
Title GPU-based beamformer: Fast realization of plane wave
compounding and synthetic aperture imaging

Author(s) Yiu, BYS; Tsang, IKH; Yu, ACH

Citation IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 2011, v. 58 n. 8, p. 1698-1705

Issued Date 2011

URL http://hdl.handle.net/10722/139255

Rights

©2011 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/37961997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 8, August 20111698

0885–3010/$25.00 © 2011 IEEE

Abstract—Although they show potential to improve ultra-
sound image quality, plane wave (PW) compounding and syn-
thetic aperture (SA) imaging are computationally demanding
and are known to be challenging to implement in real-time. In
this work, we have developed a novel beamformer architecture
with the real-time parallel processing capacity needed to en-
able fast realization of PW compounding and SA imaging. The
beamformer hardware comprises an array of graphics process-
ing units (GPUs) that are hosted within the same computer
workstation. Their parallel computational resources are con-
trolled by a pixel-based software processor that includes the
operations of analytic signal conversion, delay-and-sum beam-
forming, and recursive compounding as required to generate
images from the channel-domain data samples acquired using
PW compounding and SA imaging principles. When using two
GTX-480 GPUs for beamforming and one GTX-470 GPU for
recursive compounding, the beamformer can compute com-
pounded 512 × 255 pixel PW and SA images at throughputs of
over 4700 fps and 3000 fps, respectively, for imaging depths of
5 cm and 15 cm (32 receive channels, 40 MHz sampling rate).
Its processing capacity can be further increased if additional
GPUs or more advanced models of GPU are used.

I. Introduction

Ultrasound imaging is conventionally based upon a
pulse-echo sensing mechanism that sequentially ac-

quires image data over a group of beamlines [1]. This im-
aging paradigm typically allows a single transmit axial
focus to be defined. If better focusing quality is desired,
then the pulse-echo sensing is repeated a few times over
each beam-line with different nominal transmit focusing
locations. However, in doing so, the overall data acquisi-
tion time is lengthened concomitantly, meaning that the
imaging frame rate is reduced. To improve the image qual-
ity without affecting the frame rate, it is necessary to
make use of non-beamline-based imaging paradigms that
can form focused broad-view images without requiring ad-
ditional pulse-echo firings. One approach is to use plane-
wave (PW) compounding principles that insonate broad-
field pulses with different steering angles [2], [3]. Another
non-beamline-based imaging method that has been pro-

posed is the synthetic aperture (SA) imaging technique,
which transmits unfocused point-source firings from dif-
ferent lateral positions [4]. For both methods, each firing’s
pulse echoes are acquired over all array channels; because
the transmit firings are essentially broad-field insonations,
the received channel-domain raw data can be used to form
a low-resolution image (LRI) by performing delay-and-
sum beamforming at each pixel position. High-resolution
images (HRI) with whole field-of-view focusing may also
be obtained computationally via recursive summation of
a series of LRIs [5].

Although PW compounding and SA imaging have
shown potential to improve image quality, their real-time
realization is inherently a nontrivial implementation task.
One technical challenge that concerns many system de-
velopers is the massive computational demand of these
imaging methods compared with conventional ultrasound
image formation [6]. Because both PW compounding and
SA imaging beamform every pixel directly from the chan-
nel-domain data based on different sets of focusing delays
[3], [4], their image formation process is inherently more
complicated than the conventional approach, which works
on a line-by-line basis using the same set of focusing de-
lays. In existing ultrasound scanners, field programmable
gate arrays (FPGAs) and digital signal processors (DSPs)
are usually used to handle computations related to real-
time image formation [7]. Nevertheless, they are merely
intended to work with the conventional beamline-based
imaging paradigm, so their computational capacity is not
sufficient to facilitate all of the computation processes re-
quired for advanced ultrasound imaging methods. Thus, it
is necessary to develop another real-time computing plat-
form to address this computational bottleneck.

