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Bayesian Generalized Method of Moments

Guosheng Yin∗

Abstract. We propose the Bayesian generalized method of moments (GMM),
which is particularly useful when likelihood-based methods are difficult. By de-
riving the moments and concatenating them together, we build up a weighted
quadratic objective function in the GMM framework. As in a normal density
function, we take the negative GMM quadratic function divided by two and ex-
ponentiate it to substitute for the usual likelihood. After specifying the prior dis-
tributions, we apply the Markov chain Monte Carlo procedure to sample from the
posterior distribution. We carry out simulation studies to examine the proposed
Bayesian GMM procedure, and illustrate it with a real data example.

Keywords: Bayesian inference; Correlated data; Estimation efficiency; Generalized
estimating equation; Generalized linear model; Gibbs sampling; Posterior distri-
bution

1 Introduction

Bayesian methods follow Bayes’ theorem and the likelihood principle. Given the spec-
ified prior distribution, statistical inferences are based on the posterior distribution of
the model parameters. In biomedical applications, multivariate data often arise due to
clustering or longitudinal measurements. For example, in studies with paired eyes or
multiple teeth, observations from the same subject are naturally clustered, and thus
do not satisfy the independence assumption. In longitudinal studies, although different
subjects are assumed to be independent, the common procedure of repeatedly measur-
ing each subject over time induces correlations among the observations on the same
subject. It is typically difficult to obtain the likelihood function of such correlated data,
because the underlying correlation structure is unknown. Often a random effects model
can be undertaken, although the Bayesian posterior estimates might be sensitive to
the usual parametric distributional assumptions for the unobservable random effects.
Random effects models have been extensively studied by introducing subject-specific
random effects to account for the correlation; for example, see Laird and Ware (1982)
and Ware (1985). Conditional on the random effects, the observations are assumed
to be independent. Likelihood-based inferences can be easily derived if a parametric
distribution is assumed for the random effects, which, however, might be sensitive to
the specified distribution. On the other hand, the underlying correlation can be treated
as a nuisance if the population-average covariate effects are of primary interest. The
generalized estimating equation (GEE) represents a robust method that produces con-
sistent and asymptotic normal estimators even with a misspecified working correlation
matrix. If the correlation structure is correctly specified, the GEE estimator is efficient
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within the linear estimating function family (Liang and Zeger 1986; Zeger and Liang
1986; Zeger et al. 1988).

The generalized method of moments (GMM) has been extensively studied in econo-
metrics (Hansen 1982; Newey and West 1987; Pakes and Pollard 1989; Lee 1996; Hansen
et al. 1996; Newey 2004; Hall 2005). The GMM is particularly attractive and useful
for improving the estimation efficiency when the likelihood formulation is difficult but
the moment conditions are relatively easy to obtain. Hansen (1982) first established
a comprehensive framework for the GMM and provided a rigorous justification and
asymptotic theories for the estimator. Advances in computing technology have facili-
tated a growing interest in simulation methods for parameter estimation based on the
population moment conditions (McFadden 1989). Pakes and Pollard (1989) derived
asymptotic theories for the simulated method of moments when the function in the
moment condition might be discontinuous. Qu et al. (2000) and Lai and Small (2007)
proposed a GMM marginal regression to analyze longitudinal data, and showed its ad-
vantages over the GEE. One of the major uses of the GMM is to make inferences in
semiparametric models where there are more moment conditions than unknown param-
eters. By combining the moments, the GMM is parsimonious and useful for constructing
efficient estimators, particularly when the efficiency bound is complicated and moment
conditions are available. Under some regularity conditions in Chamberlain (1987), the
GMM estimator achieves the semiparametric efficiency bound in the sense of Bickel
et al. (1993).

In the Bayesian paradigm, posterior inference follows the likelihood principle. Given
a prior distribution π(β) for an unknown parameter β, we can derive its posterior
distribution as

