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Abstract

Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously
validated using independent clinical data sets, which are not always available. Although animal model systems could
provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples,
the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of
liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular
carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in
Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-
associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression
chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed
parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of
cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the
Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were
down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free
survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease
model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient
method for generating biomarker signatures before extensive clinical trials have been initiated.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

malignancy worldwide, with over 300,000 new cases per year in

China and with a rising incidence in western countries [1].

Surgical resection or liver transplantation are the primary

treatment options for HCC patients having a 5-year survival rate

at 50–60% [2]. Unfortunately, about 80% of patients are

diagnosed in advanced stages at presentation and are essentially

inoperable and refractory to most of the conventional chemother-

apies [3]. As such, there is an urgent need to identify prognostic

markers of HCC [4,5,6,7,8,9] and to develop targeted therapies

through conventional small molecule inhibitors and/or RNAi

therapeutics [10,11,12,13,14].

Several intricate transgenic mouse models of human cancer

have been suggested to accurately mimic the pathophysiology and

molecular features of human malignancies [15], but cross-species

gene-expression comparisons of the animal models and human

disease are not available for validation [16]. HCC develops in

humans as a progressive disease from a cirrhosis predisposition

caused by hepatitis B or C virus infection, chronic alcoholism, or

aflatoxin exposure. As a result, human HCC tumor tissue is

surrounded by premalignant cirrhotic tissue [17]. A transgenic

mouse model of HCC has been developed by Bishop and

colleagues in which tumors are induced by liver-specific,

tetracycline-regulated (TRE) expression of a human c-MET

kinase transgene, a genetic lesion commonly associated with

human liver tumors [18]. The tumors that arise due to c-MET
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over-expression in the mouse resemble human HCC at the level of

histology [19]. Activating mutations in b-catenin leading to

upregulation of the Wnt signaling pathway, another common

feature of human HCC, were frequently observed in these tumors.

Nevertheless, information on tumor suppressor gene TP53, which

is commonly mutated in human HCC [20], and other potential

gene targets in this model system are not available. Furthermore,

the molecular character of the adjacent non-malignant tissue

surrounding the tumors is not well studied and characterized [21].

A better understanding of how the mouse model compares with

human disease at the molecular level is therefore crucial to the

design and interpretation of efficacy studies for therapies.

Biomarkers derived from microarray expression profiling

data can be subject to high false-positive rate due to multiple

hypothesis testing inherent to working with large numbers of

genes and gene combinations. A predictive biomarker signature

or gene set determined from a given set of samples (the training

set) must be validated with data from independent samples (the

test/validation set) [22,23]. Meeting this goal can be challeng-

ing as independent data sets, especially those from clinical

samples treated in a similar manner, are scanty or require

significant time investment to accumulate. One work-around to

this limitation is to formulate and test hypotheses using data

from a model system.

In this study, we performed molecular profiling of normal liver

and tumor tissues from the c-MET driven mouse model, to

understand the molecular changes in these mice. We determined

how well the model approximates human disease and confirmed

the expression of specific cancer targets. We used the data derived

from the c-MET model to generate signatures distinguishing

tumor (TU) from adjacent non-tumor (AN) and wild-type (WT)

normal tissues, and tested the prognostic power of these signatures

in a data set from human HCC.

Methods

Ethics
The Institutional Review Board of the University of Hong

Kong/Hospital Authority Hong Kong West Cluster (HKU/HA

HKW IRB) approved this study, and each patient gave his/her

written informed consent on the use of the clinical specimens for

research. All studies involving animals were fully approved by the

Merck Boston Institutional Animal Care and Use Committee

(protocol numbers: #07-08-044 and #08-08-041) and were

conducted according to the institutional animal ethics guidelines.

The c-MET mouse HCC model
The mice used in this study have been described (Table 1) [18,24].