Recently, the emergence of graphics processing units
(GPUs) has spurred the pace of development in high-per-
formance computing because they can be readily convert-
ed into parallel processors through the use of application
programming interfaces provided by the vendors. Leverag-
ing this powerful computational hardware, we present in
this paper a GPU-based beamformer architecture that can
carry out the image formation steps of PW compounding
and SA imaging at real-time processing frame rates. This
is in line with our intent to develop a programmable soft-
ware processor module that can form ultrasound images
from channel-domain data samples that are acquired in
their RF form using an array transducer.

II. Beamforming Principles for PW Compounding
and SA Imaging

A. Overall Description

To facilitate discussion of our beamformer architecture,
we first begin by reviewing the mathematical principles

GPU-Based Beamformer: Fast Realization
of Plane Wave Compounding and

Synthetic Aperture Imaging

Billy Y. S. Yiu, Member, IEEE, Ivan K. H. Tsang,
and Alfred C. H. Yu, Member, IEEE

Correspondence

Manuscript received May 9, 2011; accepted May 17, 2011. This work
was supported in part by the Hong Kong Innovation and Technology
Fund (ITS/492/09, InP/210/10, InP/211/10). All three authors have
contributed equally to the preparation of this article.

The authors are with the Medical Engineering Program, The Uni-
versity of Hong Kong, Pokfulam, Hong Kong SAR (e-mail: alfred.yu@
hku.hk).

Digital Object Identifier 10.1109/TUFFC.2011.1999

yiu et al.: GPU-based beamformer 1699

of PW compounding and SA imaging. The overall goal of
these two imaging paradigms is to derive HRIs that are
compounded recursively from a set of LRIs. For the ith
HRI and a compound frame size of M, the image value for
pixel Po can be denoted mathematically as:

	 H P L Pi o m o
m i M

i

() (),=
= − +
∑

1

	 (1a)

where Lm(Po) represents the corresponding pixel value in
the mth LRI. By inspection, the recursive form of (1a) is
given by

	 H P H P L P L Pi o i o i o i M o() () () (),= + −− −1 	 (1b)

where Hi−1(Po), Li(Po), and Li−M(Po) are, respectively,
the pixel value for the previous HRI, the latest LRI, and
the earliest LRI in the compounding group. In general,
Lm(Po) can be computed from the channel-domain RF
data received for a particular transmit firing (steered
planar pulses or point-source excitations, depending on
whether PW compounding or SA imaging is performed).
This computation process involves multiple stages which
are described in the next two subsections.

B. Analytic Signal Conversion

As a precursor step in LRI formation, the analytic sig-
nal is first computed for each channel-domain RF data
vector (with K depth samples). This quantity requires
computation of the RF signal’s Hilbert transform, which
can, in practice, be found via a finite-impulse response
(FIR) filtering operation whose impulse response is set
equal to the following definition of the Hilbert transform:

	 h l l
l l()

() .
= {02 for even

/ for odd π
	 (2)

As such, for the kth depth sample in the nth receive chan-
nel for the mth transmit firing, each Hilbert-transformed
data sample is essentially given by the following convolu-
tion output:

	 ρnm
l k

k D

nmk h l r l, ,() () (),=
=

+ −

∑
1

	 (3)

where rn,m(l) denotes the corresponding channel-domain
RF sample and D is the number of taps in the FIR filter
kernel.

C. Delay-and-Sum Procedure

Given the analytic channel-domain signals, delay-and-
sum beamforming is performed to compute the LRI of
the mth transmit firing. This procedure can essentially
be considered as a weighted summation of interpolated
channel-domain samples αn,m(Po) for all N array channels.

For the pixel Po, its value can be expressed as follows for
an apodization weight wn in the nth channel:

	 L P w Pm o n nm o
n

N

() ().,= ⋅
=
∑ α

1

	 (4)

In the simplest case, αn,m(Po) can be found via a linear
interpolation of the two adjacent analytic data samples
an,m(κ) and an,m(κ + 1) that correspond most closely with
the pixel’s focusing delay in the nth channel. This is math-
ematically given by

	 α λ κ λ κnm o nm nmP a a, , ,() () (),= ⋅ + −[] ⋅ +1 1 	 (5a)

where κ is the proximal depth sample number correspond-
ing to the focusing delay τn,m(Po), and λ is the interpola-
tion weight (between 0 and 1). For a given RF sampling
rate fs, these two quantities can be found as

	 κ τ= ⋅ f Pnm os , () ,	 (5b)

	 λ κ τ= + − ⋅1 f Pnm os , (),	 (5c)

where ⌊·⌋ represents a floor operator that gives the largest
integer not greater than the operand.