π(β|y) ∝ L(y|β)π(β),

where L(y|β) is the likelihood function. However, if there is not enough information for
the likelihood function, the Bayesian posterior estimation and inferences can be chal-
lenging (Zellner et al. 1997; Zellner 1997; Kim 2002; Chernozhukov and Hong 2003).
Zellner (1997) proposed the Bayesian method of moments by computing the maximum
entropy densities consistent with the moment conditions. Kim (2002) derived the lim-
ited information likelihood by minimizing the Kullback-Leibler information criterion
distance. Chernozhukov and Hong (2003) studied a Laplace-type estimator obtained by
a Markov chain Monte Carlo (MCMC) approach. For most clustered or longitudinal
data, the likelihood is typically difficult to obtain without knowing the underlying cor-
relation structure. We propose the Bayesian GMM such as to circumvent the difficulty
of constructing the likelihood function. The moments typically converge to zero-mean
normal distributions, based on which we can construct a substitute for the true likeli-
hood in the asymptotic sense. We take the negative GMM quadratic function divided
by two and then exponentiate it to substitute for the likelihood. Moreover, without the
need to specify the correlation structure, we take a linear expansion of the inverse of
the correlation matrix over a set of commonly used basis matrices, so that the Bayesian
GMM estimators are properly adjusted for the correlation. The Bayesian GMM still
produces valid estimates and inferences even if the underlying correlation is misspecified
(for example, the working independence model). If certain information on the correla-
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tion structure is available, we can incorporate the additional moment conditions into
the GMM quadratic function to improve the estimation efficiency. Through the MCMC
procedure, we can easily obtain the posterior estimates.

The rest of the article is organized as follows. In Section 2, we introduce the no-
tation, and propose the Bayesian GMM in the generalized linear model framework, as
well as with correlated data. In Section 3, we examine the properties of the Bayesian
GMM using simulation studies, in particular, we justify its use based on the posterior
probability coverage sets. We illustrate the proposed methods with a real data example
in Section 4, and give concluding remarks in Section 5.

2 Bayesian Generalized Method of Moments

2.1 Generalized Linear Model

The generalized linear models (GLM) provide a unified framework for various dis-
crete and continuous outcomes (McCullagh and Nelder 1989). For the ith subject
(i = 1, . . . , n), we observe yi as the outcome of interest and Zi as the corresponding
covariate vector. To characterize the relationship between yi and Zi, we assume that
the observed values yi are from a distribution belonging to the exponential family. The
density function of yi given Zi takes the form of

f(yi|Zi) = exp
{

yiθi − b(θi)
ai(φ)

+ c(yi, φ)
}

,

where θi is a location parameter, φ is a scalar dispersion parameter, and ai(·), b(·) and
c(·) are known functions. Typically, ai(φ) = φ/wi with known weights wi, and the linear
predictor ηi = βT Zi can be linked with θi through a monotone differentiable function
h(·), i.e., θi = h(ηi). This is a standard formulation of the GLM, with µi = E(yi|Zi) =
b′(θi) and vi = var(yi|Zi) = b′′(θi)ai(φ), where b′(·) and b′′(·) are the first and second
derivatives, respectively. The quasi-likelihood estimator can be obtained by solving the
score-type equation

n∑

i=1

Div
−1
i (yi − µi) = 0,

where Di = ∂µi/∂β. See Wedderburn (1974) and McCullagh (1983) for details.

In the GMM framework, we define

ui(β) = Div
−1
i (yi − µi), i = 1, . . . , n.

Thus, we have the population moment condition

E{ui(β)} = 0,

with the corresponding sample moment condition

Un(β) =
1
n

n∑

i=1

ui(β).
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The GMM estimator β̂ is obtained by minimizing the following quadratic objective
function

Qn(β) = UT
n (β)Σ−1

n (β)Un(β),

where Σn(β) is the empirical variance-covariance matrix given by

Σn(β) =
1
n2

n∑

i=1

ui(β)uT
i (β)− 1

n
Un(β)UT

n (β).

In general, β̂ is computed via a two-stage iterative procedure:

(1) Insert an initial value β(0) into Σn(β).

(2) At the kth iteration, obtain the estimator β̂(k) by minimizing

Q(k)
n (β) = UT

n (β)Σ−1
n (β̂(k−1))Un(β)

with respect to β while fixing Σn(β̂(k−1)) as known.

(3) Plug the estimator β̂(k) back into Σn(β̂(k)), and move to the (k + 1)th iteration.

(4) Continue this procedure until some prespecified convergence criteria are met.

Under certain regularity conditions in Hansen (1982), the GMM estimator β̂ exists and
converges in probability to the true parameter β0, and

√
n(β̂ − β0) converges in distri-

bution to a multivariate normal distribution. For cross-sectional data, the usual GMM
estimator of β is equivalent to the quasi-likelihood estimator of β, as the dimension of
Un(β) is equal to the dimension of β.

