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Dependent Insurance Risk Model: Deterministic

Threshold
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Abstract

This paper considers a dependent insurance risk model. We assume that the

inter-arrival time depends on the previous claim size through a deterministic

threshold structure. Adjustment coefficient and Lundberg type upper bound

for the ruin probability are obtained. In case of exponential claim size, an

explicit solution for the ruin probability is obtained by solving a system of

ordinary delay differential equations. Some numerical results are included for

illustration purposes.

Key Words: Ruin probability, Lundberg inequality, exponential claim distri-

bution, delay differential equation.

∗Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,

Hong Kong, e-mails: kwokmankwan@yahoo.com.hk(Kwan), hlyang@hkusua.hku.hk(Y ang)

1



1 Introduction

Insurance risk models with dependent structure have become an important research

area in actuarial science, and more and more researchers are interested in this topic

nowadays. In the classical insurance risk model, the assumptions that the succes-

sive claims are independent and identically distributed (i.i.d.), and that the number

of claims follows a Poisson or renewal process seem too restrictive. The claim fre-

quencies and severities for automobile insurance and life insurance are not altogether

independent. Different models have been proposed to relax such restrictions. The

simplest dependence model is the discrete time autoregressive model in the standard

text book Bowers et al. (1997). For a detailed discussion on the dependent insurance

risk models, we refer the readers to the papers by Dhaene and Denuit (1999), Dhaene

and Goovaverts (1996) and Dhaene et al. (2002a, 2002b) and the references therein.

Albrecher and Boxma (2004) consider a ruin model with a dependent setting, where

an inter-arrival time depends on the previous claim size with a random threshold.

In their paper, they derive the Laplace transform of the ultimate ruin probability.

They use a system of simultaneous equations to find the value of the ultimate ruin

probability when the initial surplus is zero. By inverting the Laplace transform, the-

oretically it is possible to obtain the ultimate ruin probability. However, in general, it

is not possible to obtain an explicit solution of the inversion of the Laplace transform.

In this paper, we consider a similar model to that in Albrecher and Boxma (2004),

but a fixed threshold. We define the adjustment coefficient for this model and obtain

the Lundberg type upper bound for the ruin probability. When the claim size follows

an exponential distribution, by solving a system of delay differential equations, an
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explicit solution for the ruin probability is obtained. Some numerical examples are

presented in the last section.

2 The Insurance Risk Model

In the model discussed in Albrecher and Boxma (2004), the distribution of inter-

arrival time depends on the previous claim size. Let Xk be the size of the k-th

claim, Tk be the inter-arrival time between the (k-1)-th claim and the k-th claim.

If Xk−1 is less than a threshold level a, then Tk follows an exponential distribution

with parameter β1. Otherwise, it follows an exponential distribution with different

parameter β2. Albrecher and Boxma (2004) assume that the threshold level a is

an exponential distributed random variable. In this paper, we assume that a is a

constant.

We assume that claim sizes are i.i.d. with common mean µ. Let Ut(u) be the

surplus process at time t given the initial surplus u, then we have

Ut(u) = u+ ct− St,

where St =
∑N(t)

k=1 Xk and c is a constant premium rate. In our model, if Xk−1 < a,

then Tk ∼ exp(β1); and if Xk−1 ≥ a, then Tk ∼ exp(β2).

Let us assume the following net profit condition is satisfied:

µ < c[
P (X < a)

β1

+
P (X ≥ a)

β2

].
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Let T = inft≥0{t : Ut(u) < 0} be the time of ruin, then φi(u) = P{T =∞|U(0) =

u, T1 ∼ exp(βi)} and ψi(u) = 1− φi(u) are the ultimate survival probability and the

ultimate ruin probability given the first claim occurs according to the exponential

distribution with parameters βi, (i = 1, 2), respectively.

The following results are the same as in Albrecher and Boxma (2004), which

provide the integro-differential equation and the Laplace transform of the ultimate

ruin probability.

Lemma 2.1 Let f(x) be the density function of the claim size random variable. The

ultimate survival probability φi(u) (i = 1, 2) satisfies the following integro-differential

equation:

c
dφi(u)

du
= βiφi(u)− βi

∫ u

0

I(a > y)φ1(u− y)f(y)dy

−βi
∫ u

0

I(a ≤ y)φ2(u− y)f(y)dy.