In PW compounding and SA imaging, the beamform-
ing delay to be used for each channel corresponds to the
two-way time-of-flight from the transmit source to the
pixel position and back to receive element position [3]–[5].
For a pixel with lateral-depth position coordinates {xo, zo},
this is equal to the following for the nth channel at the
mth firing:

	 τnm o
o o

o
P

d P m d P n
c, ()

(;) (;)
,=

+T R 	 (6a)

where dT(Po; m) and dR(Po; n) respectively denote the
transmit propagation distance for the mth firing and the
receive propagation distance for the nth channel with re-
spect to the pixel of interest. These two distance quanti-
ties can be found from geometrical principles as

	 d P m x x m z z mo o oT T T(;) () () ,= − + −2 2 	 (6b)

	 d P n x x n z z no o oR R R(;) () () ,= − + −2 2 	 (6c)

for a given transmit-center position {xT(m), zT(m)} and a
receiver position {xR(n), zR(n)}.

III. GPU Beamformer Architecture

A. Hardware Setup

Fig. 1 shows a high-level illustration of the hardware
organization for our GPU-based beamformer that is in-
tended to facilitate real-time realization of PW com-
pounding and SA imaging. As can be seen, the GPUs are

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 8, August 20111700

housed inside a PC workstation. They are connected as
expansion boards through PCI-Express buses with real-
time data-transfer bandwidth (maximum of 8 GB/s for
16-lane buses). Their parallel processing resources are
managed through a software-based application program-
ming interface known as CUDA (compute unified device
architecture; NVIDIA, Santa Clara, CA). Note that the
computational hardware involved in this beamformer is
inherently different from those seen in a few ultrasound re-
search platforms that are based on computer clusters [8],
pipelined DSP networks [9], distributed groups of FPGAs
[10], and multi-core CPUs [11].

During operation, our GPU-based beamformer takes in
channel-domain RF data acquired from an array trans-
ducer and calculates HRIs recursively in real-time. In
approaching this task, the beamformer’s computational
resources have been partitioned into two sectors in which
one of the GPUs in the group is designated for HRI pro-
cessing and the rest are responsible for LRI processing (as
shown in Fig. 1). The channel-domain data samples are
presumed to be first streamed from the scanner’s front-end
electronics to the PC’s RAM. They are transferred into
each LRI-processing GPU in frame batches (controlled by
a master CPU) to compute a set of consecutive LRIs,
which are subsequently fed into the HRI-processing GPU
for recursive compounding with other LRIs. The HRIs are
then shown on the PC display in real-time and are sent to
the storage device for archival.

B. Computation of Low-Resolution Images

To facilitate computation of LRIs in our beamformer, a
batch-based pipelining approach has been adopted. Each
available GPU in the LRI-processing group is assigned
to handle one batch of channel-domain data that are ac-
quired from a set of transmit firings. As described in Sec-
tion II, for the processing of each LRI, the beamformer
must perform the operations of analytic signal conversion
and delay-and-sum; the GPU processing architecture for
this is described as follows.

1) Analytic Signal Conversion: Fig. 2(a) gives a concep-
tual illustration of how this stage is implemented on the
GPU. As can be seen, one block of threads in the GPU is
assigned to compute the analytic signal for one channel of
pre-beamform RF data. In turn, each thread in the block
is instructed to carry out a Hilbert transform operation
[see (2) and (3)] and derive the analytic signal samples for
a consecutive group of depth samples in the same channel
(group size is kept down to a few samples to achieve a high
parallel processing efficiency).

