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Slip Flow due to a Stretching Cylinder 
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Abstract The slip flow due to a stretching cylinder is studied. A similarity transform 

reduces the Navier–Stokes equations to a set of nonlinear ordinary differential equations. 

Asymptotic solutions for large Reynolds number and small slip show the problem can be 

related to the existing two-dimensional stretching cases. Due to algebraic decay, the 

equations are further transformed through a compressed variable, and then integrated 

numerically. It is found that slip greatly reduces the magnitudes of the velocities and the 

shear stress.   
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1. Introduction 

The viscous flow due to a stretching boundary occurs in the extrusion of metal, 

plastic and food products. The stretching causes the entrainment of the adjacent fluid, 

which in turn affects the resistance and the solidification of the extruded material. If the 

extrusion velocity is linear with respect to distance [1], which usually occurs with 

material subjected to constant strain, similarity solutions of the fluid problem may exist 

[2]. The two-dimensional stretching of a flat sheet was solved by Crane [3] and the 

axisymmetric radial stretching of a surface by Wang [4]. Brady and Acrivos [5] 

considered the flow inside a stretching channel or tube, while Wang [6] studied the flow 

outside a stretching cylinder. The above sources, and their many extensions, applied the 

no-slip boundary condition between the fluid and the extrusate.  

 In certain cases, the no-slip condition does not hold and should be replaced by a 

partial slip condition. These occur when the fluid is a rarefied gas [7], or when it is 

particulate such as blood, foam, emulsion or suspension [8]. Slip also occurs on 

hydrophobic surfaces, especially in micro- and nano-fluidics [9]. 
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 Two- dimensional stretching surface with partial slip was studied by Andersson 

[10] and Wang [11], and the axisymmetric case by Ariel [12]. It was found that slip 

affects the velocities and the fluid resistances considerably. The purpose of the present 

paper is to investigate the axisymmetric similarity solution due to a stretching of a 

cylinder with a partial slip boundary. The results are relevant to the extrusion of filaments 

which are micron size and/or in a rarefied environment. It is also an exact similarity 

solution of the Navier–Stokes equations.  

 
2. Formulation 

 Fig. 1 shows a cylinder of radius a being stretched longitudinally with a surface 

velocity of Ws = 2bz where b is a constant and z is the axial direction.  In addition, there 

is a longitudinal free stream velocity of W at infinity. We use a transformation similar to 

that of Wang [6] 
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Here (u, w) are velocities in the (r, z) directions respectively and continuity is satisfied. 

Since there is no longitudinal pressure gradient, using Eq. (1), the Navier–Stokes 

equations reduce to the nonlinear ordinary differential equations 

 ]      (2) '')'[('')(''' 2 fffRff −=+ηη

 )''(')('' fggfRgg −=+ηη       (3) 

where  (ν2/2baR = ν  being the kinematic viscosity) is the Reynolds number.  

On the cylinder surface, the partial slip condition [13] states that the slip velocity 

is proportional to the local shear stress su τ  

 τNus =         (4) 

where N is the slip coefficient.  Eqs. (1, 4) then yield 

 )1(''1)1(' ff λ=−        (5) 

 )1(')1( gg λ=         (6) 
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Here aN /2 ρνλ =  ( ρ being the fluid density) is the normalized slip factor.  Zero radial 

velocity on the surface requires 

 0         (7) )1( =f

And at infinity we have uniform flow W 

          (8) 0)(' =∞f

 1        (9) )( =∞g

For given R and λ , Eqs. (2, 3, 5–9) are to be solved.  Eqs. (2, 5) reduces to the no slip 

case of [6] only when 0=λ .  Eqs. (3, 6) representing axial convection are entirely new.   