The objective function Qn(β) follows a chi-squared distribution when evaluated at
β0 or β̂. Intuitively, the corresponding chi-squared tests are closely related to the usual
likelihood ratio tests, and Qn(β) behaves like −2 log{L(y|β)}, where L(y|β) is the
likelihood function. Note that the sample moment typically converges to a multivariate
normal distribution, as n →∞, Un(β0) ∼ N(0,Σ(β0)), where β0 is the true parameter
and Σ(β0) is the limit of Σn(β0). Therefore, we can construct a pseudo-likelihood
function L̃(y|β) to replace the original likelihood function L(y|β) which may be difficult
to derive, where

L̃(y|β) ∝ exp
{
−1

2
Qn(β)

}
= exp

{
−1

2
UT

n (β)Σ−1
n (β)Un(β)

}
.

As in the usual MCMC procedure, we can derive the posterior distribution based on
L̃(y|β). Given the prior distribution π(β), the posterior distribution of β is

π̃(β|y) ∝ L̃(y|β)π(β).
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The MCMC algorithm can then be used to sample from π̃(β|y) to obtain the posterior
inference for β. Note that L̃(y|β) is constructed from a multivariate normal distribution
for Un(β) asymptotically, except that the normalizing term (2π)−p/2|Σ−1

n (β)|1/2 is not
involved, where p is the vector length of Un(β).

The key feature of the Bayesian GMM is that it is a moment-based approach, so that
we can circumvent the difficulties of deriving the likelihood when moments are relatively
easier to obtain. In addition, the Bayesian GMM is more robust as the likelihood may
be vulnerable to certain parametric assumptions. However, the posterior distribution of
the model parameters is complicated, and typically is not log-concave, thus we use the
adaptive rejection Metropolis sampling algorithm within the Gibbs sampler proposed
by Gilks et al. (1995).

2.2 Correlated Data

In the presence of correlation, the statistical analysis can be quite challenging as the
underlying correlations need to be properly adjusted for valid inferences. Methodological
development for analyzing correlated data has been greatly advanced. Let (y1, . . . ,yn)
be independent vectors of the response variables with means (µ1, . . . , µn), where yi =
(yi1, . . . , yiKi)

T for the ith cluster of size Ki, i = 1, . . . , n. Let the mean µi = E(yi|Zi),
and the variance of yi be given by Vi = ζh(µi), where h(·) is the variance function and
ζ is the scale parameter. The mean µik is linked with the covariate vectors Zik through

η(µik) = βT Zik, k = 1, . . . , Ki; i = 1, . . . , n.

Let Ai be the diagonal matrix of the marginal variance of yi, let Ri be the true corre-
lation matrix, and let Ci be the working correlation matrix which may not be identical
to Ri. The generalized estimating equation (GEE) is given by

1
n

n∑

i=1

Di
T V−1

i (yi − µi) = 0, (1)

where Vi = A1/2
i CiA

1/2
i and A1/2

i = diag{h1/2(µi)}. Under certain regularity condi-
tions given in Liang and Zeger (1986), the estimator solved from (1), denoted by β̂, is
consistent and asymptotically follows a normal distribution. That is, as n→∞,

√
n(β̂ − β0)

D−→ N(0,Γ),

where β0 is the true parameter value, Γ is the limit of H−1
1 H2H−1

1 , and

H1 =
1
n

n∑

i=1

Di
T V−1

i Di,

H2 =
1
n

n∑

i=1

Di
T V−1

i (yi − µi)(yi − µi)T V−1
i Di.
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The consistent estimator of Γ, referred to as the sandwich or robust variance estimator,
is obtained by evaluating the matrices H1 and H2 at their empirical estimates.

Maximum likelihood methods usually depend on the assumption of the underlying
distribution, which may cause bias or efficiency loss if the distribution is misspecified.
When observations in the same cluster are correlated, the estimator based on the work-
ing independence model, although still consistent, may not be efficient, as it completely
ignores the correlation information. A natural way to enhance the estimation efficiency
is to incorporate a weight matrix to account for the within-cluster correlation. How-
ever, the true correlation matrix R often has a complicated structure and is typically
unknown in real applications. To circumvent the direct estimation of R, Qu et al.
(2000) proposed a GMM approach for the marginal regression model. Following the
same route, we can linearly expand the inverse of R, R−1(α), as

R−1(α) =
J∑

j=1

αjC(j),

where α = (α1, . . . , αJ) are unknown constants and (C(1), . . . ,C(J)) are a set of known
basis matrices. For example, if the cluster size K = 4, then C(j) can be the identity
matrix I, or




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 ,




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 ,




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 . . . .