2) Delay-and-Sum Operation: Fig. 2(b) illustrates how
delay-and-sum beamforming is performed in the GPU-
based beamformer to obtain the LRI pixel values. In this
processing stage, each block of threads is allocated to
compute the LRI pixel values within a two-dimensional
grid. For each individual thread, it is instructed to cal-

culate a single LRI pixel value via the following four-step
procedure:

	 1) 	Estimate the focusing delays for all channels with re-
spect to the pixel position for that thread [see (6a)–(6c)];

	 2) 	Retrieve each channel’s analytic data samples whose
index position corresponds most closely with the
pixel’s focusing delay for that channel;

Fig. 1. System-level overview of the hardware setup for the GPU-based
beamformer. During operation, each frame of channel-domain data is fed
into an idle GPU in the LRI processing group to facilitate beamforming.
The HRI-processing GPU is then used to perform recursive compound-
ing of multiple LRIs.

Fig. 2. Multi-thread processing architecture for LRI computation. Dur-
ing analytic signal conversion (a), latency is reduced by copying an en-
tire channel of RF data to the thread block’s shared memory. For the
delay-and-sum stage (b), the position of sample in each channel to be
beam-summed in a thread is denoted as a dashed curve in the analytic
data array.

yiu et al.: GPU-based beamformer 1701

	 3) 	Interpolate each channel’s signal value to be used for
LRI pixel summation based on the retrieved analytic
samples [see (5a)–(5c)];

	 4) 	Obtain the LRI value by multiplying an apodization
weight to each of the interpolated signal values and
summing the apodized values [see (4)].

C. Computation of High-Resolution Images

Once a batch of LRIs has been computed, it is trans-
ferred to the GPU designated for HRI processing to carry
out recursive compounding with other LRIs. As noted in
(1a) and (1b), each HRI pixel value is the sum of mul-
tiple LRI values at the same pixel position, and it can be
calculated recursively from the previous HRI, latest LRI,
and earliest LRI in the compounding group. In our beam-
former, each GPU thread in the HRI processor has been
assigned to handle one pixel of recursive summation. This
thread assignment scheme is quite similar to the one used
for the delay-and-sum operation, except for the trivial dif-
ference of retrieving values from HRI/LRI frames rather
than from the analytic data array.

D. Processing Speed Enhancement Strategies

To reduce latency overheads in GPU-based paral-
lel processing, efficient management of memory access is
known to be crucial, given that each memory read-write
operation may require up to several hundred clock cycles.
In general, this task can be facilitated through agile use
of GPU’s two-tier memory structure, which comprises:
shared memory for each thread block (small in size, but
with fast access speed); texture and global memory resid-
ing in the GPU’s device core (slower access speed, which
may improve if cached). As a general rule of thumb, it is
desirable to exploit the shared memory to store data val-
ues that are repeatedly accessed by the beamformer.

In the first stage of LRI computation [Fig. 2(a)], pro-
cessing latency is lowered by using the shared memory to
store an entire channel of RF data and thereby facilitating
fast data access by each thread in a block. The Hilbert
transform filter coefficients are also stored in the shared
memory to accelerate the analytic signal computation
process. For the delay-and-sum stage [Fig. 2(b)], latency is
kept low by either: 1) creating texture memory pointers to
cache analytic data samples that are repeatedly fetched to
different threads (for Tesla-class GPUs), or 2) simply ex-
ploiting the global memory cache (for Fermi-class GPUs).
Note that the analytic data samples are not transferred to
the shared memory during delay-and-sum because the size
of this fast-access memory in currently available GPUs is
not large enough to store the entire data array. Instead,
the shared memory is used in this stage to store the apo-
dization weights and the set of pre-calculated channel-
domain receive delays for the corresponding scanline (only
transmit delays must be computed during operation be-
cause the transmit-center position is different for each fir-

ing). For the HRI compounding operation, latency over-
head is rather nominal because each thread only requires
retrieval of a few data samples from memory to calculate
an HRI pixel.