All mice were on an FVB genetic background. Mice overexpressing

human c-MET carried one copy of the LAP-tTa transgene (the liver-

specific LAP promoter driving the Tet-VP16 transactivator) and one

copy of the TRE-c-MET transgene (Tet-operator regulated human c-

MET gene). The presence of both transgenes results in expression of

the human c-MET gene specifically in and throughout the liver

(referred to henceforth as the TRE-c-MET strain). Seven mice of each

strain were sacrificed at six (TRE-c-MET), seven (LAP-tTa) or 14

(TRE-c-MET) weeks of age. Normal liver or liver tumor tissue (two per

mouse) was collected and processed for gene expression profiling at the

Rosetta Gene Expression Laboratory. In addition, adjacent liver tissue

was collected from the non-involved tissue next to the border of the

tumor in the tumor-bearing liver lobe. Distant liver tissue was from a

non-tumor bearing lobe or from areas at least 1 cm away from the

tumor. Animal works were conducted in AALAC-accredited labora-

tory according to the institutional animal ethics guidelines.

Patient cohorts and clinical samples
All patients that were enrolled in this study underwent a

curative hepatectomy for HCC at Queen Mary Hospital,

Pokfulam, Hong Kong between 1993 and 2007 [3,25]. This study

was approved by the Institutional Review Board for Human Ethics

and each patient gave his/her written informed consent on the use

of the clinical specimens for research. Liver tissue that was

obtained from patients at the time of the curative surgery was

immediately snap-frozen in liquid nitrogen and stored at 280uC
until required.

Microarray and analysis
Total RNA was extracted and purified from the clinical liver

specimens (n = 272 HBV-HCC tumor (TU), 257 HBV-HCC

tumor-adjacent normal (AN), 9 HCV-HCC tumor (TU).

9 HCV-HCC tumor-adjacent normal (AN)) using the SV96

Total RNA Isolation System (Promega) according to a custom

automated protocol. The extracted RNA was quantified using

RiboGreen RNA Quantitation Reagent (Invitrogen) and its

quality was assessed using Agilent RNA 6000 Pico Kit (Agilent,

Santa Clara, CA) in an Agilent 2100 Bioanalyzer (Agilent). Only

those samples passing the minimum thresholds for quantity and

quality (RIN.6) were amplified and labeled using the Ovation

WB protocol (NuGEN Technologies, San Carlos, CA), according

to the manufacturer’s instructions. In brief, 50 ng of total RNA

was amplified using the Ribo-SPIA technology (NuGEN Techno-

logies),fragmented and labeled with biotin using the FL-Ovation

cDNA Biotin Module V2 (NuGEN Technologies). The resulting

amplified cRNAs were hybridized to Affymetrix gene expression

chips (Human Rosetta Custom Affymetrix 1.0, Affymetrix, Santa

Clara, CA) [26]. The images were analyzed using the standard

package of Affymetrix GeneChip Operating Software (GCOS)

(www.affymetrix.com/products/software/specific/gcos.affx) and

were further normalized and processed to derive the sequence-

based intensities using the RMA algorithm as implemented in

Affymetrix Power Tools (http://www.affymetrix.com/support/

developer/powertools). Data used for this analysis passed two

levels of quality controls (QCs) (array level using Affymetrix

recommended parameters, and project level on excluding outlier

arrays and arrays with major patterns associated with known

process parameters). Log10(ratio) of each gene in each sample

were computed by subtracting mean of log10(Intensity) of that

gene across all adjacent non-tumor samples, to make them

comparable to the c-MET mouse model data where the references

are the pool of wild-type mouse liver tissues. Raw gene expression

profiling data were deposited to GEO with the following accession

Table 1. Mouse signatures identify gene sets with predictive
power for survival in human samples.

Tumor

Down
(p-value)

Up
(p-value)

WT 9.561026 0.07

AN 2.061025 0.10

DN 2.361025 0.06

Pair-wise comparison between tumors and wild type (WT), adjacent non-tumor
(AN) or distant normal (DN) liver samples identified expression signatures for
genes that were either down-regulated or up-regulated in the tumors. The p-
values for the ability of these signatures to predict survival in human patients is
indicated based on K-M curves in Figure 3.
doi:10.1371/journal.pone.0024582.t001

Prognostic Gene Signatures of Liver Malignancy
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numbers: GSE25142 (derived from the c-Met mouse model) and

GSE25097 (derived from human HCC).

Tumor signature from mouse profiles
We used one-way ANOVA to define tumor signature in mice c-

MET experiment, say, for a comparison between WT Vs. tumor,

we identified 6277 mouse probesets with ANOVA P-value , 0.001.

The false discovery rate (FDR) here is estimated to be 0.62% from

1000 permutations. Among those signature probesets, 3114 showed

tumor down- and 3163 tumor up-regulations compared with WT.