(1)

Lemma 2.2 Let φ̃i(s) be the Laplace transform of φi(u) (i = 1, 2). Define:

χ1(s) =

∫ ∞
0

e−sxI(a > x)f(x)dx =

∫ a

0

e−sxf(x)dx

χ2(s) =

∫ ∞
0

e−sxI(a ≤ x)f(x)dx =

∫ ∞
a

e−sxf(x)dx.

Then,

φ̃1(s) =
cφ1(0)[cs− β2 + β2χ2(s)]− cβ1χ2(s)φ2(0)

[cs− β2 + β2χ2(s)][cs− β1 + β1χ1(s)]− β1β2χ1(s)χ2(s)
(2)
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and,

φ̃2(s) =
cφ2(0)[cs− β1 + β1χ1(s)]− cβ2χ1(s)φ1(0)

[cs− β2 + β2χ2(s)][cs− β1 + β1χ1(s)]− β1β2χ1(s)χ2(s)
. (3)

The initial values φ1(0) and φ2(0) can be obtained by solving the following system

of simultaneous equations:(1− φ1(0))F (a)
β1

+ (1− φ2(0))1−F (a)
β2

= µ
c

φ1(0) = cσ−β1+β1χ1(σ)
β2χ1(σ)

φ2(0)

(4)

where σ is a unique root with positive real part satisfying [cs − β2 + β2χ2(s)][cs −

β1 + β1χ1(s)]− β1β2χ1(s)χ2(s) = 0.

Using φ1(0) and φ2(0) together with (2) and (3), φ̃1(s) and φ̃2(s) can be completely

determined. Theoretically φ1(u) and φ2(u) can be obtained by inverting the Laplace

transforms.

3 Adjustment Coefficient and Lundberg Inequal-

ity

In this section, we define the adjustment coefficient and derive the Lundberg type

upper bound for ruin probability in our model.

Theorem 3.1 Assume that m̂X(r), the moment generating function of the claim size

X, exists and that there exists r∞ ∈ R
⋃
{∞} such that m̂X(r) < ∞ if r < r∞ and
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limr→r∞m̂X(r) =∞, then the equation E[er(X−cT )] = 1 has a unique positive solution

R. R is called adjustment coefficient.

Proof

E[er(X−cT )] = E[er(X−cT );X < a] + E[er(X−cT );X ≥ a]

=
β1

β1 + rc
E[erX ;X < a] +

β2

β2 + rc
E[erX ;X ≥ a]

=
β1

β1 + rc

∫ a

0

erxf(x)dx+
β2

β2 + rc

∫ ∞
a

erxf(x)dx.

Let

g(r) =
β1

β1 + rc
χ1(−r) +

β2

β2 + rc
χ2(−r).

It is obvious that g(0) = 1.

g′(r) = − β1c

(β1 + rc)2

∫ a

0

erxf(x)dx+
β1

β1 + rc

∫ a

0

xerxf(x)dx

− β2c

(β2 + rc)2

∫ ∞
a

erxf(x)dx+
β2

β2 + rc

∫ ∞
a

xerxf(x)dx.

The first derivative of g(r) at 0 is

g′(0) = − c

β1

∫ a

0

f(x)dx+

∫ a

0

xf(x)dx− c

β2

∫ ∞
a

f(x)dx+

∫ ∞
a

xf(x)dx

= µ− c

β1

∫ a

0

f(x)dx− c

β2

∫ ∞
a

f(x)dx = µ− c
[
P (X < a)

β1

+
P (X ≥ a)

β2

]
< 0,

where the last inequality is due to the net profit condition. Moreover, g(r) → ∞ as

r → r∞ and g′′(r) = E[(X − cT )2er(X−cT )] > 0,∀r > 0. So, there exists a unique

positive number R such that g(R) = 1.

With the adjustment coefficient defined, Lundberg’s Inequality can be obtained

as follows:
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Theorem 3.2 (Lundberg’s Inequality)

∀u ≥ 0, ψi(u) ≤ βi
βi +Rc

e−Ru, i = 1, 2, (5)

where R is the adjustment coefficient.

Proof Let Sn be a random walk with identical and independent increments Yk =

Xk − cTk+1. Then the classical technique of changing measure can be applied to our

model too. By a similar argument to that in Asmussen (2000), and defining a new

probability measure by PL(A) = E[eRSn ;A], we have

ψi(u) = E[EL[e−RSτ(u+cT1)|T1]|T1 ∼ exp(βi)]

= E[e−R(u+cT1)EL[e−Rξ(u+cT1)|T1]|T1 ∼ exp(βi)]

≤ E[e−R(u+cT1)|T1 ∼ exp(βi)]

=
βi

βi +Rc
e−Ru,

where ξ(u) is the first overshoot amount.

