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Abstract

Cardiomyocyte apoptosis is an important remodeling event contributing to heart failure and adiponectin may mediate
cardioprotective effects at least in part via attenuating apoptosis. Here we used hypoxia-reoxygenation (H/R) induced
apoptosis in H9c2 cells to examine the effect of adiponectin and cellular mechanisms of action. We first used TUNEL labeling
in combination with laser scanning cytometry to demonstrate that adiponectin prevented H/R-induced DNA fragmentation.
The anti-apoptotic effect of adiponectin was also verified via attenuation of H/R-induced phosphatidylserine exposure using
annexin V binding. H/R-induced apoptosis via the mitochondrial-mediated intrinsic pathway of apoptosis as assessed by
cytochrome c release into cytosol and caspase-3 activation, both of which were attenuated by adiponectin. Mechanistically,
we demonstrated that adiponectin enhanced anti-oxidative potential in these cells which led to attenuation of the increase
in intracellular reactive oxygen species (ROS) caused by H/R. To further address the mechanism of adiponctins anti-
apoptotic effects we used siRNA to efficiently knockdown adiponectin receptor (AdipoR1) expression and found that this
attenuated the protective effects of adiponectin on ROS production and caspase 3 activity. Knockdown of APPL1, an
important intracellular binding partner for AdipoR, also significantly reduced the ability of adiponectin to prevent H/R-
induced ROS generation and caspase 3 activity. In summary, H/R-induced ROS generation and activation of the intrinsic
apoptotic pathway was prevented by adiponectin via AdipoR1/APPL1 signaling and increased anti-oxidant potential.
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Introduction

The increasing prevalence of overweight and obesity and their

association with cardiovascular diseases has generated great

interest in investigating potential molecular mechanisms linking

obesity and cardiovascular disease [1]. Obesity is clearly associated

with myocardial structural and functional changes in both humans

and animal models [1] and it is widely accepted that obesity will

eventually lead to an increased incidence of heart failure.

Nevertheless, whereas obesity increases the risk of myocardial

infarction (MI), many recent reports now indicate a significant

post-MI survival benefit in obese patients [2]. Hence, there is

currently a critical requirement to understand the systematic and

cellular mechanisms whereby obesity may both elicit MI and yet in

some cases protect from subsequent events.

The cardioprotective properties of adiponectin have recently

been established [3,4]. Plasma level of adiponectin is lower in

obese individuals and many human studies have suggested

hypoadiponectinemia as an independent risk factor for cardiac

disorders [3,5,6,7]. Circulating adiponectin occurs as trimeric,

hexameric or oligomeric complexes of monomers and cleavage to

produce the C-terminal globular domain has also been proposed

as an important regulatory step in adiponectin action since this C-

terminal fragment can mediate potent physiological effects [8,9].

The globular and full length forms of adiponectin exhibit different

affinities for two adiponectin receptor (AdipoR) isoforms [10] and

have been shown to mediate distinct effects [11,12,13,14]. An

important role for APPL1 in mediating signaling downstream of

AdipoR has recently been characterized such that overexpression

or knockdown of APPL1 can result in increased or attenuated

adiponectin signaling and effects, respectively [15,16,17,18,19].

Cardiomyocyte apoptosis is now established as an important

remodeling event occurring in end stage cardiomyopathy [20].

Several studies have now demonstrated an anti-apoptotic effect of

adiponectin on the heart [21,22,23,24,25,26]. However, a major

unresolved question is whether the mechanism of action involves

AdipoR1 and APPL1. Here we used hypoxia-reoxygenation induced

apoptosis in H9c2 cells, an established in vitro model for mimicking

ischemia/reperfusion of cardiomyocytes [27], to examine the cellular

mechanisms responsible for the anti-apoptotic effects of adiponectin.
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Materials and Methods

Materials
Dulbecco’s modified eagle medium (DMEM) was obtained from

Gibco Laboratories (Grand Island, NY, USA). Penicillin/strepto-

mycin from Wisent Inc. (Quebec, Canada). The hypoxia chamber

was purchased from Billups-Rothenberg, Inc. Mitsubishi Gas

Chemical Company, Inc. (Tokyo, Japan) kindly provided the

anaerobic pouch (kenki for cells) keeping 95%N2 and 5% CO2 level.