IV. Prototype Implementation

A. PC Backbone

Based on our beamformer architecture, we have assem-
bled a prototype PC platform that can support different
combinations of GPU devices. This prototype operates on
a motherboard with seven PCI-Express 16-lane expansion
slots (X58; EVGA Corporation, Brea, CA), and it uses
a quad-core, 2.66-GHz CPU as the host controller (i7–
920; Intel Corporation, Santa Clara, CA); 6 GB of DDR3
RAM is included in the prototype PC as a data buffer for
channel-domain samples.

B. GPU Computational Platform

In this work, the prototype PC has been used to test
the efficiency of various multi-GPU combinations in carry-
ing out beamforming for PW compounding and SA imag-
ing. In all of the multi-GPU combinations, HRI processing
is performed using a Fermi-class GTX-470 GPU (with 448
cores, 1.215 GHz clock speed, 1280 MB of global memory,
and a 768 kB level-two cache). For LRI processing, differ-
ent dual-GPU configurations have been considered based
on the Tesla-class GTX-275 GPU and the Fermi-class
GTX-480 GPU (three possible combinations of these have
been attempted). Specifications for these GPU models are
readily available from the manufacturer, so they will not
be repeated here. Nevertheless, a few important differ-
ences should be noted between them. First, the GTX-
480 has distinctly more processor cores than the GTX-275
(480 versus 240), although their processor clock is similar
(1.401 GHz versus 1.404 GHz). Second, the GTX-480 in-
cludes a level-two global memory cache (768 kB) that is
not found in the GTX-275, but its texture memory fill-
ing rate is slower (42 billion/sec versus 50.6 billion/sec).
Third, the GTX-480 allocates 48 kB of shared memory for
every 32 cores, in contrast to the GTX-275, which assigns
16 kB for every 8 cores. Note that to facilitate compara-
tive analysis, our work has also included the evaluation of
single-GPU configurations that involve the use of a GTX-
275 GPU or a GTX-480 GPU. For these configurations,
the LRI computation and HRI compounding operations
were performed on the same GPU.

C. Beamformer Software

The GPU-based beamformer is coded in C++ via a
functional programming approach, and various CUDA
syntaxes and functions (ver. 3.0) are invoked to realize
multi-thread processing on the GPUs. In the current ver-
sion of the beamformer software, LRI processing is car-

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 8, August 20111702

ried out in batches of 50 frames, and this parameter is
chosen to maintain balance between processing overheads
and data transfer bandwidth (confirmed via low-level per-
formance tests, data not shown). For the analytic signal
conversion stage of the beamfomer, a 51-tap FIR filter is
implemented for the Hilbert transform, and its coefficients
are computed during beamformer initialization. This filter
order is empirically chosen to achieve consistent Hilbert
transform results. For the delay-and-sum stage, the grid
size responsible by each thread block is empirically tuned
to be 16 × 16 pixels for GTX-275 GPUs and 64 × 8
pixels for GTX-480 GPUs (because the two GPU mod-
els had different memory caching performance). Also, the
beamforming delays are computed as the two-way pulse-
echo propagation times for a nominal acoustic speed of
1540 m/s, and a Hanning window is used as the apodiza-
tion weight.

V. Performance Assessment

A. Overview of Study

To assess our beamformer’s efficacy in executing image
formation operations in real-time, we have performed a
series of imaging experiments using typical data acquisi-
tion parameters for PW compounding and SA imaging
(see Table I). In these studies, channel-domain RF data
were synthesized for a field-of-view that encompasses a
group of point targets located at different depths. We have
used our beamformer to compute HRIs for various imag-
ing depths (between 5 and 15 cm, in 1-cm increments)
that essentially correspond to different RF data sizes in
each channel (with a 40 MHz RF sampling rate, there
are 520 additional RF samples acquired per channel for
every 1-cm depth increase). Each HRI is 512 × 255 pixels
(for all imaging depths examined), and it is derived from
recursive compounding of 49 LRIs that correspond to the
total number of independent firing positions in SA imag-
ing or planar steering directions in PW compounding.