4 Exponential Claim Size Distribution

Suppose the distribution of claim size follows an exponential distribution, i.e. F (x) =

1 − e−λx. It can be seen that to obtain the explicit solution for the ultimate ruin

probability is difficult from inverting the Laplace transform in this model. In order

to have some insight into the dynamic behaviour of the ultimate ruin probability, we

derive the differential equation satisfied by the ruin probability.
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4.1 Coupled System of Second Order Linear Delay Differen-

tial Equations

This section obtains the following system of delay ODEs for the ruin probability.

Theorem 4.1 ψ1(u) and ψ2(u) satisfy the following coupled systems of second order

linear delay differential equations:
cd

2ψ1(u)
du2 + (λc− β1)dψ1(u)

du + β1λe
−λa[ψ2(u− a)− ψ1(u− a)] = 0, u > a

cd
2ψ2(u)
du2 + (λc− β2)dψ2(u)

du + β2λ[ψ1(u)− ψ2(u)]

+β2λe
−λa[ψ2(u− a)− ψ1(u− a)] = 0, u > a

(6)

and 
cd

2ψ1(u)
du2 + (λc− β1)dψ1(u)

du = 0, 0 ≤ u ≤ a

cd
2ψ2(u)
du2 + (λc− β2)dψ2(u)

du + λβ2(ψ1(u)− ψ2(u)) = 0, 0 ≤ u ≤ a.
(7)

Proof From (1), since the equation depends on whether u is less or greater than the

threshold a, we break down the proof into 2 cases:

Case 1: u ≤ a: In this case (1) becomes

c
dφ1(u)

du
= β1φ1(u)− β1

∫ u

0

φ1(u− y)λe−λydy.

Changing the variable by x = u− y, we have

c
dφ1(u)

du
= β1φ1(u)− β1λe

−λu
∫ u

0

φ1(x)eλxdx. (8)
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Differentiating both sides with respect to u, we have

c
d2φ1(u)

du2
= β1

dφ1(u)

du
− β1λφ1(u) + β1λ

2e−λu
∫ u

0

φ1(x)eλxdx, (9)

λ×(8)+(9), we obtain

c
d2φ1(u)

du2
+ λc

dφ1(u)

du
= β1

dφ1(u)

du
− β1λφ1(u) + λβ1φ1(u),

so

c
d2φ1(u)

du2
+ (λc− β1)

dφ1(u)

du
= 0,

therefore, the first equation in (7) is proved.

Using similar arguments, we can show that, for u ≤ a, ψ2(u) satisfies the second

equation in (7).

Case 2: u > a: In this case, (1) becomes

c
dφ1(u)

du
= β1φ1(u)− β1

∫ a

0

φ1(u− y)λe−λydy − β1

∫ u

a

φ2(u− y)λe−λydy.

Changing the variable by x = u− y, we have

c
dφ1(u)

du
= β1φ1(u)− β1λe

−λu
∫ u

u−a
φ1(x)eλxdx− β1λe

−λu
∫ u−a

0

φ2(x)eλxdx.

(10)

Differentiating both sides with respect to u, we obtain

c
d2φ1(u)

du2
= β1

dφ1(u)

du
− β1λe

−λu[φ1(u)eλu − φ1(u− a)eλ(u−a)]

+β1λ
2e−λu

∫ u

u−a
φ1(x)eλxdx− β1λe

−λu[φ2(u− a)eλ(u−a)]

+β1λ
2e−λu

∫ u−a

0

φ2(x)eλxdx,

(11)
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λ × (10)+(11), we have

c
d2φ1(u)

du2
+ λc

dφ1(u)

du
= β1

dφ1(u)

du
− β1λφ1(u) + β1λe

−λaφ1(u− a)

−β1λe
−λaφ2(u− a) + λβ1φ1(u),

therefore,

c
d2φ1(u)

du2
+ (λc− β1)

dφ1(u)

du
+ β1λe

−λa[φ2(u− a)− φ1(u− a)] = 0.

From this the first equation in (6) is proved.

Similarly, we can show that, for u > a, ψ2(u) satisfies the second equation in (6).

This completes the proof of Theorem 4.1.