 
3. Asymptotic solution for large R and small slip 

 At large R a boundary layer exists on the cylinder. The cylinder curvature is thus 

unimportant and the flow can be related to that on a two-dimensional stretching flat 

surface.  Let R >> 1 and 1/ <<Λ= Rλ . We expand as follows 

 )()(1 1−+= ROh
R

f ξ ,    (10) )()( 2/1−+= ROkg ξ

where 

 )1( −= ηξ R         (11) 

is the boundary layer coordinate.  Eqs. (2, 5, 7, 8) give 

 '        (12) '''')'( 2 hhhh =−

 0)(',0)0(),0(''1)0(' =∞=Λ=− hhhh     (13) 

Eqs. (12, 13) represent the slip flow over a two dimensional stretching sheet. The solution 

was given by Andersson [10] 

          (14) ξ−−= ceh 1 , )1/(1 Λ+=c

Eqs. (3, 6, 9) yield 

 ,   0')1('' =+−+ −− kcekcek ξξ 1)(),0(')0( =∞Λ= kkk   (15) 
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To solve Eq. (15), let 

 )()( ξksK = ,           (16) ξ−= es

Eq. (15) then becomes 

        (17) 0''' =−+ cKcsKsK

with the boundary conditions 

 )       (18) 1(')1(,1)0( KKK Λ−==

The general solution to Eq. (17) is 

 ( )[∫ −−=+= −
−

cscsEecscds
s

escscK cs
cs

21221 ]   (19) 

where  
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z
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z
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=)(        (20) 

is the exponential integral.  The boundary conditions give 

       (21) )(,1 12 cEecc c +−== −

Thus 

 ( ) [ ]cececEcEecek −−−− −−+−= )()(exp ξξξ     (22) 

Note that for no slip, and Eq. (22) reduces to the solution of the no slip flow 

over a stretching sheet found by Danberg and Fansler [14].  

1,0 ==Λ c

 
4. Algebraic decay at large distances 

 For large η , from Eqs. (8, 9) we can set 

 )(1~),(~ ηψηφ ++ gcf       (23) 

where is a constant and )(∞= fc ψφ, decay to zero as ∞→η . For large enough η , Eqs. 

(2, 3) linearize to 

 0'')1(''' =++ φηφ Rc        (24) 
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 '')1('' φψηψ RRc =++        (25) 

The decay solutions to Eqs. (24, 25) are 

 ,    Rcc −= 1
1ηφ RcRc Rcc −− += 1

12 ηηψ      (26) 

where , are constants. We see that the functions decay algebraically (instead of 

exponentially as in stretching flat surfaces).  Also, a necessary condition for existence of 

a solution is . 

1c 2c

c R/1>

 

5. Numerical method 

 Due to the algebraic decay, the domain is too large for direct numerical 

integration of Eqs. (2, 3).  We greatly compress the domain by an exponential transform  

          (27) xe=η

After some work, Eqs. (2, 3) become 

     (28) 0)(2 2 =−−++− xxxxxxxxxx fffffRfff

 0       (29) )( =−+ gffgRg xxxx

The boundary conditions (in x) are 

 )0(1)0()1(,0)0( xxx fff λλ +=+=      (30) 

 0         (31) )( =∞xf

 )0()0( xgg λ=         (32) 

 1        (33) )( =∞g

Given R and λ , we guess and from Eq. (30) obtain  and . Then 

integrate Eq. (28) as an initial value problem by a standard Runge–Kutta algorithm. At 

large 

)0(xxf )0(f )0(xf

η  (about 15) we check whether  decays to zero. Using shooting, the initial 

values can be accurately obtained. After f is determined, Eq. (29) is similarly integrated 

with a guessed and g(0) from Eq. (32).  A solution is obtained when g-1 decays to 

zero at large enough x.  Table 1 shows the results. 

xf

)0(xg
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 Table 1(a) Initial and final values for R = 0.1 

λ  )0(xxf  )1(')0( ffx = )1(''f  )(∞= fc )1(')0( ggx =  
0 0.518195 1 -0.4818 15.061 0.1030 
0.1 0.501976 0.9547 -0.4528 15.037 0.0965 
0.5 0.449207 0.8164 -0.3672 14.984 0.0773 
1 0.401035 0.7005 -0.2995 14.937 0.0621 
2 0.336058 0.5574 -0.2213 14.879 0.0448 
5 0.237711 0.3648 -0.1271 14.815 0.0250 
10 0.168397 0.2440 -0.0756 14.769 0.0145 