We used CM-H2DCFDA from Molecular Probes, Invitrogen, the

Caspase 3/CPP32 Colorimetric assay kit from MBL Intl., and

Antioxidant capacity assay kit from Sigma Aldrich. Annexin

V-FITC Apoptosis Detec.tion Kit I is from BD Biosciences

(Canada), the Mitochondrial/Cytosol Fractionation kit is from

BioVision (CA, USA). All siRNAs were purchased from Ambion,

Inc., and TransIT-TKO reagent was from Mirus Bio Corpora-

tion. We used lipofectaimne 2000 from Invitrogen for plasmid

transfection. We globular adiponectin from AdipoGen (AG-40A-

0006) and produced polyclonal APPL1 antibody in-house.

Primary antibodies for AdipoR1/2 were from Phoenix Bio-Tech

Corp. (Toronto, Canada); the antibody for cytochrome c was from

BD biosciences (Canada). HRP-conjugated anti-rabbit secondary

antibody was from Cell Signaling Technology (Beverly, MA).

Enhanced chemiluminescence reagent was purchased from

PerkinElmer Life Science (Burlington, ON, Canada).

Cell culture and hypoxia/reoxygenation treatment
Commercially available H9c2 rat embryonic cardiac myoblasts

(ATCC) were grown in Dulbecco’s modified Eagle medium

(DMEM) supplemented with 10% fetal bovine serum (FBS) and

1% (v/v) streptomycin/penicillin (Wisent Inc, Quebec, Canada) at

37uC, 5% CO2. When cells reach about 80% of confluence in

appropriate culture dishes, cells were pre-starved using DMEM

supplemented with 0.5% FBS for 2 hrs and then pretreated with

gAd (2.5 ug/ml) for 1 hr. After the pretreatment, simulated

ischemia/reperfusion was achieved by culturing the cells in 0.5%

FBS DMEM with or without adiponectin in a hypoxia chamber,

saturated with 5%CO2/95%N2 and supplemented with an

anerobic pouch (Mitsubishi Gas Chemical Company, Inc.)at

37uC for 21 hrs and following reoxygenation (1–6 h) using 0.5%

FBS DMEM with or without adiponectin in the normal incubating

condition.

Detection of DNA fragmentation by TUNEL via laser
scanning cytometry

TUNEL (Terminal deoxynucleotidyl transferase-mediated

dUTP nick end-labeling) assay was performed using In Situ Cell

Death Detection Kit, Fluorescein (Roche Applied Science,

Quebec, Canada) according to the manufacturer’s protocol.

Briefly, cells were grown on cover slips in a 12 well plate and

after the proper treatment, cells were fixed in 4% paraformalde-

hyde and permeabilized using 0.1% Triton X-100 in 0.1% sodium

citrate. Then, cells were incubated in TUNEL reaction mixture

for 1 hr at 37uC. Coverslips were mounted on microscope glass

slide with DAKO mounting medium and analyzed using

immunofluorescent confocal microscopy or laser scanning cytom-

etry (CompuCyte Corp), essentially as previously described [28].

Annexin V binding assay
We used Annexin V Alexa Flour 488 (Molecular Probes, OR) to

detect the phosphotidylserine exposure to the outer surface of cell

membrane by following the manufacturer’s protocol. Briefly, cells

were grown on cover slip in a 12 well plate. After the desired

treatment, cells were washed with cold PBS and 1x binding buffer

(10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2). Cells

were then incubated in Annexin V Alexa Flour 488 (1:20 dilution)

and propidium iodide (1 ug/ml) diluted in 1x binding buffer for

15 min. Then cells were washed twice with 1x binding buffer and

the coverslips were mounted on microscope glass slides with Dako

florescent mounting medium (DakoCytomation, Missisauga,

Canada). Annexin V positive cells were excited and detected at

495/519 nm by a confocal microscopy (Olympus Flouview) and

fluorescence quantitated using NIH Image software.

Detection of cytochrome c release from mitochondria
Cytochrome c release was detected using Western blot analysis

after mitochondria/cytosol fractionation. For the fractionation, we

used a mitochondria/cytosol extraction kit (BioVision, USA)

according to the manufacturer’s protocol. Briefly, cells were grown

in a 6 cm cell culture dish. After the proper treatment, cells were

washed with PBS and resuspended with 100 ul of 1x Cytosol

Extraction Buffer Mix containing DTT and protease inhibitors.