The mouse tumor signature was then mapped to human probesets

in Affymetrix human chip. We also identified mouse tumor

signature from comparisons of adjacent non-tumor vs. tumor and

distant non-tumor vs. tumor, by ANOVA analysis.

Biological annotation and geneset enrichment test
We compiled many databases include gene sets with known

biological functions or properties from a variety of public (GO

cellular components, molecular function, biological processes,

KEGG pathways, SwissProt Keywoards, etc.), licensed (GeneGo,

Ingenuity, NextBio biosets, etc.), and proprietary sources (internal

compound, siRNA, body atlas profiling, etc.). These annotated

gene sets were used in the enrichment test. The enrichment P-

values (the chance probability of observing overlapping genes

between the input geneset and the geneset in the database) is

computed using the hypergeometric distribution [27].

Prognostic power of signatures
To estimate the prognostic power of each of mouse signatures,

the signature was mapped to human probesets and then treated as

a metagene [28,29]. Namely, the expression level for the metagene

in human HCC samples was calculated by averaging log(ratio) of

all the genes mapped from the mouse up- or down-regulated

signatures. The human HCC samples were ranked by the

expression level of the metagene and then divided into two equal

groups by the median value (to avoid the over-fitting, we did not

optimize the threshold). The log-rank P-values between these two

groups were calculated by the log-rank test using time of overall

survival and disease free survival respectively.

Results

Global gene expression changes in mouse and human
HCC

To determine tumor-specific gene expression in the c-MET

mouse model of HCC, we compared tissue from tumor-bearing

mice to several control tissues including adjacent and distant

normal liver tissue from tumor bearing mice, wild-type liver tissue

and liver tissue from two single transgene parental lines (Table S1).

We used wild-type liver tissue (virtual pool from 7 mice) as a

baseline and performed unsupervised clustering of differentially-

expressed genes. We found that the tumors had a distinct

expression pattern (Figure 1A). To characterize the molecular

nature of the differentially expressed genes, we performed Gene

Ontology biological annotation [30] (see also Supplementary

Information) on each gene set and found that the down-regulated

genes were enriched for metabolic processes, whereas the up-

regulated genes were enriched for cell cycle and cytoskeleton-

related terms (Table S2). Gene expression changes in human HCC

showed similar GO annotations (Table S3), indicating that on a

global gene expression level, the c-MET mouse model approxi-

mates human HCC.

We performed unsupervised clustering and found that the

expression profiles of adjacent and distant normal tissue samples

were interspersed, segregated by the animal from which they were

taken and distinct from the tumor profiles (Figure 1A). This result

indicates that tumor proximity does not significantly alter gene

expression in the normal liver tissue. However, subtle differences

between the adjacent and distant samples may exist.

Although both HCV- and HBV-infection have been shown to

cause HCC, HBV infections were predominant in this cohort (272

HBV-HCC tumors and 9 HCV-HCC tumors). To identify

potential molecular differences between HCV- and HBV-infected

HCC, we analyzed all available HCV samples in this cohort (nine)

and compared them to an equal number of randomly selected

HBV samples (nine). The HBV samples were randomly

distributed in an unsupervised cluster of all tumor samples (data

not shown) indicating that they were not skewed toward a

particular molecular profile. We did not observe any consistent

molecular difference among these samples (data not shown).

To determine whether parallels between human and mouse

HCC exist at the gene level, we performed direct comparison of

the mouse and human HCC profiles. The mouse samples were

normalized against wild-type liver tissue (virtual pool from 7 mice)

and the human samples were normalized against an average of all

adjacent non-tumor samples. Unsupervised clustering of the

human and mouse samples showed that the molecular profiles of

the two tumor sets were more closely related to each other than to

their cognate adjacent non-tumor tissues (Figure 1B, red box),

revealing a tumor-specific molecular signature.

Among the genes differentially expressed in the majority of

mouse and human tumors, we identified three gene subsets with

distinct characteristics (Figure 1B, yellow boxes). Two groups

showed similar expression patterns in both tumor types: genes

down-regulated in both tumor types were enriched for metabolic

processes, whereas genes up-regulated in both tumor types were

enriched for cell cycle processes. Genes down-regulated specifically

in the human tumors were enriched for immune response

processes, reflecting a molecular distinction that may point to

differences in tumor progression mechanisms. In summary,

comparison of the molecular profiles of human and mouse HCC

revealed extensive parallels at the gene expression level. However,

each set of tumors was also characterized by specific gene

expression patterns.