The linear span of C(j) should accommodate or adequately approximate the true cor-
relation structure. The estimating equation then becomes

1
n

n∑

i=1

Di
T A−1/2

i (α1C(1) + . . . + αJC(J))A
−1/2
i (yi − µi) = 0.

Regardless of the complexity of R−1(α), it can be represented by a linear combination
of some commonly used basis matrices. For example, if R(α) is an exchangeable matrix,
then R−1(α) = α1C(1) + α2C(2), where C(1) = I and C(2) is of the form with 0 on the
diagonal and 1 elsewhere; and if R(α) is a first-order autoregressive AR(1) correlation
matrix, R−1(α) = α1C(1) + α2C(2) + α3C(3), where C(1) = I, C(2) is of the sandwich
form with two main off-diagonals of 1 and 0 elsewhere, and C(3) is a matrix with 1 at the
corners of (1, 1) and (K, K), and 0 elsewhere. The coefficient αj takes an implicit role as
a weighting scheme that can automatically adjust for the importance and contribution
of each C(j) to the entire correlation structure. The unknown coefficients, the αj ’s,
can take any real values; but they do not need to be sampled in the Bayesian GMM
procedure.

We split the moment conditions corresponding to each C(j), j = 1, . . . , J . In this
case, there are more estimating equations than unknown parameters if J > 1. We con-
struct a (J × p)-vector Un(β) by concatenating the J moment conditions, and building
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them into a quadratic objective function. Therefore, we first split and concatenate the
population moment condition to a (J × p)-vector:

E{ui(β)} = E




Di
T A−1/2

i C(1)A
−1/2
i (yi − µi)

...
Di

T A−1/2
i C(J)A

−1/2
i (yi − µi)


 = 0.

The corresponding sample moment condition is given by

Un(β) =
1
n




∑n
i=1 Di

T A−1/2
i C(1)A

−1/2
i (yi − µi)

...∑n
i=1 Di

T A−1/2
i C(J)A

−1/2
i (yi − µi)


 .

We then follow the Bayesian GMM development to obtain the substituted likelihood

L̃(y|β) ∝ exp
{
−1

2
Un(β)T Σ−1

n (β)Un(β)
}

,

where

Σn(β) =
1
n2

n∑

i=1

ui(β)uT
i (β)− 1

n
Un(β)UT

n (β).

We can specify the prior distribution for β and then sample from the posterior distri-
bution accordingly.

Table 1: Comparisons between the Bayesian GMM and the Bayesian likelihood-based
estimation under the generalized linear models.

Bayesian GMM Bayesian Likelihood
β0 = 0.2 β1 = 0.5 β2 = −0.5 β0 = 0.2 β1 = 0.5 β2 = −0.5

Model n Est SD Est SD Est SD Est SD Est SD Est SD
Linear 200 .161 .050 .528 .034 −.324 .077 .161 .050 .529 .033 −.327 .071

500 .191 .032 .511 .022 −.465 .046 .190 .032 .512 .022 −.464 .045
1000 .199 .022 .502 .015 −.478 .033 .198 .022 .502 .016 −.477 .032

Logistic 200 .402 .216 .382 .166 −.505 .312 .401 .208 .369 .156 −.496 .297
500 .196 .129 .406 .098 −.481 .190 .194 .130 .399 .096 −.474 .187
1000 .229 .090 .437 .071 −.580 .132 .224 .091 .432 .069 −.571 .131

Poisson 200 .272 .094 .389 .064 −.544 .143 .284 .088 .380 .063 −.537 .131
500 .184 .056 .452 .040 −.511 .088 .188 .057 .451 .044 −.509 .089
1000 .216 .040 .464 .034 −.544 .063 .220 .039 .464 .031 −.546 .063

One simulated data set, Est is the posterior mean and SD is the posterior standard
deviation of 10,000 posterior samples.
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3 Simulation Studies