After 10 min incubation on ice, the cells were scraped off from the

dish and collected in a microtubes and syringed 20 times, and then

centrifuged at 3000 rpm for 10 min at 4uC. The supernatant were

collected and centrifuged at 13,000 rpm for 30 min at 4uC. Then

the supernantant was collected as the cytosol fraction, and the

pellet was resuspended with 50 ul of the Mitochondria Extraction

Buffer Mix containing DTT and protease inhibitors, and it is

saved as the mitochondrial fraction. The equal amount of each

fraction, 15 mg of cytosol fraction and 10 mg of mitochondrial

fraction, were loaded for Western blot analysis using anti-

cytochrome c at 1:500 dilution (BD pharmingen).

Measurement of caspase 3 activity
The Caspase 3/CPP32 Colorimetric assay kit (MBL, MA) was

used to measure the activity of caspase 3 according to the

manufacturer’s protocol. Cells were grown in a 6 well plate. After

the proper treatment, cells were resuspended in 50 ul of chilled

lysis buffer on ice for 10 min, and cells were scraped off from the

plates and centrifuged at 8,000 rpm for 1 min. The supernatnat

was transferred to a microtube, and 50,100 ug of protein was

diluted to 50 ul cell lysis buffer for each assay. Then, 50 ul of 2x

Reaction Buffer containing DTT and 5 ul of 4 mM DEVD-pNA

substrate were added to each assay and incubated at 37C for

2 hours. After the incubation time, 100 ul of each sample was

transferred to each well in a 96 well plate, and read at 405 nm in a

microplate reader. Cell lysates were also analyzed by Western

blotting with an antibody (Cell Signaling, Beverly, MA) which

allows detection of inactive procaspase 3 and activated cleaved

caspase 3.

Western blotting
This was performed as described by us previously [29] using

specific antibodies to AdipoR1 at 1:1000 and APPL1 at 1:3,000

dilutions. Appropriate horseradish peroxidase-conjugated second-

ary antibody (anti-rabbit at 1:10,000 dilution) was used and

proteins detected by the chemiluminescence method. Equal

loading of protein is routinely ensured by b-actin analysis.

Measurement of intracellular ROS
We used CM-H2DCFDA (Molecular Probes, Invitrogen) to

measure the intracellular ROS during the reoxygenation (1–6 hr)

according to the manufacturer’s protocol with a few modifications.

Briefly, cells were grown in a 6 well plate and after the proper

treatment, cells were washed with PBS and incubated in pre-

warmed PBS containing the probe in a final working concentra-
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tion of 5 uM for 30 min at 37uC. Then the PBS solution was

removed and the cells were resuspended in microtubes using

Trypsin and PBS (Wisent Inc, Quebec, Canada) via centrifugation

and pipetting. The cells were resuspended in 500 ul PBS, and

100 ul of the solution was transferred to a 96 well plate for

monitoring the fluorescence intensity (485 nm/527 nm) with a

microplate reader.

Antioxidant Capacity Assay
We used commercially available antioxidant assay kit (Sigma-

Aldrich) to measure total antioxidant capacity after gAd (2.5 ug/ml,

1 hr) treatment or ascorbic acid (100 uM, 1 hr) as the positive control.

In presence of H2O2, formation of a ferryl myoglobin radical oxidizes

the ABTS (2,29-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) to its

radical cation, which is green in color and can be determined

spectrophotometically at 405 nm. Briefly, cells were grown in a 6 well

plate and after the proper treatment, cells were washed with PBS and

homogenized in 300 ul of cold 1 x assay buffer. The supernatant

collected after centrifuge at 12,000 g for 15 min was used for the assay.

The antioxidant capacity was quantified by a Trolox standard curve.

Co-immunoprecipitation after transfection with AdipoR1-
Flag plasmid

Cells were grown in normal growth medium in a 6 well plates.

Once cells reach 80% of confluency, a plasmid encoding AdipoR1(C)-

Flag (3 ug) was transfected in to H9c2 cells using lipofectamine 2000

(Invitrogen). After 18 hours of transfection, the medium was replaced

by normal growth medium and then treated with gAd (2.5 ug/ml)

after another 24 hours. After the treatment cells were homogenized in

lysis buffer containing 1% Triton X-100. Cell homogenate was

incubated with a monoclonal anti-Flag antibody (Sigma-Aldrich) and

Protein G sepharose (GE healthcare) to pull down the AdipoR1

protein complex for the further analysis by western blot.

siRNA-mediated knockdown of AdipoR1 and APPL1
Cells were grown in normal growth medium in a 6-well plate.