Fig. 3 shows an example of HRIs produced by using the
GPU-based beamformer to process channel-domain RF
data obtained from the field-of-view. As can be seen, the
images for both PW compounding and SA imaging gave
a sharper visualization of the point targets than those for
beamline-based imaging (generated from another codec
that we have written). In particular, the defocusing ef-
fects that appeared in the beamline-based images are less
apparent in the compounded PW and SA images. Such
an observation is consistent with previous reports on the
anticipated benefits of PW compounding and SA imaging
[3]–[5].

To quantitatively analyze the GPU beamformer’s per-
formance, we have measured the processing throughput
by counting the mean number of HRIs that can be com-
puted in 1 s. This was averaged over a 10-s observation
period (with synchronized availability of channel-domain
RF data samples). Such a performance measure provides a

practical account of the processing capacity that includes
various overhead sources like memory transfer from RAM
(for loading channel-domain RF samples) and between
GPUs (for transferring batches of LRI data into the HRI-
processing GPU).

B. HRI Processing Throughput

1) Overview of Results: As an indicator of whether our
GPU-based beamformer is capable of producing HRIs in
real-time, Fig. 4 plots the processing frame rate as a func-
tion of imaging depth for different LRI-computation array
compositions and beamformer sizes. In general, it should
be noted that the HRI processing throughput (inclusive
of LRI computation, recursive compounding, and latency
overheads) decreases at greater depths, as expected, giv-
en the increased amount of RF data samples that must
be processed over each channel. Nevertheless, the HRI
throughput for all the multi-GPU configurations is still
greater than 1500 fps even at an imaging depth of 15 cm
that is used in cardiac imaging scenarios. This is much
faster than the real-time display frame rate requirement
(usually 100 fps, at most), and it makes instant replay of
the HRI cineloop at higher frame rates easily possible.
In general, from a real-time data streaming perspective,
the processing throughput should be faster than the data
acquisition frame rate (i.e., pulse repetition frequency
(PRF) in PW compounding and SA imaging [5]) to avoid
dropping raw data frames in the beamformer. This implies
that, in our example, the PRF may need to be adjusted

TABLE I. Parameters for the Imaging Example.

General imaging parameters
 A coustic speed of tissue layer 1540 m/s
 A ttenuation coefficient 0.5 dB/(cm·MHz)
 A rray size 128 elements
 A rray pitch 0.3048 mm
  Imaging frequency 10 MHz
  Pulse repetition frequency 5 kHz
 R F sampling frequency 40 MHz
 N umber of RF samples per

channel
520 for every 1 cm

  Transmit waveform two-cycle sinusoid
Plane wave compounding parameters
 S teering angle range −12° to +12°
 N umber of steering angles 49 (in 0.5° increments)
  Plane wave transmit aperture 128 channels
 R eceive aperture 32 channels (spanned over array)
Synthetic aperture imaging parameters
  Virtual source axial position −2 cm
  Point source lateral spacing 0.6 mm
 N umber of virtual sources 49
  Virtual source transmit aperture 64 channels
 R eceive aperture 32 channels (centered upon Tx

aperture)
Beamline imaging parameters
  Transmit focus 3 cm
  Transmit aperture 64 channels
 R eceive aperture 32 channels
 N umber of beamlines 127

yiu et al.: GPU-based beamformer 1703

depending on the beamformer’s processing capacity and
the size of the raw data array.

