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A method of estimating the Kolmogorov–Sinai �KS� entropy, herein referred to as the modified
correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic
time series. It has been applied to some clean and noisy data sets and the numerical results show
that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated
by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation
entropy is more robust to noise than the correlation entropy. © 2010 American Institute of Physics.
�doi:10.1063/1.3382013�

Correlation entropy (CE), which is an approximation of
the Kolmogorov–Sinai (KS) entropy, is an important
quantity that can be used to identify chaos in a nonlinear
dynamical system. It gives an indication of the predict-
ability of the nonlinear time series since the inverse of the
KS entropy evaluates the maximum time step for predic-
tion. Estimating the CE accurately is important for the
simulation and forecasting of a chaotic time series. How-
ever, this is made difficult by the presence of noise which
blurs the signal of the time series, thereby introducing
errors in the calculation of the correlation sum. To over-
come this difficulty, we introduce a new quantity, herein
referred to as the modified correlation entropy (MCE), as
an approximation of the KS entropy. For noise-free data,
the MCE is equivalent to the general CE. For noisy cha-
otic data, the MCE is closer to the KS entropy than the
general CE.

I. INTRODUCTION

Study of chaos in time series has seen a rapid growth
during the past two decades or so. Many types of time series
which appear to be stochastic superficially are in fact of a
deterministic nature of low dimension. If such types can be
identified, short-term predictions can be made using local
models rather than stochastic global models. The identifica-
tion of chaos involves the determination of certain invariants
such as the correlation dimension, Lyapunov exponent, en-
tropies, among others. They are usually carried out in a re-
constructed phase space of the original time series. By
Takens’s embedding theorem �Takens, 1981�, a nonlinear
time series can be embedded into a delay phase space by a
special embedding dimension and an arbitrary choice of the
time delay.

Important characteristics of a chaotic time series are that
it is initial value sensitive, consists of a topological mixture,
has dense periodic orbits, and is fractal. The sensitivity of

initial value can be evaluated by the largest Lyapunov expo-
nent while fractal structure can be validated by estimating
the fractal dimension. The topological mixture rate of a non-
linear time series can be evaluated by the dynamical entropy.

The concept of dynamical entropy, which was first intro-
duced by Kolmogorov �1958� and Sinai �1959�, provides a
method to describe the mixing rate of a deterministic system.
Hence it is called the “KS” entropy, which is based on an
invariant measure of the attractor and it is a “measure of
theoretic entropy” of a nonlinear system. Later, the concept
of “topological entropy” �T-Entropy� that does not employ a
metric for the system was introduced by Adler et al. �1965�.
Given the evolution function of the dynamical system, the
T-Entropy or the KS entropy can be calculated. However, for
nonlinear time series, the evolution function is unknown, and
therefore the T-Entropy or the KS entropy cannot be calcu-
lated from the definitions. Several methods have been devel-
oped to estimate the KS entropy for a chaotic time series.
Grassberger and Procaccia �1983� introduced a method to
approximate the KS entropy for a chaotic time series using
the correlation sum �correlation integral�. The estimation of
the entropy by this method is then called the CE. Another
entropy measure for a time series is its “information en-
tropy,” which is also called the “Shannon entropy” since
it was first introduced by Shannon �1948� and Weaver and
Shannon �1949�. A generalized entropy for a nonlinear sys-
tem is also introduced according to the q-deformed algebra
and special functions developed by Renyi �1971�, and it is
called the “Renyi entropy.” The information entropy and the
CE have been proved to be special cases of the Renyi en-
tropy. Methods have been developed to calculate various en-
tropy measures for a chaotic time series. Grassberger and
Procaccia �1983� provided a simple formula to estimate the
CE for a chaotic time series, which has been applied widely.
Kantz and Schürmann �1996� introduced a method to calcu-
late a finite order entropy to approximate the KS entropy.
Schürmann and Grassberger �1996� provided a method to
estimate the information entropy for a symbolic sequence,
which can also be applied for a chaotic time series. Recently,
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the above methods have been employed to estimate the en-
tropy measure for some special cases, such as chaotic time
series with small data size �Bonachela et al., 2008�.

