 
see that the available residual capacity increases for each link. From Eq. (24), we can infer 
that an increase in the maximum violation probability causes an increase in the effective 
capacity of each link, thereby increasing the residual capacity available on the link although 
the increase is not uniform across links. In particular, the residual capacity on S9 is 0 when s 
increases from 0.05 to 0.15, meaning that the increased effective capacity is fully utilized. 
This indicates that S9 is one of the critical links; hence, increasing the effective capacity of 
such link will increase the network capacity. 
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 The flows on routes 1, 3 and 4 are plotted in figure 5, from which the influence of 
maximum violation probability, s, on route choice can be observed. In general, when the s 
value increases, more passengers can board R1 and R4 with the smallest effective 
uncongested travel cost because the effective capacities on these paths increase. In particular, 
the increase in s from 0.06 to 0.25 leads to a significant increase in flow on R4(S9), but the 
increase in s from 0.05 to 0.06 causes a small reduction of the flow on R4. This is because 
when s is larger than 0.06, the flow on R1 is stabilised to the level of the OD demand of 
250, and the increase in the effective capacity of S2 will be totally used by passengers 
between OD pair JE-TP. However, when the flow on R1 has not been stabilised, the 
passengers on S2 will compete the effective capacity of line 2 with those on S9 and more 
passengers between OD pair JE-EU have a stronger motivation to use R1 (and hence S2) as 
the alternative route R2 between OD pair JE-EU is much worse than the alternative route R3 
between OD pair JE-TP. Hence, the flow on R1 increases and the flow on R4 decreases. 

The degree of risk aversion of passengers, as represented by  , influences the route 
choice pattern and the equilibrium travel cost of passengers. Figure 6 plots the equilibrium 
cost for passengers between OD pair 1 of different risk profiles under varying demands. From 
the figure, we see that the increase in the value of   also increases the equilibrium cost. This 
holds true for various levels of demand as well, and can be seen from Figure 6. This is 
because a more risk-aversive passenger has a larger safety margin and hence a larger 
equilibrium cost. Figure 7 shows the influence of   on route choice when the demand is 
fixed at 250 passenger/hr for each OD pair. When   is less than 1.29, only about 80 

passengers are on R4. When   is between 1.29 and 2.53more passengers select route 4 
which has a lower path variance despite having a higher mean path cost. However, when   
is larger than2.53, the flow of R4 (S9) is reduced again due to the increase in flow on R1 
(S2), which competes the capacity of line 2 with the flow on R4. 
 
7.4 Benefit of considering variability in flow prediction  
 
This sections aims at illustrating the potential benefit of using the proposed model. Two cases 
are considered: = 0 (ignoring travel cost variability) and 2.75 (considering travel cost 
variability). For both cases, the demand for each OD pair is set to be 250 veh/hr and three 
performance indexes are calculated as shown in Table 5. The number in brackets under 
column represents the percentage change with respect to the corresponding value under 
column 2.75.When the variability is not considered, total mean travel cost and effective 
travel cost for all the passengers are all underestimated because more the lowest mean cost 
routes with a higher variance are selected. More importantly, the total overload delay of all 
the passengers is highly overestimated when the variability is ignored. In fact, because of the 
variability, the risk aversive passengers will select routes with a higher probability of being 
punctual arrivals even if their mean costs are higher. This results in lower congestion on those 
lowest mean cost routes as reflected by a lower total overload delay. The implication is that 
the performance of transit networks could be evaluated improperly if the variability was 
ignored. From operators’ point of view, ignoring the variability will lead to a wrong 
estimation on the flow pattern and a wrong allocation of resource to improve the transit 
network. By using the proposed model in which the variability is considered, the flow pattern 
and the congestion delay are estimated more accurately and hence the critical transit lines can 
be identified properly. 
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Table 5  Comparison between considering and ignoring variability 
   

Total mean travel cost 95111.3 94423.3 (-0.7%) 

Total overload delay 6001.6 12665.8 (110.0%) 
Total effective travel cost 122781.5 107089.1 (-12.8%) 

 
7.5 Illustration of the solution method 
The objective of this section is to illustrate the proposed solution method. We adopt the same 
network as in Figure 2, along with the associated data. The solution method is illustrated by 
solving the network with demand levels of 250, 250, 200 and 200 passengers/hr for OD pairs 
1-4 respectively. Figure 8a shows the network flows and the objective value at the start of the 
solution method, in which every OD pair is connected by one virtual path (dotted lines) and is 
carrying flow equal to the OD demand.  At each iteration, one path is generated by the K-
shortest path algorithm and then added to the reduced problem (see figure 8b) that is solved 
by the revised simplex method. The optimal solution and the optimal basis of the current 
iteration are, respectively, used as the initial solution and the initial basis for the next 
iteration. This procedure is repeated (see figures 8c-d) until sufficient paths are added and no 
flows on all virtual paths can be observed as shown in Figure 8d.  