2) Scaling of Processing Power Using Multiple GPUs and
Advanced GPU Models: Among the GPU array composi-
tions [Fig. 4(a)], the one that uses two GTX-480s for LRI
computations and one GTX-470 for HRI compounding
has achieved the highest HRI processing throughput (see
black curve). For 32 receive beamforming channels, it is
capable of computing more than 4700 and 3000 HRIs per
second, respectively, for imaging depths of 5 cm (used in
carotid imaging) and 15 cm (needed for cardiac imaging).
This shows that multi-GPU configurations can effectively
boost the throughput beyond that achievable with the use
of a single GPU (the two light-gray curves). Note that the
throughput for the GPU array involving two GTX-275s
for LRI processing (dark-gray dashed curve) is similar to
that for the one that uses a single GTX-480 for LRI pro-
cessing (light-gray solid curve). This is an expected result
because the total number of parallel computation cores
available for LRI processing is the same for the two con-
figurations (both have 480 cores in total). This indicates
that our beamformer’s HRI processing throughput scales
directly with the number of computation cores in the
platform. Another point of interest is that for the hybrid
configuration (GTX-275 & GTX-480 for LRI computation
plus GTX-470 for HRI compounding), the HRI processing
throughput (dark-gray solid curve) is between that for two
GTX-275s and two GTX-480s, as expected. This shows
that the combined use of both Tesla-class and Fermi-class
GPUs is possible in our beamformer architecture.

3) Balancing Between Processing Throughput and Beam-
former Size: When more receive channels are used in the
GPU-based beamformer, a reduction in HRI processing
throughput can be noticed [see Fig. 4(b)]. In particular,
when using two GTX-480s for LRI computation and a
GTX-470 for HRI compounding, the throughput for 128
channels (light gray curve) is, respectively, less than two-
thirds and one-third of those for 64 channels (dark gray

Fig. 3. Point-target image examples for three imaging paradigms: (a) SA imaging (49 virtual point sources); (b) PW compounding (49 steered plane
waves); (c) conventional beamline-based imaging (3 cm axial focus). All images were obtained using a 32-channel beamformer on receive. See Table
I for data acquisition parameters.

Fig. 4. HRI processing throughput as a function of imaging depth for
(a) various LRI-computation array types with a 32-channel beamformer
size; (b) various beamformer channel sizes with a dual GTX-480 array
for LRI-computation. For each 1 cm increase in imaging depth, the RF
data size is raised by 520 samples for each channel (in accordance with
the sampling parameters). A GTX-470 GPU is used for HRI processing
in all multi-GPU configurations.

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 8, August 20111704

curve) and 32 channels (black curve). Such a performance
gap remains apparent at all imaging depths examined in
our example. As such, depending on image quality re-
quirements, it may be beneficial to tune the beamformer
channel size to ensure that the gain in image contrast is
commensurate with the increase in processing demand.

C. Individual Process Timings

1) LRI Computation Accounted for a Large Portion of the
Process Time: As a more detailed evaluation of the GPU-
based beamformer’s performance, Fig. 5 shows the timing
breakdown analysis for a representative time window in a
case that uses a GPU array comprising two GTX-480s (for
LRI computation) and one GTX-470 (for HRI compound-
ing). This timing diagram is obtained for an imaging
depth of 5 cm and a beamformer size of 32 channels. In
general, it has shown that LRI computation occupies more
computational resources than HRI compounding. Indeed,
the two LRI-processing GPUs are mostly engaged during
the beamformer’s operation, while there is idle time in the
HRI-processing GPU. As such, the beamformer’s process-
ing throughput seems to be constrained by LRI computa-
tions. On the other hand, the spare resources available on
the HRI-processing GPU provide opportunities for imple-
menting various post-processing operations related to the
analysis and interpretation of HRIs (e.g., image segmenta-
tion algorithms).

2) Delay-and-Sum Operation Dominated the LRI Com-
putation Time: Another observation to be noted from
Fig. 5 is that, between the two LRI processing stages,
the delay-and-sum operation seems to occupy a significant
longer timeframe than analytic signal conversion. Never-

theless, the operational time is still well within real-time
constraints (Fig. 5 shows that batch processing of 50 LRI
frames requires about 25 ms). This computational time
can be expected to decrease further as newer GPU models
with more parallel computation cores and faster memory
access schemes become available.