However, all chaotic time series are blurred by noise.
The presence of additive noise strongly affects the evolution
of the correlation sum, which in turn affects the estimation of
the CE. The correlation sum for a chaotic time series with
additive Gaussian noise has been discussed by several au-
thors. Most of the correlation integral equations depend non-
linearly on the KS entropy. Hence, it is difficult to estimate
the KS entropy by these correlation integral equations.

In this study, by employing the correlation integral
equation obtained by Diks �1999� �p. 123� and Oltmans and
Verheijen �1997� for a chaotic time series with additive
Gaussian noise, we provide a method to estimate the KS
entropy, herein referred to as the “MCE,” which has the ad-
vantage that it is similar to the CE and that it can be calcu-
lated by the correlation sum directly without any statistical
methods. It is also robust to noise, i.e., the presence of addi-
tive Gaussian noise does not affect the estimation of the KS
entropy. Hence, the MCE is suitable for all chaotic time se-
ries regardless of whether they are clean or noisy.

The application of the method is demonstrated with four
chaotic time series in this study: two artificial and two real
world. The numerical results show that the MCE is a robust
estimation for the KS entropy. The KS entropy is also esti-
mated by using the Lyapunov spectrum, and numerical re-
sults for the four data sets used show that the MCE is closer
to the KS entropy than the CE.

The flow of this paper is arranged as follows. In Sec. II,
some definitions of various entropies are introduced. In Sec.
III, the correlation sum is introduced for a clean and a noisy
chaotic time series. In Sec. IV, a method to estimate the KS
entropy for a clean or a noisy chaotic time series is devel-
oped. In Sec. V, the estimation method for the Lyapunov
spectrum is introduced to estimate the KS entropy. In Sec.
VI, the proposed estimation method is applied to several data
sets, and the results and discussion are presented in Sec. VII.

II. ENTROPY OF A DYNAMICAL SYSTEM

There are several types of entropies defined in the litera-
ture. In the context of thermodynamics, entropy refers to the
amount of “disorder” in the system—the higher the entropy,
the higher the amount of disorder. For a closed thermody-
namic system, it is the measure of the amount of thermal
energy not available to do mechanical work. In statistical
mechanics, it refers to the amount of uncertainty in the
system. In information theory, it is a measure of the uncer-
tainty associated with a random variable. Shannon entropy
�Shannon, 1948� refers to a measure of the average informa-
tion content that is missing by not knowing the value of the
random variable. In statistical thermodynamics, it measures
the degree to which the probability of the system is spread
out over all possible substates.

In a time series, entropy is an important entity as its
inverse gives the time scale relevant for the predictability of
the system. It also provides the topological information about
the folding process. Several definitions of entropies can be

found in the literature �e.g., Kantz and Schreiber �2003��, and
some of them are briefly given here.

In information theory, the entropy of a random variable
is defined as

K�Z� = − �
i

pi ln pi, �1�

where pi is the probability of the random variable Z taking a
specified value zi �i.e., Pr�Z=zi�= pi�. In thermodynamics, a
similar expression is

K�Z� = − kB�
i

pi ln pi, �2�

where kB is the Boltzmann constant.
The order-q Renyi entropy is defined as �Renyi, 1971�

Kq�P�� =
1

1 − q
ln � pi

q, �3�

where pi is the fraction of the measure contained in the par-
tition Pi��� of side length ��. The Shannon entropy, evalu-
ated by the l’Hospital rule for q=1, is

K1�P�� = − �
i

pi ln pi. �4�

Block entropies of block size n are defined as

Kq�n,P�� =
1

1 − q
ln �

i1,i2,. . .,im

pi1,i2,. . .,in
q , �5�

where pi1,i2,. . .,in
are the joint probabilities that at an arbitrary

time n, the observable falls into the interval Ii1
, at time

n+1, to the interval Ii2
, and so on, where It is the interval.

Then, the order-q entropies are

kq = supP lim
n→�

1

n
Kq�n,��

= supP lim
n→�

�Kq�n + 1,P�� − Kq�n,P��� , �6�

where the supremum supP indicates that one has to maximize
over all possible partitions P� and usually implies the limit
�→0.