Once cells reach approximately 80% confluence, 21-nucleotide

small interfering RNA (siRNA) sequences (Ambion, Inc. Austin,

TX) designed to knockdown rat AdipoR1 or APPL1 were tested in

H9c2 cells. The sequence of siRNAs ultimately used here for

providing optimal efficiency were: AdipoR1, GCUCAUGUUGA-

Figure 1. Effect of gAd on H/R-induced DNA fragmentation detected by terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) using laser scanning cytometry and phosphatidylserine externalization detected by Annexin V labeling. Shown in
(A) is a representative scatterplot for each condition (normoxia, H/R: 21 h hypoxia followed by 6 h reoxygenation, H/R+gAd (2.5 mg/ml)) where above
the horizontal line indicates TUNEL positive cells (red). The quantitative analysis of % TUNEL positive cells is shown inset. Values shown are mean 6
SEM from three separate analyses. (B) shows representative immunofluorescent confocal images and the quantitative analysis of intensity of Annexin
V positive fluorescence. Values shown are mean 6 SEM from n = 3. * indicates p,0.05 with respect to normoxia and # indicates p,0.05 with respect
to H/R.
doi:10.1371/journal.pone.0019143.g001
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GAUUUACtt; and APPL1, GCUUAGUUCUUGUCAUGCAtt.

50 nM of each siRNAs were transfected into H9c2 cells using the

TransIT-TKO reagent (Mirus Bio Corporation, Madison WI),

precisely according to instructions provided by the manufacturer.

After 24 hours of incubation, the medium was replaced by normal

growth medium and cells were then treated as described previously

after another 24 hours. The efficiency of siRNA-mediated AdipoR

and APPL1 knockdown was determined by Western blotting cell

lysates prepared 48 hrs after the siRNA transfection.

Statistical analysis
Data are presented as means 6 SEM or as otherwise indicated in

legends. Statistical analysis was undertaken using student’s t test and

differences between groups were considered significant when P,0.05.

Results

Adiponectin pretreatment prevents H/R-induced
apoptosis in H9c2 cells assessed by DNA fragmentation
and annexin V labeling

After 21 hours of hypoxia followed by 6 hours reoxygenation we

observed a significant increase in DNA fragmentation using

terminal deoxynucleotidyl transferase dUTP nick end labeling

(TUNEL). This was determined both by laser scanning cytometry

(LSC; figure 1A) and by immunoflourescent microscopy (data not

shown). The quantitative analysis provided by LSC demonstrated

that the H/R treatment resulted in 8263.2% TUNEL positive cells

with only 3.760.67% observed under normal conditions (figure 1A).

Therefore, H/R induced an ,22-fold increase in the population of

TUNEL positive H9c2 cells (P,0.05). There was a statistically

significant attenuation of H/R-induced TUNEL positive staining

when cells were pretreated with gAd (2.5 mg/ml; 24.766.1). In all

cases gAd was added 1 hour prior to hypoxia and presence

maintained until assays were conducted. We also used annexin-V

binding to externalized phsophatidylserine to further investigate

apoptotic events under the above conditions. Our data demon-

strated a significant increase in phosphatidylserine exposure upon

H/R treatment which again was attenuated by gAd pretreatment

(figure 1B). The lack of significant propidium iodide staining of cells

in these experiments (data not shown) was indicative of apoptotic

but not necrotic cell death under H/R conditions.

Adiponectin attenuates H/R-induced cytochrome c
release from mitochondria and caspase-3 activity

We prepared cytosolic and mitochondrial fractions from cells

exposed to H/R 6 adiponectin pretreatment to demonstrate

release of cytochrome c from mitochondria after hypoxia followed

by 6 hours reoxygenation (figure 2A). Quantitative analysis of

immunoblots demonstrated that the level of H/R-induced

cytochrome c release to cytosol was significantly attenuated in

gAd-treated cells (figure 2A). Correspondingly, there was also a

significant increase in caspase 3 activity induced by H/R,

determined via analyzing procaspase cleavage (figure 2B) or using

a caspase 3 activity colorimetric assay kit (figure 2C). Preatment of

cells with adiponectin attenuated caspase 3 activity (figure 2B &

2C).