VI. Concluding Remarks

High computational demand is known to be a technical
hurdle for real-time implementation of advanced imaging
methods, like PW compounding and SA imaging, that
work with the pre-beamform data of each array element.
To address this processing demand, we have designed a
GPU-based beamformer architecture that offers real-time
processing frame rates of more than 1000 fps when using
two Fermi-class GPUs as the LRI-processing core and an-
other GPU as the HRI processor. The advantages of us-
ing GPUs as a beamforming processor are two-fold. First,
their hardware architecture, comprising hundreds of pro-
cessor cores, has been specifically developed to facilitate
single-instruction, multiple-thread computations. This
parallelism can help accelerate the beamforming opera-
tion of multiple image pixels without running into power
wall issues faced by CPU microprocessors. Second, the
software-based programmability of GPUs (via the C++
language) is perhaps a more accessible alternative than
FPGAs that must be configured using low-level hardware
description languages.

To our knowledge, this work is the first demonstra-
tion of using GPUs to develop an ultrafast processor for
advanced imaging methods that work with pre-beamform
data. We expect that this platform can be readily ex-

Fig. 5. Individual process timings (obtained from actual measurements) for a GPU array with two GTX-480s for LRI computation and one GTX-470
for HRI compounding. Results are shown over a time window encompassing a few batch-processing cycles, and they correspond to the case with 32
receive channels and 5 cm imaging depth. The processing is carried out in batches of 50 frames.

yiu et al.: GPU-based beamformer 1705

tended to facilitate real-time realization of other advanced
techniques, such as adaptive beamforming. It is our antici-
pation that, with the advent of GPUs, high-speed back-
end processing of various novel imaging methods can be
performed on a stand-alone PC workstation. Such a back-
end processor design approach is seemingly a less labor-
demanding alternative to others that are based on the use
of computing devices such as FPGAs and DSPs, whose
programming is more complicated than GPUs.

References

[1]	 T. A. Whittingham, “Medical diagnostic applications and sources,”
Prog. Biophys. Mol. Biol., vol. 93, no. 1–3, pp. 84–110, 2007.

[2]	 J. Y. Lu, J. Cheng, and J. Wang, “High frame rate imaging system
for limited diffraction array beam imaging with square-wave aper-
ture weightings,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,
vol. 53, no. 10, pp. 1796–1812, 2006.

[3]	G . Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Co-
herent plane-wave compounding for very high frame rate ultraso-
nography and transient elastography,” IEEE Trans. Ultrason. Fer-
roelectr. Freq. Control, vol. 56, no. 3, pp. 489–506, 2009.

[4]	 J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen,
“Synthetic aperture ultrasound imaging,” Ultrasonics, vol. 44, suppl.
1, pp. e5–e15, 2006.

[5]	S . I. Nikolov, K. L. Gammelmark, and J. A. Jensen, “Recursive
ultrasound imaging,” in Proc. IEEE Ultrasonics Symp., 1999, pp.
1621–1625.

[6]	S . I. Nikolov, B. G. Tomov, and J. A. Jensen, “Real-time synthetic
aperture imaging: opportunities and challenges,” in Proc. Asilomar
Conf. Signals Systems and Computers, 2006, pp. 1548–1552.

[7]	G . York and Y. Kim, “Ultrasound processing and computing: Re-
view and future directions,” Annu. Rev. Biomed. Eng., vol. 1, pp.
559–588, 1999.

[8]	 F. Zhang, A. Bilas, A. Dhanantwari, K. N. Plataniotis, R. Abi-
projo, and S. Steriopoulos, “Parallelization and performance of 3D
ultrasound imaging beamforming algorithms on modern clusters,” in
Proc. ACM Int. Conf. Supercomputing, 2002, pp. 294–304.

[9]	C . R. Hazard and G. R. Lockwood, “Theoretical assessment of a
synthetic aperture beamformer for real-time 3-D imaging,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 4, pp. 972–
980, 1999.

[10]	J. A. Jensen, M. Hansen, B. G. Tomov, S. I. Nikolov, and H. Holten-
Lund, “System architecture of an experimental synthetic aperture
real-time ultrasound system,” Proc. IEEE Ultrasonics Symp., 2007,
pp. 636–640.

[11]	R. Diagle, “Ultrasound imaging system with pixel oriented process-
ing,” WIPO Patent Application WO/2006/113445.