3.1 Generalized Linear Models

We carried out simulation studies to examine the performance of the proposed Bayesian
GMM estimation and inference procedures. We first considered the GLM framework
that includes the linear, logistic and Poisson models. Under the linear regression model,

y = β0 + β1Z1 + β2Z2 + ε,

we took the true parameter values β0 = 0.2, β1 = 0.5, β2 = −0.5, and ε ∼ N(0, σ2), a
zero-mean normal distribution with variance σ2 = 0.25. The covariate Z1 was generated
from the standard normal distribution, and Z2 was a binary variable taking a value
of 0 or 1 with probability 0.5. We took sample sizes of n = 200, 500 and 1,000.
We examined the performance of the proposed Bayesian GMM and also implemented
the usual Bayesian likelihood-based method for comparison. As the likelihood can be
easily derived in these cases, it serves as a benchmark for numerical comparison. In
particular, under the linear model, we assumed that σ was known in the Bayesian
likelihood procedure, i.e., in the Gibbs sampling, we only took the posterior samples of
the β’s while fixing σ at the true value. This would make the same number of unknown
parameters for the Bayesian GMM and the Bayesian likelihood-based method, as the
Bayesian GMM takes σ as a nuisance parameter which does not appear in the posterior
distribution. We simulated one data set for each sample size considered, and took 10,000
posterior samples after the burn-in period of 500 iterations for the posterior inference.
Similarly, we considered the logistic regression model in the form of

logit(p) = β0 + β1Z1 + β2Z2,

under which the outcome y was simulated as a binary variable taking a value of 1 with
probability p, or 0 with probability 1−p. Moreover, under the Poisson log-linear model,

log(µ) = β0 + β1Z1 + β2Z2,

we simulated y as a Poisson variable with mean µ. In the logistic and Poisson models, the
true values of the regression parameters were the same as those in the linear regression
model, and the covariates were generated similarly as well, i.e., Z1 ∼ N(0, 1) and
Z2 ∼ Bernoulli(0.5). We took noninformative priors for all of the parameters such that
the posterior estimation was dominated by the data. In particular, we assigned each β
a prior distribution of N(0, 10, 000).

In Table 1, we summarize the posterior estimates, and compare the results between
the Bayesian GMM and Bayesian likelihood-based estimation procedures. For each
configuration, we report the posterior means and posterior standard deviations of the
regression parameters. When the sample size is relatively small (n = 200), we can see
that there are certain differences in the posterior estimates between the two methods,
and that the differences diminish and become negligible as the sample size increases.
The posterior means for the β’s using the Bayesian GMM are quite close to the true
parameter values, especially for large sample sizes, and the corresponding posterior
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standard deviations decrease with increasing sample sizes. Overall, there are no notable
differences in the estimation results obtained from the Bayesian GMM and Bayesian
likelihood method.
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Figure 1: Posterior trace plots using the Bayesian GMM, and posterior density plots
using the Bayesian GMM (——) and likelihood method (- - - -) for the linear regression
model with n = 200.

To examine the convergence of the Markov chains obtained by the Bayesian GMM,
we show the trace plots in Figure 1 for the linear model case with n = 200, side by
side with the posterior densities of each parameter using the Bayesian GMM and the
Bayesian likelihood-based method. We can see that the chains converged fast, mixed
well and appeared to be stationary for each β. Furthermore, we conducted more rigorous
convergence diagnostics for these Markov chains using the methods recommended by
Cowles and Carlin (1996). For example, based on the Z-score by Geweke (1992), we
found that all the Z-scores were not significant, which took values of 0.288, 0.884, and
−0.162 for β0, β1 and β2, respectively. Thus, the convergence of the Markov chains
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was satisfactory. In addition, the posterior densities using the Bayesian GMM and the
Bayesian likelihood method are very similar, which indicates that the moment-based
approach can adequately recover the information in the likelihood.

3.2 Posterior Probability Coverage Set

We further examined the validity of the posterior distribution and inference based on the
Bayesian GMM using the probability coverage of posterior sets suggested by Monahan
and Boos (1992). Their method is intuitive and numerically convenient, which has been
used to justify the Bayesian empirical likelihood (Lazar 2003). For ease of exposition,
we consider a single parameter β. If the “likelihood” produces valid Bayesian inferences,
then for any prior π(β), posterior credibility sets which are supposed to contain posterior
probability α should in fact contain the true β with proportion α when β is generated
from π(β) and the data are generated from the true density function of the data given
β. Our proposed alternative likelihood L̃(y|β) would be justified in terms of probability
coverage if and only if the posterior π̃(β|y) ∝ L̃(y|β)π(β) is valid by coverage for every
continuous prior distribution on β. That is, if we define

H =
∫ β

−∞
π̃(s|y)ds,

H should follow a uniform distribution on (0, 1); see Monahan and Boos (1992). Under
the linear regression model with n = 200, we took the normal prior distributions for
the β’s, i.e., β0 ∼ N(0.2, 25), β1 ∼ N(0.5, 25) and β0 ∼ N(−0.5, 25), respectively. We
replicated 1,000 simulations, and for each data set, we took 10,000 posterior samples
with 100 burn-in iterations, based on which we computed the statistic H. In Figure
2, we show the quantile-quantile (q-q) plots for the H statistics versus the quantiles of
Uniform(0, 1), using the Bayesian GMM and Bayesian likelihood method, respectively.
The q-q plot for each β is closely matching with the diagonal line. In addition, we do
not see any difference between the q-q plots using the Bayesian GMM and those using
the Bayesian likelihood method. This demonstrates that our Bayesian GMM can serve
as a valid alternative for the Bayesian likelihood method.