Down-regulation of genes involved in metabolic processes in the

tumors suggests that liver functions are diminished or impaired.

To explore liver identity in these tumors further, we examined the

expression of liver-enriched genes [31,32,33] and found that they

were down-regulated in the tumor samples (Figure 1C), consistent

with loss of liver identity and function with tumor progression.

Activity of oncology pathways in HCC
To gain a better understanding of the activity of signaling

pathways relevant to oncology in the c-MET model of HCC, we

performed targeted analysis of the expression changes using

pathway signatures defined previously. The Wnt/b-catenin

signature consists of genes up- and down-regulated by b-catenin

siRNAs in DLD-1 colon carcinoma cells [34]. We found elevated

Wnt pathway activity (Figure 2A), consistent with the activating

mutations of b-catenin frequently detected in these tumors and

activation of the Wnt pathway in one third of HCCs [35].

Unsupervised clustering of the mouse and human samples showed

a relationship between a subset of human HCC profiles and the

mouse tumor samples (Figure 2B), indicating that the c-MET

mouse may be a useful model for studying HCC patients with

activated Wnt signaling. Interestingly, the genome-wide profiles of

the mouse tumors and the subset of human HCC with up-

regulated Wnt pathway expression were not correlated (correla-

Prognostic Gene Signatures of Liver Malignancy
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Figure 1. Molecular profiling of the mouse c-MET HCC tumor model. (A) Global gene expression analysis revealed tumor-specific gene
expression changes characterized by genes down-regulated in tumors that were enriched for metabolic processes (white box) and genes up-
regulated in tumors that were enriched for cell cycle and actin cytoskeleton (yellow). Non-tumor tissues adjacent to or distant from the tumors
showed similar expression patterns are were interspersed in the heat map generated by unsupervised clustering, with samples from the same animal
clustering together. The vertical bars to the right of each heat map represent color coding of the samples that corresponds to the legend in each
panel. (FVB-WT, purple) Liver tissue from control animals; (LAP-tTA, dark blue and TRE-c-MET, orange) liver tissue from single transgene parental
strains; (c-MET TU, green) tumor tissue from double transgene, tumor bearing animals; (c-MET AN, light blue) non-tumor liver tissue from double
transgene, tumor-bearing animals adjacent to tumor; (c-MET DN, red) non-tumor liver tissue from double transgene, tumor-bearing animals distant
from tumor. The heat map represents unsupervised clustering of differentially-expressed genes (fold change $1.25, p,0.01, Cluster Algorithm:
Agglomerative, Similarity Measure: Cosine correlation). (B) The majority of liver-enriched genes were down-regulated in the c-MET tumors, consistent
with loss of liver function. For this analysis, we selected the top 400 genes with the greatest fold-change from the liver-enriched genes identified by
Su and colleagues [18]. A small subset of genes that were up-regulated (yellow boxes) may contain useful biomarkers of tumor presence. Color
legend 20.5,log10 (ratio),0.5. (C) Comparison of mouse c-MET and human HCC tumor profiles. Human and mouse tumor samples co-clustered
indicating similar gene expression patterns (red box). The differentially expressed genes can be divided into three groups on the basis of their specific

Prognostic Gene Signatures of Liver Malignancy
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tion = 0.07). This is in contrast to the significant correlation

observed for the focused Wnt signaling pathway gene set,

indicating that the similarities are restricted to specific pathways.

p53 pathway activity in the mouse HCC model is of interest as

TP53 mutations are common (in ,27% of cases) in human HCC

[20]. We used a p53 pathway signature [36] and observed up-

regulation of the p53 pathway in the mouse HCC tumors,

demonstrating a difference from human HCC (Figure 2C). In

contrast, human HCC samples did not show p53 pathway up-

regulation (Figure 2D), presumably due to mutations or other

p53-inactivating mechanisms. These results indicate that al-

though the mouse c-MET model may replicate a subset of human

HCCs in several aspects, molecular differences do exist and

should be taken into account when data obtained from this model

are analyzed, particularly for targets in the p53 pathway. This is

largely due to the wild-type status of p53 gene in the mouse

model. Thus, special attention and consideration should be paid

when comparing the cross-species human disease model. The

Wnt signaling pathway and the p53 pathway are all very

common in cancer development. Gene expression signatures of

both pathways in the mouse tumor model and human HCC were

presented in Figure S2.