Adiponectin attenuates H/R-induced ROS generation via
enhancing anti-oxidative potential in cells

Intracellular reactive oxygen species (ROS) play a major role in

initiating apoptosis via the intrinsic mitochondrial dependent

pathway during ischemia/reperfusion or H/R. Here we demon-

strated that hypoxia alone increased the level of intracellular ROS

and, furthermore, that 1 hour of reoxygenation induced the

Figure 2. Activation of components of the intrinsic apoptosis pathway upon H/R and their regulation by gAd. (A) shows a
representative Western blot of cytochrome c expression in cytosolic fraction with quantitative analysis. (B) A representative western blot showing
levels of procaspase 3 (C3) and cleaved caspase 3 (CC3) under each condition with quantitative analysis of caspase 3 activity using DEVD-pNA
substrate shown in (C). In all cases values shown are mean 6 SEM from n$3 where * indicates p,0.05 with respect to normoxia and # indicates
p,0.05 with respect to H/R.
doi:10.1371/journal.pone.0019143.g002
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highest magnitude of increase in ROS production (figure 3A).

After reaching the peak level of ROS, cells restored normal

intracellular ROS levels as reoxygenation progressed up to 6 hours

(figure 3A). We found that gAd (2.5 mg/ml) pretreatment

significantly reduced the peak intracellular ROS level measured

after 1 hr reoxygenation following hypoxia (figure 3B). This effect

can be explained by the ability of adiponectin to increase the anti-

oxidative capacity of these cells (figure 3C).

AdipoR1 and APPL1 mediate the anti-apoptotic effects of
gAd

We demonstrated for the first time in this cell type that gAd

stimulated increased binding between AdipoR1 and APPL1, as

shown by coimmunoprecipitation study (figure 4A). To then

investigate the functional significance of this interaction we used

siRNA targeting AdipoR1 or APPL1 to induce loss of function and

confirmed the efficiency of knockdown by Western blotting for

these proteins. As shown in figure 4B, AdipoR1 expression was

significantly decreased by AdipoR1 siRNA but not by scrambled

siRNA (figure 4B). We used intracellular ROS production and

caspase 3 activity as quantitative assays to determine the functional

significance of manipulating AdipoR1 expression. As shown in

figures 4D-G, when AdipoR1 siRNA was used the H/R-induced

increase in intracellular ROS level and caspase 3 activity remained

the same as non-treated cells when treated with gAd, indicating

that AdipoR1 knockdown attenuated the protective effect of gAd.

We observed that mRNA expression of the AdipoR2 isoform in

this cell type was almost 5-fold lower than AdipoR1 and that gAd

still prevented H/R-induced ROS production when siRNA was

used to knockdown AdipoR2 (data not shown). We also used

APPL1 siRNA to examine the role of this AdipoR binding protein

in mediating the anti-apoptotic actions of gAd. The efficiency of

siRNA to elicit knockdown of this protein was tested by Western

blot analysis of cell lysates (figure 4C) and demonstrated significant

reduction in APPL1 expression, while scrambled siRNA sequence

did not alter endogenous expression (figure 4C). Analysis of the

functional significance of APPL1 knockdown showed that the

ability of gAd to prevent H/R-induced ROS generation and

caspase 3 activity was significantly attenuated by reducing APPL1

expression (figure 4H–I). A schematic diagram showing a sum-

mary of these data is shown in figure 5.

Figure 3. Anti-oxidative potential of gAd against H/R induced ROS production in H9c2 cells. (A) shows intracellular ROS levels after 21 h
hypoxia followed by reoxygenation (#6 hr). Data are expressed as fold relative to normoxia. (B) Effect of gAd (2.5 mg/ml) pretreatment on
intracellular ROS after hypoxia and 1 hr reoxygenation (H/R). (C) shows ability of gAd (2.5 mg/ml) to increase the total antioxidative capacity in H9c2
cells. Ascorbic acid (100 mM) was used as a positive control of this assay. In all cases values shown are mean 6 SEM from n$3 where * indicates
p,0.05 with respect to normoxia and # indicates p,0.05 with respect to H/R.
doi:10.1371/journal.pone.0019143.g003
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Discussion

The regulation of apoptosis by adiponectin may have

widespread implications in obesity linked diseases such as diabetes,

cancer, alzheimers and cardiovascular disease [3,30]. In particu-

lar, loss of cardiomyocytes via apoptosis is considered as a

contributing factor to progressive deterioration of the hypertro-

phied left ventricle, ultimately leading to end stage cardiomyop-

athy [20]. Several recent articles have heightened interest in the

effects of adiponectin on cardiomyocyte apoptosis, notably work

establishing the cardioprotective effects of adiponectin against

apoptosis induced by acute ischemia-reperfusion, or chronic

coronary artery ligation models of MI [23,24]. The former has

been shown to occur via AMPK and COX-2 dependent

mechanisms [24] and via reduction of oxidative/nitrative stress

[25] and activation of Akt by adiponectin was also suggested to

play a protective role [22]. Adiponectin also reduced the number

of apoptotic cardiomyocytes in mice with viral myocarditis [26].