In Eq. �6�, k1 �when q=1� is the KS entropy and k0

�when q=0� is the T-Entropy. KS entropy is also sometimes
called the metric entropy or simply Kolmogorov entropy. KS
entropy has a numerical value of zero for nonchaotic systems
and positive values for chaotic systems. It can also be
thought of as the additional information obtained by observ-
ing the state of the system at a certain time given a priori
knowledge of the entire past. Numerically, entropies are
computed for a finite order q, which in the limit as
q→� converges to the KS entropy. However, there are prob-
lems in estimating KS entropy by using Eq. �6�, as it would
require box counting which would be difficult in a high di-
mensional phase space. There are also difficulties arising
from the limitations of the data set as it is nontrivial to obtain
the limit process as �→0.

023104-2 Jayawardena, Xu, and Li Chaos 20, 023104 �2010�



III. CORRELATION SUM

Since it is difficult to calculate the probability density by
counting boxes, a substitute method, which is called the rela-
tive integral method, is usually employed to estimate the
dynamic entropy for a chaotic time series. Considering a
chaotic time series �xn�, 1�n�Ns, where Ns is the length of
the time series embedded into a delay phase space with em-
bedding dimension m and time delay �, a point in the recon-
structed phase space can be denoted by

Xi = �xi,xi+�, . . . ,xi+�m−1��� . �7�

The correlation sum of the time series is then given by

Cm�r� =
1

N�N − 1��i=1

N

�
j�i

N

H�r − �Xi − Xj�� , �8�

where Xi and Xj are two different points in the reconstructed
phase space, N is the number of sample points in the recon-
structed phase space, and H�x� is the Heaviside function

H�x� = 	0, x � 0

1, x � 0.



In this study, � • � is the Euclidean norm.
The correlation sum of a chaotic time series is a very

important entity. It can be used to estimate many related
parameters. It is therefore necessary to find a “good”
description of the correlation sum in order to estimate such
parameters accurately. For a noise-free chaotic time series,
Frank et al. �1993� proved that the correlation sum behaves
as

Cm�r� = ��exp�− m�K���r/�m�D for r → 0,m → � , �9�

where � is a constant, D is the correlation dimension, K is
the KS entropy �order 2 entropy�, m is the embedding dimen-
sion, and � is the time delay.

For a chaotic time series with additive Gaussian noise,
Diks �1999� �p. 123� and Oltmans and Verheijen �1997�
proved that the correlation integral satisfies

Cm�r� =
�e−m�Km−D/2�D−m2−mrm

��m/2 + 1�

	M�m − D

2
,
m

2
+ 1,−

r2

4�2
 , �10�

where � is a constant �same as in Eq. �9��, � is the Gaussian
noise level, and M�a ,b ,z� is the Kummer’s confluent
hypergeometric function, which has the following integral
representation:

M�a,b,z� =
��b�

��a���b − a��0

1

eztta−1�1 − t�b−a−1dt , �11�

where

a =
m − D

2
,

b =
m

2
+ 1, �12�

z = −
r2

4�2 .

The Kummer’s confluent hypergeometric function also satis-
fies the following equation:

d

dz
M�a,b,z� =

a

b
M�a + 1,b + 1,z� , �13�

where

a + 1 =
m − D

2
+ 1 =

�m + 2� − D

2

and

b + 1 =
m

2
+ 2 =

m + 2

2
+ 1.

The correlation dimension and KS entropy, together with the
noise level of the chaotic time series, can be estimated theo-
retically by applying Eqs. �9� and �10�. Diks �1999� sug-
gested that for fixed embedding dimension, Eq. �10� can be
applied to obtain a nonlinear maximum likelihood estimate
of the correlation dimension D and the noise level �. Fur-
thermore, for large embedding dimensions, the estimation of
the KS entropy for noisy time series is given by �Diks, 1999�

K =
1

�
ln� Cm�r�

Cm+1�r�� −
1

�
ln� r

2�m�
� . �14�

The estimation of the KS entropy by Eq. �14� strongly de-
pends upon the estimation of the noise level, which is very
difficult for noisy chaotic time series. Hence, the use of Eq.
�14� cannot provide a better estimation of the KS entropy for
a noisy chaotic time series.