Mouse-derived gene signatures have predictive power
for survival of human HCC patients

We identified gene signatures in the mouse tumors by

comparing the tumor gene expression pattern to the three non-

tumor tissues indicated in Table S1 (wild type (WT), adjacent

nontumor (AN) and distant normal (DN) liver). We used the

adjacent vs. tumor signature because it is most analogous to the

regulation patterns (yellow boxes) and GO annotation. (HCC Adj) Human adjacent non-tumor; (HCC TU) human tumor; (c-MET TU) mouse tumor; (c-
MET Adj/Dis) mouse adjacent and distant normal. The heat map represents unsupervised clustering of differentially-expressed genes (fold change
$1.25, p,0.01, Cluster Algorithm: Agglomerative, Similarity Measure: Cosine correlation).
doi:10.1371/journal.pone.0024582.g001

Figure 2. Activity of oncogenic pathways in mouse c-MET tumors and HCC. (A) The Wnt/b-catenin pathway was up-regulated in the mouse
tumors as measured by the Wnt/b-catenin gene signature [34]. The genes in each signature are indicated across the top of each heat map. The
samples are on the Y-axis and their tissue of origin is indicated in the vertical color-coded bar to the right of each heat map. Color-coding legend for
panels A and C is between the panels. All abbreviations are as in Figure 1. (B) The Wnt/b-catenin pathway was up-regulated in a subset of human HCC
patients as illustrated by the three human samples (HCC TU, purple) that co-cluster with the mouse HCC samples (c-MET TU, yellow). Color-coding
legend for panels B and D is between the panels. (C) The tp53 pathway was up-regulated in the mouse tumors(c-MET TU, green). (D) Up-regulation of
the tp53 pathway was specific to the mouse model (c-MET TU, yellow) and was not observed in human HCC (HCC TU, purple).
doi:10.1371/journal.pone.0024582.g002

Prognostic Gene Signatures of Liver Malignancy
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comparison of the clinical samples in our study. The distant vs.

tumor signature provides further information about any effects

that tumor proximity may exert on the adjacent tissue. Finally,

given that both the adjacent and the distant tissues also express

the c-MET transgene, we included the wild-type vs. tumor

signature to identify any c-MET-driven gene expression changes.

For each pair-wise tissue comparison, we identified sets of genes

that were down- or up-regulated in the tumor and generated heat

maps using these genes and the mouse c-MET tumor and FVB-

WT wild-type samples shown in Figure 3A and Figure S1. We

then projected those signatures to the human HCC data and

determined their survival predictive power and their expression

pattern. The entire cohort of patients was used in this analysis and

the human samples were divided into two groups based on the

average log(ratio) of all genes in the signature as described in the

Materials and Methods.

Interestingly, we found that for all comparisons, the genes

down-regulated in the tumors had highly predictive power for

patient survival (Table 1) and disease free survival (Table S4). As

shown previously, these genes were enriched for metabolic

processes both in humans and mouse. In contrast, the up-

regulated signature, enriched for cell cycle processes, did not have

very high predictive power for survival (Table 1) or disease free

survival (Table S4). Figure 3B and Figure S1 show the Kaplan-

Meier plots for these data. We suggest that the up-regulated cell

cycle processes lack predictive power because they represent

general tumor events, whereas loss of metabolic properties signifies

specific loss of functional properties by the liver cells that may be

detrimental to patient survival.

To determine whether the predictive power of the mouse-

derived signatures is specific to the c-MET model, we analyzed the

predictive power of a signature derived from independent mouse

models [37] and found that a significant portion of the genes had

predictive power (Figure S3). These results indicate that the

predictive power of the mouse-derived genes comes from the

tumor properties of the mouse samples and suggests a general

utility of mouse tumor models for identification of gene signatures

predictive of outcome in human tumors.

Next, we analyzed the expression pattern of the mouse gene

signatures in the human samples and found that the genes

identified in the mouse model showed significant expression

changes in the human tumors (representative heat maps in

Figure 4.) To determine whether the expression changes were in

the same direction in the mouse and human, we calculated the

average expression for each gene in the human tumors compared

with adjacent non-tumor. We found that each of the six mouse

signatures contained genes whose expression changed in the

human tumors both in the same and in the opposite direction. For

example, among the genes down-regulated in mouse tumors vs.