3.3 Longitudinal Data

Repeated measurements are common in longitudinal studies, and thus we examined the
frequentist properties of the Bayesian GMM under the linear regression model for such
data. For ease of exposition, we took all of the clusters to be of the same size, i.e.
Ki ≡ K = 4 for i = 1, . . . , n. We considered the linear regression model with correlated
errors given by

yik = β0 + β1Z1ik + β2Z2ik + εik, i = 1, . . . , n; k = 1, . . . ,K,

where εi = (εi1, . . . , εiK)T was assumed to follow a multivariate normal distribution
with mean zero and covariance σ2R. We assumed a typical exchangeable correlation
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Figure 2: Quantile-quantile plots for the H statistics versus Uniform(0, 1) using the
Bayesian GMM and likelihood method under the linear regression model with n = 200.

matrix R = (1 − ρ)I + ρ11T where ρ is the correlation coefficient, σ2 is the marginal
variance and 1 is a K-vector of 1. The true values of the parameters were β0 = 0.2,
β1 = 0.5, β2 = −0.5, and σ = 1, and we took ρ = 0.25 and 0.5. The prior distributions
for the parameters were noninformative, for example, the prior distributions for the β’s
were N(0, 10, 000), and τ = σ−2 followed a Gamma(0.0001, 0.0001) distribution with
mean one. We took the number of clusters as n = 100 and replicated 500 simulations for
each setup so that we could examine the frequentist properties of the Bayesian GMM.
For each data realization, after the burn-in period, we recorded 1,000 posterior samples,
upon which we then based our computation of the posterior means, posterior standard
deviations and the coverage probabilities of the 95% credible intervals.

We examined two frequentist GMM, two Bayesian GMM and two Bayesian likelihood-
based estimation procedures. In Table 2, the first row contains simulation results ob-
tained from the frequentist GMM with only one basis matrix I (known as the working
independence model). The second row shows simulation results obtained from the fre-
quentist GMM with two basis matrices C(1) = I and an exchangeable matrix with
diagonal elements of 0 and off-diagonal elements of 1, denoted as C(2) = Exch. The
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Table 2: Comparisons of simulation results using the frequentist GMM, the Bayesian
GMM and the Bayesian likelihood-based estimation method with correlated data.

β0 = 0.2 β1 = 0.5 β2 = −0.5
Method Ave ESD ASD CP Ave ESD ASD CP Ave ESD ASD CP

ρ = 0.25

Freqn GMM (I) .199 .082 .082 94.8 .498 .052 .050 94.8 −.502 .100 .099 94.2
Freqn GMM (I+Exch) .192 .088 .079 91.8 .501 .048 .046 92.6 −.495 .101 .092 92.4
Bayes GMM (I) .202 .082 .083 95.8 .501 .051 .050 95.0 −.502 .100 .100 92.8
Bayes GMM (I+Exch) .197 .081 .082 94.4 .498 .048 .047 92.8 −.497 .093 .094 94.6
Bayes Like (Full) .198 .080 .082 95.4 .498 .048 .047 93.6 −.498 .093 .094 94.6
Bayes Like (Fix ρ, σ) .197 .080 .081 93.6 .497 .048 .046 93.4 −.497 .093 .094 95.4

ρ = 0.5

Freqn GMM (I) .205 .094 .092 94.0 .500 .051 .049 93.2 −.503 .102 .098 93.0
Freqn GMM (I+Exch) .198 .091 .086 92.8 .501 .040 .039 94.2 −.501 .083 .078 92.8
Bayes GMM (I) .201 .093 .094 95.0 .500 .050 .050 96.2 −.502 .100 .100 94.2
Bayes GMM (I+Exch) .197 .089 .089 94.2 .498 .041 .040 93.2 −.498 .080 .079 94.2
Bayes Like (Full) .203 .089 .090 94.1 .502 .042 .040 94.1 −.504 .078 .080 95.3
Bayes Like (Fix ρ, σ) .200 .087 .089 94.6 .501 .041 .040 92.2 −.494 .079 .080 95.4