Equation �14� suggests a relationship between the corre-
lation sums Cm�r� and Cm+2�r�, which will then be used to
estimate the KS entropy for a noisy chaotic time series.

IV. MODIFIED CORRELATION ENTROPY

By comparing the correlation sum �Eq. �9�� for two dif-
ferent values of the embedding dimension, m and m+2, we
have, when r�0,

Cm�r�
Cm+2�r�

= exp�2�K��1 +
2

m

D/2

, �15�

which can be written as
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ln
Cm�r�

Cm+2�r�
= 2�K + ln�1 +

2

m

D/2

. �16�

The CE K2 as defined by Diks �1999� �p. 111� is

K2 =
1

2�
ln� Cm�r�

Cm+2�r�� . �17�

When the time series is noise-free, Eq. �15� holds, and Eqs.
�16� and �17� then simplify to a relationship between the CE
K2 and the KS entropy K as

K2 = K +
1

2�
ln��1 +

2

m
�D/2
 , �18�

which converges to K as m→�, i.e.,

limm→� K2 = K .

For a noisy chaotic time series, by comparing the correlation
sum �Eq. �10�� for two different values of the embedding
dimension, m and m+2, we have

Cm�r�
Cm+2�r�

=
m−D/2

e−2�K�m + 2�−D/22−2�−2r2

��m/2 + 2�
��m/2 + 1�

M�a,b,z�
M�a + 1,b + 1,z�

= exp�2�K��m + 2

m

D/22�2�m − D�M�a,b,z�

r2dM�a,b,z�/dz
= exp�2�K��m + 2

m

D/2 2�2�m − D�

r2d ln�M�a,b,z��/dz
, �19�

where z=−r2 / �2�2�, which has been defined in Eq. �12�.
Hence, we obtain

exp�2�K��m + 2

m

D/2

�m − D�

=
Cm�r�

Cm+2�r�
r2

2�2

d ln�M�a,b,z��
dz

. �20�

Taking natural logarithms for both sides of Eq. �10� gives

ln�Cm�r�� = ln��e−m�Km−D/22−m�D−m� + m ln�r�

− ln���m/2 + 1��

+ ln�M�m − D

2
,
m

2
+ 1,−

r2

4�2

 . �21�

Differentiating Eq. �21� with respect to r, we obtain

d

dr
ln�Cm�r�� =

m

r
+

d

dz
ln�M�m − D

2
,
m

2
+ 1,−

r2

4�2
�
	�−

r

2�2
 ,

from which we obtain

r2

2�2

d

dz
ln�M�a,b,z�� = m − r

d

dr
ln�Cm�r�� . �22�

Substituting Eq. �22� into Eq. �20� gives

TABLE I. Statistics of data sets used in this study. Note: Under the noise level column, C means that the data
set is clean; A/B indicates that A is the added noise level and B is the actual noise level; R indicates that the data
set is raw and NR-1 indicates that the data set has been noise reduced by method 1, while NR-2 indicates that
the data set has been noise reduced by the method 2. �The actual noise level �2=1 /N�n=1

N �xn− x̄n�2, where xn and
x̄n are the clean and noisy time series, respectively.�

Data Length Maximum Minimum Mean Variance Noise level

Lorenz A 5000 18.02 
18 0.3074 7.8977 C
Lorenz B 5000 18.21 
19 0.3091 7.911 0.5/0.5020
Lorenz C 5000 19.27 
20.12 0.3109 7.9561 1.0/1.004
Lorenz D 5000 20.33 
21.19 0.3127 8.0325 1.5/1.5060
Rössler A 5000 17.29 
14.59 0.13 8.2 C
Rössler B 5000 17.98 
15.28 0.132 8.21 0.5/0.5020
Rössler C 5000 18.97 
16.18 0.134 8.245 1.0/1.004
Rössler D 5000 20.17 
17.1 0.136 8.313 1.5/1.5060
Mekong A 4292 21 000 891 4302 2624.8 R
Mekong B 4292 19 447 951 4297 2609 NR-1
Mekong C 4292 19 091 903 4737 3177 NR-2
Chao A 5844 4320 71 627.4 470.5 R
Chao B 5844 4200 232 622 440 NR-1
Chao C 5844 3927 95 626.9 647 NR-2
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exp�2�K��m + 2