WT tissue (Figure 4A–B), a subset was also down-regulated in

human tumors (Figure 4A) whereas a subset was up-regulated in

human tumors compared to adjacent non-tumor tissues

(Figure 4B). Similarly, among the genes that were up-regulated

in mouse tumors vs. WT tissue, a subset of genes was down-

regulated in the human tumors and a subset was up-regulated

(data not shown).

To understand the difference between the genes regulated in the

same or in the opposite direction in the mouse and human tumors,

Figure 3. Mouse tumor signatures predict human patient survival. (A) Mouse tumor gene expression signatures. Heat maps show the
expression of genes that were differentially expressed between tumor tissue and wild type or adjacent normal tissues in the mouse. (B) The mouse
tumor signatures were split into up-regulated and down-regulated sets and Kaplan-Meier plots were generated for each gene set to test the
predictive power for overall patient survival.
doi:10.1371/journal.pone.0024582.g003

Prognostic Gene Signatures of Liver Malignancy
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we analyzed each subset separately for their power to predict

survival (Table 2), disease-free survival (Table S5) and for

enrichment for biological pathways (Table 2). We found that the

genes down-regulated both in mouse and human tumors (Table

S6) retained a highly significant predictive power for survival and

enrichment for metabolic processes. In contrast, the subset of

genes that were down-regulated in the mouse tumors but up-

regulated in human tumors did not have predictive power and

significant enrichment for any biological processes. Among the

genes up-regulated in the mouse tumors, those that were down-

regulated in the human tumors did not have any predictive power

for survival or significant biological annotation (significant

enrichment of biological pathways, as measured by hypergeo-

metric P-value). Interestingly, whereas the entire set of genes up-

regulated in the mouse tumors did not have a predictive power (see

above, Table 1 and Table S4), the subset of genes that were up-

Figure 4. Expression of mouse signature genes in human tumors. Gene signatures generated in mouse tissues were projected onto the
human HKU HCC data set. The color scale is as in Figure 1 (20.5 to 0.5). Mean expression levels are plotted to the right of each heat map to illustrate
the association between expression and prognosis. The K-M curves are given below each heat map.
doi:10.1371/journal.pone.0024582.g004

Table 2. Prognostic power and GO Biological process annotation of mouse signatures split according to their expression in human
samples.

Mouse Down in tumor Up in tumor

Human down up down up

Tumor compared to

WT 6.361026 0.54 0.32 0.021

adjacent 2.761026 0.66 0.51 0.0026

distant 1.161025 0.58 0.45 0.0089

WT metabolism no enrichment cell motility cell cycle

adjacent metabolism no enrichment no enrichment cell cycle

distant metabolism no enrichment cell motility cell cycle

Mouse signatures were split according to the expression of the genes in human tissues. The ability of each gene set to predict overall survival in human samples was
assessed using K-M plots. The p-values for prognosis were calculated and are indicated in the table. Each gene set was analyzed for enrichment of gene ontology
biological pathways.
doi:10.1371/journal.pone.0024582.t002

Prognostic Gene Signatures of Liver Malignancy
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regulated in both mouse and human tumors showed marginally

significant predictive power (Table 2, Table S7). This result

indicates that filtering out the discordantly regulated genes

through a model system and clinical samples and retaining only

those that are similarly regulated in both can reveal sets with

predictive power that may not be detected when either the global

signatures of either system are considered separately.

Since the mouse HCCs were induced by c-MET, we repeated

the above analysis in human HCC by focusing on those patients

with high c-MET (patients with HCC c-MET expression .

median expression of the population) to define the signatures in

the same or opposite direction between mouse and human. Similar

to Figure 4 A&B, we identified 775 genes both down regulated in

mouse and human c-MET-high HCC, and 612 genes in the

opposite direction. Among these, 749 overlapped with 800 same

direction genes using all HCC samples (96.7% overlap, hypergeo-

metric P-value 0) and 562 overlapped with 587 opposite direction

genes using all HCC samples (95.7% overlap, hypergeometric P-

value 0). Analogues to Figure 4 and Table 2, we also checked the

prognostic power of these two signatures, the log-rank P-values for

overall survival are 2.261026 and 0.78 respectively, very similar

predictive power as the case where the whole HCC patients were

used to map the overlap signatures (Table 2). Gene ontology of

these overlapping genes was conducted to reveal the biological

pathways associated with different gene sets when comparing the

mouse c-MET driven liver tumors and the human c-MET-high

HCC (Table S8).