500 simulated data sets, Ave is the average of the parameter estimates over 500 simu-
lations, ESD is the empirical standard deviation, ASD is the average of the standard
error estimates, and CP is the 95% coverage probability.

third row shows simulation results from the Bayesian GMM with only one basis matrix
I; and the fourth row exhibits estimation results from the Bayesian GMM with two
basis matrices C(1) = I and C(2) = Exch. When the correlation matrix of the errors
is exchangeable, it can be fully characterized by these two basis matrices. Therefore,
we expect the posterior estimates based on the Bayesian GMM with (I + Exch) to be
comparable to those produced with the Bayesian likelihood method. The fifth row of
Table 2 gives the results obtained from the typical Bayesian likelihood method, in which
the five unknown parameters including three β’s, ρ and σ were all updated in the Gibbs
iterations. The results shown in the sixth row correspond to an ideal application of
the Bayesian likelihood method in which ρ and σ were fixed at the true value and thus
were not updated in the MCMC procedure, which would make the same number of un-
known parameters for the Bayesian GMM and the Bayesian likelihood-based estimation
procedures. For each simulated data set, we computed the parameter estimates, the
corresponding standard errors and the 95% confidence intervals using the frequentist
GMM; and computed the posterior means, the posterior standard deviations and the
95% credible intervals using the Bayesian methods.

In Table 2, we present the “Ave”, the average of the parameter estimates (based
on the frequentist GMM) or the average of the posterior means (each posterior mean
was based on 1000 posterior samples using the Bayesian methods) over 500 replicated
data sets; and the empirical standard deviation of the 500 estimates of the β’s denoted
as “ESD”. We also show the “ASD”, which was obtained by averaging the frequentist
standard error estimates or the posterior standard deviations over 500 simulated data
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sets; and the coverage probability “CP”, which is the percentage of the frequentist 95%
confidence intervals or the Bayesian 95% credible intervals that covered the true param-
eter value. We can see that the biases are negligible, and the parameter estimates are
very close based on all of the six estimation methods. When the correlation is relatively
low with ρ = 0.25, the Bayesian GMM with basis matrices of (I + Exch) yielded similar
posterior variance estimates compared to what were produced with only one basis ma-
trix of I. However, when the correlation is high with ρ = 0.5, adding the additional basis
matrix “Exch” produced substantially smaller variances. Furthermore, the variances of
the parameter estimates based on the Bayesian full likelihood approach are very close to
those obtained from the Bayesian GMM with (I + Exch). When the parameters ρ and
σ were fixed at the true values, the Bayesian likelihood method yielded slightly better
results. The coverage probabilities of the 95% confidence/credible intervals from all of
the six estimation procedures were quite accurate. There were no notable differences in
terms of the estimation bias and standard deviation between the Bayesian GMM and
Bayesian likelihood approaches. We thus conclude that the Bayesian GMM can basi-
cally recover the information in the likelihood; it takes ρ and σ as nuisance parameters;
and, more importantly, it does not rely on the multivariate normal assumption for the
errors. In addition, comparing the frequentist GMM and the proposed Bayesian GMM,
we obtained very similar results in terms of the parameter and variance estimates. This
would suggest that the proposed MCMC procedure can be used to solve the frequentist
GMM when the corresponding objective function is difficult to minimize numerically.
Especially, when β is of high-dimension, minimization over a large dimensional space
can be very challenging, whereas the Metropolis algorithm within the Gibbs sampler
reduces the problem to sample from one-dimensional conditional densities.