m

D/2

�m − D�

=
Cm�r�

Cm+2�r�
�m − r

d

dr
ln�Cm�r��
 . �23a�

Taking natural logarithms for both sides of the above equa-
tion gives

2�K + ln�m + 2

m

D/2

= ln� Cm�r�
Cm+2�r�

�m − r
d

dr
ln�Cm�r��



− ln�m − D� . �23b�

Note that the left-hand side of Eq. �23b� is just the right-hand
side of Eq. �16�. Since the right-hand side of Eq. �23b� does
not depend on K, we can define a new CE for the noisy time
series by

K̄2 =
1

2�
ln� Cm�r�

Cm+2�r��
+

1

2�
ln��m −

d ln�Cm�r��
d ln r


� �m − D�� . �24�

We call the CE estimated by Eq. �24� the “MCE” for a cha-
otic time series. When the chaotic time series is noise-free,
by using Eq. �9�, or using Eqs. �10� and �11� �Jayawardena
et al., 2008�, it can be shown that

D =
d ln�Cm�r��

d ln�r�
. �25�

Equation �24� ensures that when the chaotic time series is
noise-free, the MCE and the CE �Eq. �17�� are equivalent,
i.e.,

FIG. 1. �Color online� CE and MCE vs radius r for Lorenz data �embedding
dimension m=20, time delay �=1 for 0.1�r�0.3; � indicates the noise
level�.

FIG. 2. �Color online� CE and MCE vs radius r for Rössler data �embedding
dimension m=20, time delay �=1 for 0.1�r�0.3; � indicates the noise
level�.

FIG. 3. �Color online� CE and MCE vs radius r for Mekong data �embed-
ding dimension m=20, time delay �=1 for 0.1�r�0.3; NR-1: noise re-
duced by method 1, NR-2: noise reduced by method 2�.

FIG. 4. �Color online� CE and MCE vs radius r for Chao Phraya data
�embedding dimension m=20, time delay �=1 for 0.1�r�0.3; NR-1: noise
reduced by method 1, NR-2: noise reduced by method 2�.
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K̄2 = K2. �26�

The estimation of the MCE by Eq. �24� needs the correlation
dimension of the chaotic time series, which can be given
a priori, or be estimated using the correlation sum. In the
former case it can be given approximately as

D � md − 1, �27�

where md is the minimum embedding dimension of the cha-
otic time series, which can be obtained by the false nearest
neighbor �FNN� method �Kantz and Schreiber, 2003�. In the
latter case, it can be estimated by employing the correlation
sum using Eq. �8�. Given several values r1 ,r2 , . . . ,rL, the
corresponding correlation sums are then obtained as
Cm�r1� ,Cm�r2� , . . . ,Cm�rL�. Then the correlation dimension is
approximated by

D �
1

L
�
i=1

L
d ln�Cm�ri��

d ln�ri�
. �28�

In this study, the first method �Eq. �27�� is used.
Note that the estimation process for the MCE does not

involve the noise level of the noisy chaotic time series.

Hence, the above estimation method would be easier for a
noisy chaotic time series than the estimation method based
on Eq. �14�. Furthermore, the MCE is more robust to noise
than the general CE obtained by Eq. �18�.

V. KS ENTROPY AND THE LYAPUNOV SPECTRUM

In a dynamical system, the Lyapunov exponent charac-
terizes the rate of separation of initially nearby trajectories.
The rate of separation can be different for different initial
separations, thus leading to a whole spectrum of Lyapunov
exponents, with the number of such exponents being equal to
the dimension of the phase space. The largest of them deter-
mines the predictability of the system and a positive largest
exponent gives an indication that the system is chaotic. For
an evolutionary system, the spectrum of Lyapunov exponents
��1 ,�2 , . . . ,�n� depends upon the starting point x0 and is de-
fined from the Jacobian matrix as follows:

� j = lim
N→�

1

N
�J�F�N��x0��ej� , �29�

(b)(a)

(c) (d)