Figure 8 Illustration of the proposed solution method. 
 
In this example, we can observe the following: 
1. The network is built incrementally.  
2. The objective value is non-increasing with every iteration as shown in figure 9, which 

agrees with proposition 5 in the Appendix. 
3. The objective value at iteration 1 is equal to that at iteration 2 and the objective values 

at iterations 4 and 5 are equal. It is because the new paths generated are not used. For 
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example, after iteration 2 (see Figure 10b), route (JE-EU) is generated, but it does not 
carry flow after solving the reduced problem due to its high cost.  
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Figure 9 LP objective values over iterations 
 
8. CONCLUSIONS 
 
This paper proposes the reliability-based stochastic transit assignment problem that is 
formulated via the capacity constraint approach. The capacity constraint is defined based on 
the notion of effective capacity, and is developed via the chance constraint approach. Both in-
vehicle travel times and waiting times are modelled as random variables and their means and 
variances are captured in the problem via the concepts of effective travel cost and reliability-
based user equilibrium.  

A LCP formulation is developed for the proposed problem and is later reformulated as a 
route-based linear programming problem (LP) with non-additive link costs. This route-based 
formulation allows us to determine the patronage, critical links, critical service frequencies, 
met and unmet demand, and the network capacity. This network capacity differs from the 
existing network capacity definition in the sense that the former captures the risk-averse 
behaviour of travellers. To solve this LP, a solution method is also proposed based on the 
column generation technique, the K-shortest path algorithm, and the revised simplex method. 
This proposed method guarantees finite convergence, and is illustrated by a simple example. 
Numerical studies are also set up to illustrate the properties of the proposed problem and the 
application of the proposed model for reliability analysis. 

The proposed formulation has considered a constant capacity for all the transit vehicles in 
transit network. While this is not realistic, it is not difficult to extend the problem so that it 
can accommodate vehicles of different types and different capacities. The formulation 
proposed here incorporates only single-class passengers. As a topic of further interest, 
multiple user classes can be considered under the given setting. Moreover, the perception 
errors of passengers on in-vehicle travel time and waiting time have not been considered, 
thereby providing for an interesting avenue to explore further. Lastly, the assumption of 
exponential headway distribution is realistic to the transit stops without dynamic passenger 
information systems but may not be realistic to the stops with these systems. In the future, 
one can extend the proposed framework in this paper to consider the realistic assumption 
mentioned in Nökel and Wekeck (2009) for transit assignment under the provision of 
dynamic passenger information systems. 
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APPENDIX  
 
This appendix gives the proofs of Propositions 1-9. 
 
Proposition 1: Under assumption 16, a solution exists to problem P(M). 
Proof: Under assumption 16, the solution set is non-empty since one of the feasible solutions 
is that the virtual paths carry flows equal to the corresponding OD demands. Moreover, the 
solution set is bounded since each path flow must be nonnegative and cannot be greater than 
the corresponding OD demand. Furthermore, the solution set is closed because the set 
contains all the boundary points. As the set is both closed and bounded, the solution set must 
be compact. In addition, the objective function is linear and hence continuous on the solution 
set. Therefore, by Weierstrass’ Theorem, a solution exists to problem P(M). □ 
 
Proposition 2: Under assumption 16, multiple solutions may exist to problem P(M). 
Proof: We prove this proposition by giving an example. Suppose there is an OD pair with two 
identical directed parallel paths. Assume the effective capacity of each path is larger than the 
demand d  of this OD pair. Then, all optimal solutions of this problem can be described by 

 * ,
Y

y d y Y , where 0 y d  .□ 

 
Proposition 3: Let *

aY and *Y be the optimal solution of aY and Y in P(M), respectively. If 
*
a Y 0 , then *Y  is an optimal solution for problem P, and the optimal objective values for P 

and P(M) are both equal to *TC Y . If *
a Y 0 , there is no feasible solution for problem P.  

Proof: Part of the proof here follows the analysis on pages 157-158 in Bazaraa and Jarvis 

(1977).  Let Y  be any feasible solution column vector for P. Then, ,
TT T  Y 0 is feasible for 

P(M). *
a Y 0  implies that (1) 

*Y  must be feasible for P, and (2) *,
TT T  Y 0 is optimal for 

P(M) and * * 0 0T T
M pZ Z    C Y C Y  by definition, which further implies * T TC Y C Y . 

The above two conditions imply that *Y  must be optimal for P.  By substituting 
*,

TT T  Y 0 and *Y  to MZ  and pZ , respectively, we obtain * * *T
M pZ Z  C Y .  