Figure 4. The role of AdipoR1 and APPL1 in mediating the anti-apoptotic effects of gAd. (A) shows a representative Western blot of
APPL1 after Co-IP using anti-Flag antibody against AdipoR1(C)-Flag. This demonstrated that gAd (2.5 mg/ml) treatment (0–10 min) induces
interaction between AdipoR1 and APPL1 in H9c2 cells. siRNA was used to knockdown expression of AdipoR1 or APPL1 and (B/C) show the
representative Western blots demonstrating the efficiency and specificity of the approach. (D–I) show the quantitative analysis of caspase 3 activity
measured using the DEVD-pNA substrate assay (D/F/H) and intracellular ROS levels (E/G/I) under each conditon (normoxia, H/R, H/R+gAd (2.5 mg/ml))
in H9c2 cells treated with scrambed siRNA or siRNA specific to AdipoR1 or APPL1. Data presented are mean 6 SEM from n$3. * indicates p,0.05 with
respect to normoxia and # indicates p,0.05 with respect to H/R.
doi:10.1371/journal.pone.0019143.g004

Anti-Apoptotic Effect of adiponectin signaling

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e19143



The existing evidence is convincing and intriguing and provided

the impetus for our more detailed mechanistic studies to examine

mechanisms of adiponectin action and, in particular, whether

adiponectin exerts effects via AdipoR1 and APPL1.

The phenomenon of ischemia-reperfusion induced cell death is

important in a variety of circumstances including MI as well as

during bypass surgery. Reperfusion of ischemic tissue is vital for

long-term survival yet there is also a significant induction of cell

death during this phase [31]. Here we used H/R-induced

apoptosis in H9c2 cells, often employed previously as an in vitro

model for ischemia/reperfusion [27]. The contribution of

apoptosis and necrosis to cell death of cardiomyocytes during

ischemia-reperfusion has been, and remains, controversial [32].

We analyzed annexin-V binding which will recongnize phospha-

tidylserine exposed on the outer leaflet of the cell membrane as a

marker of cell death and in combination with propidium iodide

staining of nuclei observed that while a positive annexin-V signal

was detected after H/R, PI was excluded suggesting cell death was

occurring principally via an apoptotic pathway. Indeed, our

further analysis of apoptosis, via DNA fragmentation determined

by TUNEL labeling in combination with laser scanning

cytometry, demonstrated that H/R-induced a significant increase

in TUNEL-positive cells. The anti-apoptotic effects of adiponectin

were clearly evident in both of these assays, confirming previous

reports of anti-apoptotic effects of adiponectin in cardiomyocytes,

and based on these data we then focused more closely on

examining the intrinsic apoptotic pathway and mechanisms

mediating the effects of adiponectin.

The intrinsic apoptotic signaling pathway has been suggested to

be an important component of cardiomyocyte cell death and was

recently shown to play an important role in the transition from

compensated hypertrophy to heart failure [33]. Pro- and anti-

apoptotic Bcl-2 family proteins play an important role in

regulating the intrinsic apoptotic pathway and in particular Bax,

a principal effector pro-apoptotic Bcl-2 family member plays an

important role in H/R induced apoptosis by regulating release of

cytochrome c [34]. Generation of reactive oxygen species (ROS)