4 Nursing Intervention Study

In longitudinal studies, the same response variable is measured at consecutive times,
and the collection of responses on the same subject forms a cluster of outcomes. A nurs-
ing intervention study provided an interesting example of a longitudinal study for our
proposed procedure. The Managing Uncertainty in Cancer research group in the School
of Nursing at the University of North Carolina at Chapel Hill conducted a study to
determine whether phone consultations with patients would increase their understand-
ing of breast cancer and improve their ability to cope with the disease and condition
(Mishel et al. 2005). Patients diagnosed with breast cancer face many uncertainties,
and may feel hopeless in their ability to confront the disease. Such patients face uncer-
tainty about the cause and progression of the disease, about possible treatments they
will receive, about treatment side-effects and their prognosis. These uncertainties may
undermine a patient’s confidence in herself, in her beliefs, in her ability to determine the
meaning of illness-related events and to overcome breast cancer. The major aim of this
study was to implement an uncertainty-management intervention and determine its ef-
ficacy. It involved assessing the ability of the intervention to increase cancer knowledge,
enhance self-care, promote a self-help response, and improve the quality of life among
patients with breast cancer who were undergoing treatment.
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In this study, patients diagnosed with breast cancer were randomly assigned to
either the experimental/intervention arm or the control arm. One outcome of interest
was cancer knowledge, which was defined as the knowledge patients gained about their
cancer through the intervention. The outcome was measured at three time points for
each patient: at baseline (for assessment measures), at four months post-baseline (for
efficacy measures), and at seven months post-baseline (for durability measures). During
the four months following recruitment, a nurse-client manager contacted each patient
in the experimental group periodically by phone to relieve any concerns and answer
any questions related to the patient’s breast cancer, treatments, or treatment-related
symptoms. Patients in the control arm did not receive the phone calls. The intervention
ceased after four months. The durability measurement at month seven assessed whether
the impact of the intervention endured. The same questions were repeatedly asked of
patients in both arms over the three time points in order to evaluate the impact of the
nurse intervention.

As the outcome of interest, we took the increment of cancer knowledge at months
four and seven compared to the patient’s baseline measurement. The covariates in-
cluded the nursing intervention (experimental arm=1 and control arm=0) and ethnicity
(white=1 and others=0). There were a total of 279 patients in our analysis. We took
50,000 posterior samples after 1,000 burn-in iterations. Based on the Bayesian GMM,
the posterior means and standard deviations for the intercept, intervention effect and
ethnicity were 0.611 (0.267), 1.063 (0.332) and 0.313 (0.333), respectively. For com-
parison, we also implemented the Bayesian likelihood method, for which we assumed
a bivariate normal error distribution. Correspondingly, the posterior means and poste-
rior standard deviations for the intercept, intervention effect and ethnicity were 0.615
(0.265), 1.062 (0.329) and 0.308 (0.340), respectively. The Bayesian likelihood-based
method has two more parameters for the error distribution, i.e., the correlation coeffi-
cient ρ and the marginal variance σ2. The posterior mean and standard deviation for ρ
were 0.637 (0.036), and those for τ = σ−2 were 0.109 (0.008). We can see that the two
Bayesian methods yielded very similar results. Our analysis showed that the nursing
intervention clearly increased patients’ cancer knowledge, and we found no difference
in the increment of cancer knowledge across patient ethnicity. In addition, we imple-
mented the frequentist GMM to analyze the nursing intervention data. The parameter
estimates and standard errors for the intercept, intervention effect and ethnicity were
0.615 (0.265), 1.063 (0.328) and 0.307 (0.328), respectively. The results obtained from
the Bayesian GMM and the frequentist GMM match very well, and thus the same
inference and conclusion can be drawn.

5 Discussions

In practical applications, we often have limited information on the likelihood function.
When the likelihood is difficult to derive, Bayesian inference is challenging and may be
vulnerable to some additional assumptions. We have proposed the Bayesian GMM that
can be implemented in a straightforward manner. The Bayesian GMM is most attractive
when the likelihood function is difficult to derive. Numerical comparisons have shown
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that the Bayesian GMM can basically recover the information in the likelihood, and
thus may serve as a good substitute for the true likelihood. The proposed method can
be viewed as a Bayesian analog of the frequentist GEE approach, which has gained
much popularity in statistical analysis of longitudinal or clustered data. In addition,
when it is difficult to numerically minimize Qn(β) over β, especially when β is high-
dimensional, the Bayesian GMM can be useful for approximating the frequentist GMM
estimate and obtaining approximate frequentist inferences.

The proposed Bayesian GMM is based on the moment conditions, instead of the like-
lihood. In many semiparametric models, the likelihood is difficult to derive or maximize
due to nuisance parameters (which can be infinite-dimensional), such as the quantile
regression (Koenker and Bassett 1978), the proportional hazards model (Cox 1972) or
other profile likelihoods in Murphy and van der Vaart (2000). Our procedure can be
applied as long as the moments are correctly specified. In longitudinal studies, the GEE
under the working independence model, still produces consistent estimators, while the
corresponding variance need to be adjusted for the correlation based on the sandwich-
form estimator. However, our formulation of the Bayesian GMM automatically accounts
for the underlying correlation, such that the posterior samples of the parameters yield
valid inference.
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