4.2 Explicit Solution

In this subsection, we derive the explicit expression for the ruin probability by solving

(6) and (7) in Section 4.1. In order to do so, the coupled second order linear delay

differential equations (6) and (7) should be transformed to systems of first order linear

delay differential equation by proper substitutions as follows:

x1(u) =
dψ1(u)

du
, x2(u) = ψ1(u), x3(u) =

dψ2(u)

du
, x4(u) = ψ2(u).
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Define:

A =


(β1

c
− λ) 0 0 0

1 0 0 0

0 −β2

c
λ β2

c
− λ β2

c
λ

0 0 1 0

 ,

B =


0 β1

c
λe−λa 0 −β1

c
λe−λa

0 0 0 0

0 β2

c
λe−λa 0 −β2

c
λe−λa

0 0 0 0

 ,

x(u) =


x1(u)

x2(u)

x3(u)

x4(u)

 , x0 =


ψ′1(0)

ψ1(0)

ψ′2(0)

ψ2(0)

 .

Then (6) and (7) is equivalent to the following first order linear delay differential

equations: 
x′(u) = Ax(u) + Bx(u− a) , u > a

x′(u) = Ax(u), u ≤ a

x(0) = x0.

(12)

For u ≤ a, the second equation in (12) is a system of ordinary differential equations.

The solution is:

ψ1(u) = k1 + k2e
(
β1
c
−λ)u

ψ2(u) = k3e
−λu + k4e

β2
c
u + k1 + bk2e

(
β1
c
−λ)u

11



where,

k1 =
λcψ1(0)− β1

λc− β1

, k2 =
β1(1− ψ1(0))

λc− β1

,

k3 =
β2 − β2k1 + (β1 − λc− β2)bk2

λc+ β2

, k4 = ψ2(0)− k3 − k1 − bk2,

b =
λβ2

λβ2 + c(β2

c
− λ)(β1

c
− λ)− c(β1

c
− λ)2

,

with ψ1(0) and ψ2(0) found by the method described in Section 2.

Define:

ϕ(u) =


k2(

β1

c
− λ)e(

β1
c
−λ)u

k1 + k2e
(
β1
c
−λ)u

−k3λe
−λu + k4

β2

c
e
β2
c
u + bk2(

β1

c
− λ)e(

β1
c
−λ)u

k3e
−λu + k4e

β2
c
u + k1 + bk2e

(
β1
c
−λ)u

 , 0 ≤ u ≤ a.

So the system (12) can be reformulated as:x′(u) = Ax(u) + Bx(u− a), u > a

x(u) = ϕ(u), 0 ≤ u ≤ a.

(13)

It is well-known that the solution of the above system exists and is unique (see Driver,

1977). In general, the explicit form of the solution of a delay differential equation

is not easy to obtain. Numerical methods such as Runge-Kutta methods for delay

differential equations can be applied to obtain approximated values of the solution

(see Bellen and Zennaro, 2003). Thanks to Tsoi (1975), for equations like (13), the

explicit solution can be found.

Substituting y(u
a
− 1) = x(u) and t = u

a
− 1, the system (13) can be converted
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into the following form:y′(t) = aAy(t) + aBy(t− 1), t > 0

y(t) = ϕ(a(t + 1)), − 1 ≤ t ≤ 0.

(14)

From Tsoi (1975), the solution of the system (14) is given by:

y(t) = Y(t)y(0) +

∫ 0

−1

Y(t− τ − 1)aBϕ(a(τ + 1))dτ, t > 0 (15)

where Y(t) is a fundamental matrix expressed in the form:

Y(t) =
∞∑
j=0

∞∑
k=j

1

k!
Pk+1

j+1 (t− j)k (16)

where Pk
j satisfies a recursive equation of the form:

Pk+1
j+1 = aAPk

j+1 + aBPk
j , j = 0, 1, 2, 3, ..., k = 0, 1, 2, 3, ..., (17)

with

P1
1 = I, (18)

and

Pk
j = 0, if j = 0 or k = 0 or j > k. (19)

Finally, x(u) can be calculated from x(u) = y(u
a
− 1).

5 Numerical Illustration

In this section we provide a numerical illustration. The following values are used:

λ = 1, β1 = 1, β2 = 0.1, a = 1.0, 2.0, 5.0, c = 10

{λ[
(1−e−λa)

β1
+ e−λa

β2
]}2

.
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For comparison purpose, the inversion of Laplace Transform suggested by Al-

brecher and Boxma (2004) as in Section 2, the explicit formula (15) obtained by

using the method in Tsoi (1975), and the 1-stage Runge-Kutta numerical methods

of order 2 are applied to find the solution of (13), respectively.