by mitochondria is also an important step in the intrinsic apoptosis

pathway stimulated by H/R [35,36]. In correlation with previous

studies, we found that hypoxia alone was a weak stimulus of ROS

generation [27,36] but that reoxygenation rapidly induced a

significant increase of intracellular ROS. This is in keeping with

previous studies reporting ROS generation during the reperfusion

phase of cardiac injury after ischemia [36,37,38]. Importantly, we

observed a significant decrease of intracellular ROS generation in

adiponectin treated cells and that this was likely mediated by the

fact that adiponectin directly increased anti-oxidative capacity of

these cells. This anti-oxidative effect of adiponectin is supported by

DNA 
Fragmentation

Other inputs

cytc

ROS
ROS

C3 CC3

PS externalization

phosphatidylserinegAd other phospholipids

Figure 5. Schematic summary of events. This schematic diagram summarizes the main events which have been established by data in this study.
H/R is a stimulus for mitochondrial dependent activation of apoptosis which invloves ROS production and cytochrome c release. This intrinsic
pathway of apoptosis involves caspase-3 activation which leads to DNA fragmentation. Another hallmark of apoptosis is the exposure of
phosphatidylserine (normally located only on inner membrane) to external surface of plasma membrane. Globular adiponectin, via binding to
AdipoR1 and recruiting APPL1 leads to signaling events which enhance anti-oxidant potential in the cells. This is at least in part responsible for
reducing ROS production in response to H/R and attenuation of apoptosis.
doi:10.1371/journal.pone.0019143.g005
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previous studies showing that gAd lowered superoxide levels after

ischemia/reperfusion in adiponectin knockout mice [25]. Our

result can also be correlated to a clinical study which demonstrated

that pravastatin increased adiponectin sythesis in the visceral

adipose tissue and reduced oxidative stress in men with coronary

artery disease [39]. In addition to the anti-oxidative effect of

adiponectin, we also found an anti-apoptotic effect of adiponectin

in lowering the activity of caspase 3, one of the final executioner

proteins in the apoptotic cascade. This work supports previous

studies demonstrating an ability of adiponectin to protect not only

cardiomyocytes, but also endothelial, neuroblastoma and pancre-

atic beta cells from caspase-3 mediated cell death [40,41,42].

Although many studies have demonstrated the functional role of

AdipoR1 in mediating metabolic effects of gAd [10,43], the role of

this receptor in mediating the anti-apoptotic effects of gAd in

cardiomyocytes remained to be estabished. Previous work by

Kadowaki’s group [10] demonstrated that AdipoR1 suppresion

reduced gAd binding whereas AdipoR2 suppresion affects fAd

binding in C2C12 myotubes since gAd has a higher binding

affinity for AdipoR1 and fAd for AdipoR2. We have also

demonstrated that metabolic effects of gAd in primary neonatal

cardiomyocytes were mediated via AdipoR1 and that AdipoR2

knockdown attenuated fAd actions [29]. In this study, we used

siRNAs targeting AdipoR1 to efficiently knockdown expression

and identify the functional role. Indeed, AdipoR1 knockdown

attenuated the protective effects of gAd on ROS and caspase 3

activity. Our studies described above, together with the small gAd-

mediated decrease in H/R-induced intracellular ROS levels are in

agreement with the concept of AdipoR1 primarily mediating the

effects of gAd. APPL1 (adaptor protein containing PH domain,

PTB domain, and leucine zipper motif) has been implicated as an

important component of adiponectin signaling by binding to

AdipoR and participating in activation of signaling pathways

including Akt and AMPK [15,16,17,18,19]. Overexpression of

full-length and PTB domain of APPL1 enhances adiponectin

associated signaling events both in vitro and in vivo [18,19].

However, the physiological relevance of APPL1 in cardioprotec-

tion and anti-ischemia induced damage by adiponectin is not clear

at the present time. Here, we found that APPL1 knockdown

clearly diminished the anti-apoptotic properties of gAd. Our novel

observation of an important role for APPL1 in the anti-oxidative/

apoptotic effect of gAd correlates well recent studies suggesting

that adiponectin protects against myocardial ischemia reperfusion

injury via AMPK and Akt dependent signaling mechanisms

[22,24]. A recent study demonstrated that adiponectin can

mediate anti-oxidant effects in an AMPK-independent manner

[44]. Since both this study and our current data only show partial,

albeit statistically significant, AMPK-independent and -dependent

mechanisms, respectively, it is likely that both can be involved.

In summary, we document protective effects of adiponectin

against H/R-induced apoptosis in H9c2 cells via anti-oxidative

effects and attenuation of the intrinsic apoptotic pathway. Of

course care must be exercised in extrapolating this data in a cell

model to in vivo significance. Nevertheless, documenting that

AdipoR1/APPL1 are involved in regulating anti-oxidative effects

and subsequently the intrinsic apoptosis pathway is important to

establish. Indeed, targeting this mechanism may represent a

desirable approach to treat heart failure and, together with future

studies, may be of value in encouraging improved therapeutic

approaches.
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