FIG. 5. �Color online� CE, MCE, and LE vs embedding dimension for Lorenz data with four different noise levels �a for clean data; b for �=0.5; c for �
=1.0; and d for �=1.5�.
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J�F�N��x0�� = �dF�N��x�
dx

�
x0

, �30�

where J�F� is the Jacobian matrix of the nonlinear function
F, F�n� is the nth iteration of the nonlinear evolution function,
and �ej� , j=1,2 , . . . ,m is a set of orthogonal basis of the
tangent space at x0. The evolution function relates the future
value to the present value according to the equation

xn+1 = F�xn� , �31�

where �xn�n=1
N is the trajectory in the reconstructed phase

space of the chaotic time series.
For a conservative system, the sum of all Lyapunov ex-

ponents is zero. For a dissipative system, it is negative. Ac-
cording to the theorem of Pesin �1977�, the sum of all posi-
tive Lyapunov exponents gives an estimate of the KS
entropy. The Lyapunov spectrum estimated as described be-
low is used to estimate the KS entropy to compare with the
MCE.

The Jacobian of Eqs. �29� and �30�, by the chain rule,
can be written as

JF�N��x0� = �JF�xN−1�� · �JF�N−1��x0��

= �JF�xN−1�� · �JF�xN−2�� · �JF�N−2��x0�� = ¯

= �JF�xN−1�� · �JF�xN−2�� ¯ �JF�x1�� · �JF�x0��

= An · An−1 ¯ A2 · A1, �32�

where An=JF�xn−1� ,1�n�N. Using the QR decomposition,
matrix A can be decomposed into two matrices: an orthogo-
nal matrix Q and an upper triangular matrix R. We define
matrices Qn ,Rn via

An+1Qn = Qn+1Rn+1, �33�

where Q0= I, the identity matrix. Then, the Lyapunov spec-
trum of the system is given by

(b)(a)

(c) (d)

FIG. 6. �Color online� CE, MCE, and LE vs embedding dimension for Rössler data with four different noise levels �a for clean data; b for �=0.5; c for �
=1.0; and d for �=1.5�.
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� j = lim
N→�

1

N�
n=1

N

ln��Rn�j, j��� , �34�

where Rn�j , j� is the element of matrix Rn at jth row and jth
column. The Jacobian matrix at each time point in the trajec-
tory of the nonlinear system is evaluated by employing the
least-squares method to some nearest neighbors of the corre-
sponding points in the reconstructed phase space. The above
procedure follows that developed by Brown et al. �1991�.

VI. APPLICATION

The proposed method is then applied to four data sets to
estimate the MCE: two artificial chaotic time series and two
real-world chaotic time series. The artificial chaotic times
series are generated by the Lorenz and Rössler equations.
The Lorenz map is �Lorenz, 1963� defined by the equations

�ẋ= ��y − x�
ẏ= − xz + rx − y

ż= xy − bz ,
� �35�

and it becomes chaotic for �=10, r=28, and b=8 /3. Equa-
tion �35� is a three dimensional differential system, which
can be solved numerically using the fourth order Runge–
Kutta method with a time step of 0.005 and initial conditions
of

x�0� = 12.5,y�0� = 2.5,z�0� = 1.5.

The values of the x-coordinate are then recorded as the real-
ized time series. To ensure that the values of the time series
are in the chaotic attractor, the first 4000 values are dis-
carded. Then, a time series of length 5000 is generated for
Eq. �35� by

xn = x�100 + 0.2n�, 1 � n � 5000.

Gaussian noise with noise levels ��� 0.5, 1.0, and 1.5 are
then added to the series.

The Rössler system is defined by the equations �Rössler,
1976�

(b)(a)

(c)

FIG. 7. �Color online� CE, MCE, and LE vs embedding dimension for Mekong data with three different noise levels �a for raw data; b for noise reduced by
method 1; c for noise reduced by method 2�.

023104-8 Jayawardena, Xu, and Li Chaos 20, 023104 �2010�



�ẋ= − y − z

ẏ= x + ay

ż= b − z�x − c� ,
� �36�

and it becomes chaotic for a=0.15, b=0.2, and c=10. Equa-
tion �36� is also a three dimensional differential system
which can be solved numerically using the fourth order
Runge–Kutta method with a time step of 0.02 and initial
conditions

x�0� = 0.1,y�0� = 0.1,z�0� = 0.1.