We use the FORTRAN programming language and the IMSL package. When we

invert the Laplace transform, the INLAP procedure with relative error=0.01 is used.

The summation in formula (16) was modified to

20∑
j=0

150∑
k=j

1

k!
Pk+1

j+1 (t− j)k

in our computer programme. Moreover, the DQDAG procedure with IRULE=2 is

used to perform the integration in (15). The recursive equation of 1-stage Runge-

Kutta methods of order 2 is applied in the following way:

xn+1 = xn + h

(
A

(
xn + xn+1

2

)
+ Bη(tn +

h

2
− a)

)
,

or

xn+1 =

(
I− Ah

2

)−1 [(
I +

Ah

2

)
xn + hBη(tn +

h

2
− a)

]
,

where,

η(tn +
h

2
− a) =


ϕ(tn + h

2
− a), if tn + h

2
− a ≤ a,

(tn+h
2
−a−t

n−dma− 1
2 e

)x
n−bma−1

2 c
+(t

n−bma− 1
2 c
−tn+ h

2
−a)x

n−dma−1
2 e

h
,

if tn + h
2
− a > a

with h = 1
m

= 0.001.

The following tables show the numerical results of the ruin probability obtained

using the three methods mentioned above.
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u INLAP RK Method Formula (15)

0.00 0.9211318044 0.9211318044 0.9211318044

0.50 0.8296021223 0.8296070412 0.8296070412

1.00 0.6890087128 0.6890225081 0.6890225081

1.50 0.5293799043 0.5298745537 0.5353992073

2.00 0.3997806311 0.4005676986 0.4011025729

2.50 0.3002514839 0.3014735340 0.3004907576

3.00 0.2250062823 0.2271458282 0.2251155505

3.50 0.1686190367 0.1721385552 0.1686471777

4.00 0.1264085770 0.1322763643 0.1263432889

4.50 0.0946434736 0.1131940957 0.0946509515

5.00 0.0708798766 0.0977458827 0.0709083844

5.50 0.0530743003 0.0850289664 0.0531214607

6.00 0.0397974253 0.0747956981 0.0397962494

6.50 0.0298436284 0.0670632756 0.0298135510

7.00 0.0223536491 0.0620170348 0.0223348991

7.50 0.0162816644 0.0600509316 0.0167321354

8.00 0.0121226907 0.0618432334 0.0125346456

8.50 0.0096039772 0.0748338355 0.0093898223

9.00 0.0070965290 0.1063997278 0.0070334325

9.50 0.0057058334 0.1677112474 0.0052673952

10.00 -0.0006008148 0.2784554477 0.0039430948

Table 1: Threshold 1: ψ1(u) with a = 1.0
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u INLAP RK Method Formula (15)

0.00 0.3468887615 0.3468887615 0.3468887615

0.50 0.2852835655 0.2854825966 0.2854825966

1.00 0.2240217924 0.2240664631 0.2240664631

1.50 0.1699006557 0.1700244939 0.1708359303

2.00 0.1278527379 0.1278641615 0.1279837661

2.50 0.0959827900 0.0958782411 0.0958802785

3.00 0.0718169808 0.0717919348 0.0718295096

3.50 0.0538092852 0.0536607936 0.0538116170

4.00 0.0403017998 0.0399561945 0.0403133515

4.50 0.0301980376 0.0329317789 0.0302010202

5.00 0.0226264596 0.0269048947 0.0226252948

5.50 0.0169239044 0.0216513666 0.0169498890

6.00 0.0126396418 0.0170354077 0.0126981224

6.50 0.0097050071 0.0129458974 0.0095128860

7.00 0.0070565343 0.0092761645 0.0071266497

7.50 0.0053980947 0.0059170863 0.0053389924

8.00 0.0029420257 0.0027498093 0.0039997697

8.50 0.0033720732 -0.0021464583 0.0029965034

9.00 0.0015506744 -0.0076791139 0.0022449363

9.50 0.0009362698 -0.0150272394 0.0016819575

10.00 0.0032184124 -0.0260630940 0.0012603061

Table 2: Threshold 1: ψ2(u) with a = 1.0
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u INLAP RK Method Formula (15)