Suppose Y  was feasible for problem P. Then ,
TT T  Y 0 was feasible for P(M). By 

definition, the optimal objective value of * *,
TT T

a  Y Y  is not greater than that of ,
TT T  Y 0 . 

Then, * * T T
aM C Y Y C Y . Since *

a Y 0  and M is a very large number, the left hand side of 

the inequality is very large. However, the right hand side is bounded by TC Q , thereby 
rendering the inequality impossible. This implies that Y could not be a feasible solution and 
hence the second part of the proposition follows. □ 
 
Proposition 4: The maximum number of used paths in problem P(M)  is   .  

Proof: For any LP, only basic variables can have positive values. As there are    

constraints in Problems P and P(M), there are    basic variables and hence there are at 
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most    variables with positive values.  □ 

 
Proposition 5: The optimal objective value calculated by the algorithm is non-increasing with 
every iteration. 

Proof: This is equivalent to saying *
1iZ 

*
iZ . Let * *,

TT T
i a  Y Y be optimal for ( )iRP M . Then, 

* *,0 ,
T

T T
i a

    Y Y  must be feasible for 1( )iRP M . Since in minimization, the objective value 

of a feasible solution for 1( )iRP M  cannot be smaller than *
1iZ  , we have 

*
1iZ 

* * * * * * *
1 1

ˆ,0 , ,0
T TT T T T T

i i a i i i a i i a iM C M M Z 
               C Y Y C Y Y C Y Y , where 1

ˆ
iC   is 

the effective travel cost on the new path added at iteration i+1  □ 
 
Proposition 6: The optimal objective value calculated by the algorithm at the next iteration 
must be lower than that at the current iteration if the new path added for the next iteration 
has a positive residual effective capacity before re-optimization, and the virtual path 
connecting the same OD pair as the new path carries flow before re-optimization. 
Proof: W.L.O.G., let 1 0x

iF    be the residual capacity of the path added between OD pair x at 

the next iteration 1i   and let * *,
TT T

i a  Y Y be optimal for ( )iRP M  with * *w
a ay   Y

 
and 

* 0x
ay  . Moreover, let *w w

a a ay R    Y  with  *
1min ,w w x

a a iR y F   if w x  and 0w
aR   

otherwise.  Then, * *,0 ,
T

T T
i a

    Y Y  must be feasible for 1( )iRP M  and gives the objective 

value of * *T
i i aMC Y Y = *

iZ . This value is greater than the objective value 

*
1 1

ˆw
i i a iZ Z R M C 

       of another feasible solution * , ,
T

T w T
i a aR    Y Y  for 1( )iRP M  as  

M > 1
ˆ

iC  and 0w
aR  . Since by definition, *

1iZ  1iZ  ,  we have *
1iZ  1iZ   *

iZ . □ 

 
Proposition 7: Suppose a virtual path in the current reduced problem carries flow. Moreover, 
all binding links on the new path between the same OD pair as the virtual path added at the 
next iteration are part of another used route that is longer than the new path. Then, the 
optimal objective value at the next iteration obtained by the algorithm must be lower than 
that at the current iteration. 
Proof: This proof is similar to that of proposition 6 except that we further define a path p 

generated at iteration 1p i   with ˆ
pC  > 1

ˆ
iC   carrying a positive flow y, and that we further 

let the new route between OD pair x with cost 1
ˆ

iC   pass through all the binding links on path 

p.  In addition, we need to set  *min ,w w
a aR Y y  if w x  and 0w

aR   otherwise. Then, we 

can show *
1iZ     * *

1 1
ˆ ˆmin ,w

i i a p iZ Z Y y C C 
     

*
iZ . 

 
Proposition 8: The largest mean travel cost for each OD pair is non-decreasing with every 
iteration. 

Proof:  By definition,  1max [ ],w w w
i r iE C     1

w w
i i   . □ 

 
Proposition 9. When condition (i) is reached, the flows on the used paths in the current 
reduced problem are optimal for the corresponding used paths in problem P, the flows on 
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other paths in problem P are zeros, and the current objective value is optimal. 
Proof. When condition (i) is reached, any new generated paths between an OD pair will have 
their effective uncongested travel costs greater than the current optimal effective travel cost 
for that OD pair since the safety margin is non-negative. Adding these longer paths to the 
reduced problem does not affect the objective value because the reallocation of flows to these 
longer paths and the virtual path cannot reduce the objective value. Hence, all these longer 
paths and the virtual paths for problem P(M) carry no flows at optimality, and the flows on 
the used paths in the current reduced problem are the optimal flows on the corresponding 
used paths in problem P. The conclusion then follows directly from Proposition 3. □ 