Discussion

The present study shows that the mouse c-MET tumor model

has similarities with human HCC at the molecular level including

down-regulation of metabolic processes and up-regulation of cell

cycle genes. Tumor-specific gene signatures derived in the mouse

model can distinguish tumor from non-tumor tissue in human

HCC. The genes down-regulated in tumor compared with

adjacent non-tumor tissue in both the mouse and human samples

had significant predictive power on overall survival and disease-

free survival in HCC patients. These genes were highly enriched

for metabolic function indicating that loss of normal liver function

is related to poor outcome in HCC patients. The predictive power

of the mouse-derived signatures likely stems from their tumor

properties rather than c-MET-driven properties, and underscores

the utility of mouse tumor models for identification of gene

signatures relevant to human disease.

The tumors from the c-MET model had uniform gene

expression profiles as expected for tumors induced by a single

oncogene in an inbred mouse strain. This is in contrast with

human HCC samples, which showed significant differences in

oncology pathway activity and mRNA expression [38,39].

Significantly, by comparing the mouse and human expression

profiles, we found that the mouse model is similar to a subset of

human tumors characterized by high levels of Wnt pathway

activity. Given that Wnt activation is a unique pattern activated in

c-MET induced HCC and that the downregulated metabolic

genes in mouse had prognostic power in human HCC, we

examined the correlation between Wnt activation and metabolic

dysfunction in both mouse and human HCC samples. We found

that metabolic function was anti-correlated with activation of the

Wnt pathway both in animal model and human HCC (Figure 5).

The trend is stronger in mouse than in human, which may indicate

that more factors affect metabolic function in human tumors.

Human cancers are thought to initiate from a single mutated

cell in the context of a normal organ, whereas in the c-MET

mouse model, all liver cells overexpress the oncogene, potentially

creating a different microenvironment for the pre-neoplastic cell.

The mechanism by which only certain cells within the c-MET-

overexpressing liver develop into cancer is unclear at present,

although the presence of a secondary mutation is necessary. We

compared the gene signatures from c-MET overexpressing non-

tumor tissues (adjacent or distant) to signatures from liver tissue of

wild-type mice and did not find any biological annotation or

predictive power (data not shown). The similar predictive power

and biological annotations of the signatures regardless of the

control tissue used in the comparison (wild type, adjacent or

distant) suggests that, on a global level, gene expression changes in

the tumor are minimally influenced by c-MET overexpression

and, for the most part, reflect downstream consequences of tumor

formation. In support of this hypothesis, the c-MET-regulated

genes identified in primary hepatocytes from the c-MET knock-

out mouse [40] did not show significant regulation in the c-MET

overexpressing non-tumor tissues (data not shown). Within our

own human HCC dataset, we found little differences in terms of

mouse and human overlapping down-regulated or up-regulated

tumor to normal signatures no matter whether we used the whole

HCC populations or the subpopulation with higher c-MET

expression. The independence of the tumor signature on c-MET

expression indicates that the tumor signature is not a consequence

of the model-specific tumor-initiating lesion. Rather, the tumor

signature reflects downstream effects of tumor progression that are

analogous in the mouse model and in human disease. These

findings are significant because they underscore the relevance of

the mouse model to human HCC despite the inherent difficulties

in recapitulating human tumor initiation in the mouse.

With respect to human disease, we found that the down-

regulated signature in tumor vs. adjacent non-tumor tissue that is

shared by mouse and human samples has very significant

predictive power on overall survival and disease free survival.

Further refinement of this signature may identify genes that can be

tested as predictive biomarkers in the clinic. The down-regulated

genes in tumor samples are highly enriched for metabolic function

indicating that loss of normal liver function is related to poor

outcome in HCC patients who received surgical treatment. Our

recent study also identified down regulation of microRNA-122

significantly impaired liver mitochondrial metabolic functions in

HCC [41]. In contrast, only the portion of the mouse up-regulated

signature that was also up-regulated in human samples had any,

albeit minimal, predictive power. As the full mouse up-regulated

signature and the subset that is also up-regulated in humans are

enriched for cell cycle processes, we propose that the predictive

power of this set may stem from fundamental properties of the

human tumors, which vary in aggressiveness and presumably the

level of expression of cell cycle genes, compared with the c-MET-

driven mouse tumors, which should be homogeneous.