0.00 0.1124110993 0.1124110993 0.1124110993

0.50 0.0711387992 0.0720914189 0.0720914189

1.00 0.0452700257 0.0462213226 0.0462213226

1.50 0.0286850333 0.0296224339 0.0296224339

2.00 0.0180510283 0.0189721797 0.0189721797

2.50 0.0112339854 0.0121387152 0.0121387152

3.00 0.0068656802 0.0077541968 0.0077541968

3.50 0.0040682554 0.0049409821 0.0049409821

4.00 0.0022786260 0.0031359546 0.0031359546

4.50 0.0011358857 0.0019778046 0.0019778046

5.00 0.0004084110 0.0012347072 0.0012347072

5.50 -0.0000463724 0.0009088316 0.0008124382

6.00 -0.0003241301 0.0006678714 0.0004977536

6.50 -0.0004905462 0.0004892724 0.0003049568

7.00 -0.0005879402 0.0003566159 0.0001868366

7.50 -0.0006433725 0.0002579009 0.0001144683

8.00 -0.0006729364 0.0001843240 0.0000701307

8.50 -0.0006861687 0.0001050259 0.0000429666

9.00 -0.0006893873 0.0000546916 0.0000263240

9.50 -0.0006872416 0.0000228227 0.0000161277

10.00 -0.0006800890 0.0000026441 0.0000098808

Table 3: Threshold 1: ψ1(u) with a = 5.0
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u INLAP RK Method Formula (15)

0.00 0.0125018009 0.0125018009 0.0125018009

0.50 0.0081177354 0.0080160714 0.0080160714

1.00 0.0052614808 0.0051380803 0.0051380803

1.50 0.0034384131 0.0032916545 0.0032916545

2.00 0.0022772551 0.0021071074 0.0021071074

2.50 0.0015403628 0.0013472388 0.0013472388

3.00 0.0010761619 0.0008598552 0.0008598552

3.50 0.0007862449 0.0005473056 0.0005473056

4.00 0.0006074309 0.0003469348 0.0003469348

4.50 0.0005011559 0.0002185416 0.0002185416

5.00 0.0004406571 0.0001363320 0.0001363320

5.50 0.0004101396 0.0001003385 0.0000895466

6.00 0.0003991127 0.0000737371 0.0000548635

6.50 0.0003991127 0.0000540386 0.0000336144

7.00 0.0004079342 0.0000394291 0.0000205957

7.50 0.0004200935 0.0000285817 0.0000126197

8.00 0.0004348755 0.0000205222 0.0000077330

8.50 0.0004515648 0.0000118862 0.0000047391

9.00 0.0004688501 0.0000064647 0.0000029049

9.50 0.0004863143 0.0000030927 0.0000017811

10.00 0.0005044341 0.0000010186 0.0000010926

Table 4: Threshold 1: ψ2(u) with a = 5.0
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From the above tables, we can see that ψ1(u) > ψ2(u). Intuitively this is obvious,

since β1 = 1 > 0.1 = β2. When we use (15) to do the numerical calculations, the

infinity summation in (16) is replaced by a finite summation. The truncation error

makes that the method yields inaccurate results, in particular, when the values of u

are large. It is well known that the numerical inversion of Laplace transform is not

stable and converges very slowly in some cases. It is also known that the Runge-

Kutta method to solve the delay differential equation numerically is not stable. In

tables 3 and 4, the computation involves many exponential functions, the cumulative

errors cause the numerical results obtained by INLAP to deviate considerably from

those obtained from (15). The reason why the RK method looks good in tables 3

and 4 but poor in tables 1 and 2 is that the results by RK are exact for 0 ≤ u ≤ 5

in tables 3 and 4 while they are exact only for 0 ≤ u ≤ 1 in tables 1 and 2. Another

reason is that we used step size 1 in tables 1 and 2 but 5 in tables 3 and 4 in our

computation. For example, to calculate the result of u = 10 from u = 1 in tables

1 and 2, there are 9 computation steps (the result for u = 1 is exact). On the

other hand, to do this in tables 3 and 4, the computation has to go through only 1

step from u = 5 (the result for u = 5 is exact), which will cause less error. Notice

that unreasonable numerical results, negative probabilities, may be produced both

by inverting the Laplace transform and by using the 1-stage Runge-Kutta methods

of order 2. The numerical results obtained by using formula (15) are all reasonable.

To investigate the extension of the results in this paper to the case of more general

claim sizes is an interesting further research problem. It is possible to obtain similar

results, but the problem becomes very complex since the number of independent equa-

tions becomes large if we replace the exponential distribution by a hyper-exponential
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one. The Erlang distribution will be even more complex.
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