The values of the x-coordinate are then recorded as the real-
ized time series. To ensure that the values of the time series
are in the chaotic attractor, the first 5000 points are dis-
carded. Then, a time series of length 5000 is generated for
Eq. �36� by

xn = x�100 + 0.5n�, 1 � n � 5000.

Gaussian noise with noise levels ��� 0.5, 1.0, and 1.5 are
then added to the series.

The two real-world time series come from the field of
hydrology. They are the flow measurements made at two
gauging stations across two major rivers in Asia, namely, the
Mekong, which is a transboundary river that runs through six
countries �China, Myanmar, Lao, Thailand, Cambodia, and
Vietnam�, and the Chao Phraya that runs through Thailand.
For Mekong, daily discharges measured at Nong Khai �loca-
tion: 17.87° North, 102.72° East; basin area: 302 000 km2;
GRDC Reference No. 2969090� for the period of April
1980–December 1991, and for Chao Phraya, daily discharges
measured at Nakhon Sawan �location: 15.67° North, 100.2°
East; basin area: 110 569 km2; GRDC Reference No.
2964100� for the period of April 1978–March 1994 were
used in the study.

Two noise reduction methods, described elsewhere
�Jayawardena and Gurung, 2000�, are applied to the two raw
data sets. The first noise removal method �noise reduced by
method 1� follows that of Grassberger et al. �1993�, while the
second method �noise reduced by method 2� follows that of

(b)(a)

(c)

FIG. 8. �Color online� CE, MCE, and LE vs embedding dimension for Chao Phraya data with three different noise levels �a for raw data; b for noise reduced
by method 1; c for noise reduced by method 2�.
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Schreiber and Grassberger �1991�. Some statistics of these
four data sets are given in Table I. However, for convenience
of selecting the correlation radius r in calculating the corre-
lation sum using Eq. �8�, all of the above data sets have been
rescaled into the interval �0,1�.

VII. RESULTS AND DISCUSSION

In this study, a new approximating quantity for the KS
entropy, the MCE, is introduced for a chaotic time series.
This quantity is more robust to noise than the general CE and
is estimated by employing the correlation sum. Hence, the
estimation process strongly depends on the calculation of the
correlation sum. The correlation sum depends on several pa-
rameters: the amount of the sample points N, the embedding
dimension m, the time delay �, and the correlation radius r.
The effects of these parameters on the estimation of the cor-
relation sum are discussed by Ramsey and Yuan �1990�, and
they note that the sample size of the chaotic time series
should not be smaller than 2000. However, they also pointed
out that when the embedding dimension is large, the sample
size should also be large to ensure that the correlation sum
results in a small bias. In this study, 5000 sample points each
for Lorenz and Rössler data, 4292 sample points for the
Mekong data, and 5844 sample points for the Chao Phraya
data were used to estimate their respective correlation sums.

The embedding dimension for the Lorenz data and the
Rössler data is 3, since they are generated from a three di-
mensional chaotic attractor. Based on a previous study
�Jayawardena et al., 2002� that uses the false nearest neigh-
borhood method, each of the two real-world data sets has
embedding dimension of 3. By Takens’ embedding theorem
�Takens, 1981�, the time delay for a chaotic time series can
be chosen arbitrarily. In this study, it is set as 1.

The correlation radius r is also important for the corre-
lation sum calculation. Too small values of r would lead to
no neighbors for a point while a large value of r would miss
the microstructure of the chaotic attractor. In this study,
the correlation sums were calculated for 0.1�r�0.3 using
rescaled data.

The numerical results of the comparison between the CE
and the MCE, both calculated by using correlation sums, for
all the data sets used in this study are shown in Figs. 1–4. In
the simulation, the embedding dimension is 20 and the time
delay is 1 for all the data sets. Figure 1 shows the results for
the Lorenz data for four noise levels: clean data and noisy
data with noise levels 0.5, 1.0, and 1.5. They show that the
curves for the MCE and the CE are almost identical for the
clean Lorenz data set. For noisy data, the curves of the MCE
are still close to the curve for the clean data, while the curves
of the CE are far apart from the curve of clean data espe-
cially for small values of r. These results demonstrate that
the MCE is more robust to noise than the CE. A similar
conclusion can be made for the Rössler data as well, which
are shown in Fig. 2. The results for the Mekong and Chao
Phraya data, which are shown in Figs. 3 and 4, also indicate
the same pattern. It is also seen that the MCE is more stable
and that it varies in a smaller range compared with the CE.