We observed the greatest difference between human HCC and

the mouse c-MET model with respect to the activity of the p53

pathway. In human HCC, the p53 pathway is frequently

inactivated due to inherited or sporadic mutations in TP53.

Activation of the p53 pathway in the mouse tumors may be part of

a stress response caused by overexpression of the c-MET

oncogene. Inactivation of the p53 pathway in the c-MET mouse

model or overexpression of c-MET in a TP53 mutant mouse may

generate a mouse model that is more highly representative of

human HCC.

Our results highlight the potential value of investing in

molecular profiling of animal models of human disease. The

approach described here is widely applicable to a variety of

diseases for which both relevant animal models and clinical
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samples are readily available. Furthermore, from biomarker

development point of view, any predictive or prognostic

biomarkers need to go through two stages: biomarker identifica-

tion (or hypothesis generation), and biomarker validation (hypoth-

esis testing). This usually requires at least two independent

datasets: training and validation set. Without appropriate

validation set, due to the high dimensional nature (more than

thousands of genes or signatures) of the microarray platform,

signatures derived from the training set are subjective to over

fitting or false positives (a property of multi-testing). Ideally this is

Figure 5. Anti-correlation of metabolic gene signatures with Wnt pathway gene LEF1. Heat map of 250 metabolic genes and their
correlation with LEF1 expression level in (A) mouse c-MET liver tumors and (B) human HCC. Log rank test p-value tested in mouse and human HCC
samples for metabolic genes derived by LEF1 compared with permutation. Spearman’s test was used to calculate the correlation. Mouse tissue types:
0 = WT, 1 = DN, 2 = AN, 3 = TU; human tissue types: 0 = AN; 1 = TU.
doi:10.1371/journal.pone.0024582.g005
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done by two independent clinical cohorts. However, in many cases

they are not readily available. This is especially true for new

treatments entering the early clinical phases (Phase I & II). The

HCC example described above shows it’s possible to use the

mouse model as the first step for signatures (and hypotheses)

generation, to effectively limit the number of hypotheses to a few

(average of up or average of own regulated genes in tumor vs.

normal, in this case), to be quickly tested in the first clinical set

available. By using the mouse model as training set and limiting

the number of hypotheses, we can help to reduce false positives in

clinical setting and speed up the biomarker development.

Supporting Information

Figure S1 Mouse tumor signatures predict human
patient survival. Heat maps show the expression of genes that

were differentially expressed between tumor and distant normal

tissue in the mouse.

(TIF)

Figure S2 Gene expression signatures in both mouse c-
MET liver tumor and human HCC. (A) TP53 pathway
signature shown in the same gene order both in mouse (upper

panel) and human (lower panel) HCC. Tissue types in mouse:

0 = WT, 1 = DN, 2 = AN, 3 = TU; in human: 0 = AN; 1 = TU. (B)
Wnt signaling pathway signatures shown in the same gene

order both in mouse (upper panel) and human (lower panel) HCC.

Tissue types in mouse: 0 = WT, 1 = DN, 2 = AN, 3 = TU; in

human: 0 = AN; 1 = TU.

(TIF)

Figure S3 Genes derived from several mouse models of
HCC have predictive power in human HCC. Log rank test

p-value tested in human HCC samples for genes derived by Lee JS

compared with permutation.

(TIF)

Table S1 Mouse tissues used to identify tumor specific
signatures.
(DOCX)

Table S2 Top 5 GO annotation categories for differen-
tially expressed genes in c-Met tumors.

(DOCX)

Table S3 Top 5 GO annotation categories for differen-
tially expressed genes in human HCC tumors.

(DOCX)

Table S4 Liver-enriched genes up-regulated in tumors

(DOCX)

Table S5 Mouse signatures identify gene sets with
predictive power for survival in human samples.

(DOCX)

Table S6 Mouse signatures split according to their
expression in human samples have prognostic power for
disease-free survival.

(DOCX)

Table S7 Genes down-regulated in both c-Met tumors
and human HCC that have significant predictive power
for survival.

(DOCX)

Table S8 Gene ontology of different mouse liver tumors
versus human HCC gene sets.

(XLSX)
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