Equations �18� and �24� show that the MCE and the CE
converge to the KS entropy of the system when the embed-
ding dimension is large enough. For comparison, the KS en-
tropy is also estimated by the Lyapunov spectrum method, as
described in Sec. V. This is referred to as Lyapunov entropy
in this context. Figures 5 and 6 show the variation in the
different entropies �CE, MCE, and Lyapunov entropy �LE��
as functions of the embedding dimension for different noise
levels for the Lorenz and Rössler data. The corresponding
results for the Mekong and Chao Phraya data are shown in
Figs. 7 and 8. All the four data sets show that the MCEs are
closer to the LE than the CE especially for large value of the
embedding dimension. The three sets of graphs for the
Mekong and Chao Phraya data correspond to raw data, noise
reduced-1, and noise reduced-2.

VIII. CONCLUSION

In this study, a new method of estimating the KS entropy
for a chaotic time series is presented. It is applicable to clean
as well as noisy data. Both theoretical analysis and numerical
results, as demonstrated by the application of the method to
Lorenz data, Rössler data, Mekong data, and Chao Phraya
data, show that the MCE is more robust to noise than the CE.
The numerical results show that the MCE is closer to the KS
entropy for both noisy and noise-free time series data.

APPENDIX A: ALGORITHM 1 „FOR MODIFIED
CORRELATION DIMENSION…

�1� Re-scale the time series �xn�n=1
N to �0, 1�, and obtain a new

time series, �x̄n�n=1
N .

�2� Estimate the minimum embedding dimension md for the
re-scaled time series by FNN method.

�3� Given an embedding dimension m �m
md� and a time
delay �, embed the chaotic time series into the delay phase
space. Points in the delay phase space are
�Xn� ,1�n�N− �m−1��.

�4� Give several values of r, 0.1=r1�r2� ¯ri� ¯rL=0.3,
calculate the correlation sum Cm�ri� for the time series by
Eq. �8�.

�5� Increase the embedding dimension to m+2, embed the time
series �x̄n�n=1

N into a new delay phase space. Points in the
new delay phase space are �Yn� ,1�n�N− �m+2−1��.

�6� Give several values of r, 0.1=r1�r2� ¯ri� ¯rL=0.3,
calculate the correlation sum Cm+2�ri� for the time series by
Eq. �8�,

�7� Calculate d ln�Cm�r�� /d ln�r� by

d ln�Cm�ri��
d ln�ri�

=
ln�Cm�ri�� − ln�Cm�ri−1��

ln�ri� − ln�ri−1�
, 1 � i � L

�8� Calculate

K2�i� =
1

2�
ln

Cm+2�ri�
Cm�ri�

, 1 � i � L

�9� Calculate

K̄2�i� =
1

2�
ln

Cm+2�ri�
Cm�ri�

+
1

2�
ln�m − d ln�Cm�ri��/d ln�ri�

m − md + 1

,

1 � i � L
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APPENDIX B: ALGORITHM 2 „FOR LYAPUNOV
SPECTRUM…

�1� Given a trajectory �xn� ,1�n�N.
�2� Let Q0= I, identity matrix.
�3� For every xn, find its NB �assumed to be 20 for all data

sets� nearest neighbors in the reconstructed phase space,
�xn

k�, 1�k�NB.
�4� Estimate parameters for local linear model

xn+m� = a + �
i=1

m

bixn+�i−1��

by the least square method using the NB nearest neighbors.
�5� Set Matrix

An =�
0 1 0 ¯ 0

0 0 1 ¯ 0

0 0 0 ¯ 0

] ] ] � ]

b1 b2 b3 ¯ bm

�
�6� QR decomposition: QkRk=AkQk−1

�7� � j = 1 / N�ln�Rn�j , j�,� j=1,2 , . . . . .N
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