 
 Table 1(b) Initial and final values for R = 1 

λ  )0(xxf  )1(')0( ffx = )1(''f  )(∞= fc )1(')0( ggx =  
0 -0.177752 1 -1.1778 1.8786 0.3379 
0.1 -0.112773 0.8988 -1.0116 1.8401 0.2863 
0.5 0.0042342 0.6681 -0.6638 1.7463 0.1815 
1 0.0522636 0.5261 -0.4739 1.6862 0.1256 
2 0.0790586 0.3860 -0.3070 1.6280 0.0777 
5 0.0807401 0.2340 -0.1532 1.5585 0.0365 
10 0.0671050 0.1519 -0.0848 1.5278 0.0190 

 
 Table 1(c) Initial and final values for R = 10 

λ  )0(xxf  )1(')0( ffx = )1(''f  )(∞= fc )1(')0( ggx =  
0 -2.344457 1 -3.3445 0.3858 1.1402 
0.1 -1.512162 0.7716 -2.2838 0.3486 0.7700 
0.5 -0.614427 0.4619 -1.0763 0.2886 0.3532 
1 -0.334432 0.3328 -0.6672 0.2584 0.2143 
2 -0.157647 0.2282 -0.3859 0.2302 0.1204 
5 -0.042532 0.1312 -0.1738 0.1992 0.0514 
10 -0.007778 0.0838 -0.0916 0.1818 0.0258 

 
 Table 1(d) Initial and final values for R = 100 

λ  )0(xxf  )1(')0( ffx =  )1(''f  )(∞= fc  )1(')0( ggx =  
0 -9.183421 1 -10.183 0.1064 3.661 
0.1 -3.785225 0.5650 -4.3502 0.0816 1.551 
0.5 -1.187700 0.2708 -1.4585 0.0587 0.5126 
1 -0.633809 0.1831 -0.8169 0.0495 0.2843 
2 -0.319381 0.1204 -0.4398 0.0416 0.1570 
5 -0.119319 0.0672 -0.1866 0.0331 0.0625 
10 -0.053108 0.0426 -0.0957 0.0281 0.0313 

 
We see c > 1/R as predicted in the previous section. 
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6. Discussions 

 Fig. 2 shows the similarity profile xeff //)( =ηη for the radial velocity. 

Since the decay is too slow inη , we plotted the velocity against the compressed variable 

x. Because the radial velocity is zero on the surface and at infinity, there exists a 

maximum in the fluid. In contrast, for the two dimensional case the maximum is at 

infinity. The effect of slip is to decrease the velocity magnitude. Fig. 3 shows the 

similarity profile for the axial velocity )()(' xff x=η  which is due to stretching of the 

cylinder.  Fig. 4 shows the function g , affected by , which is due to the axial convection 

at infinity.  Both contribute to the axial velocity w.  

f

 The shear stress on the surface is 

 [ )1(')1(''22 Wgbzf
ar

w
arrz +=

∂
∂

= = ]μμτ     (34) 

where the initial values are given in Table 1. The location of zero shear is at 

 
)1(''2
)1('

bf
Wgz −

=         (35) 

This location is positive on the z axis if W is positive, and negative if W is negative. From 

Eq. (34) one can compute the total fluid dynamic drag for any segment of the stretching 

cylinder. Since both )1(''f and decrease with increased slip, the magnitude of drag 

would also decrease with increased slip.  

)1('g

 How large is the slip factorλ ?  For rarefied gasses in micron sized tubes, λ  is of 

order 0.01. For fluids in superhydrophobic microtubes [15], λ  could be order of 1. For 

lubricated surfaces, λ  could reach 100 [16].  
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Figure Captions 

 

Fig. 1 The stretching cylinder with surface velocity Ws and a uniform flow W at infinity. 

Fig. 2 The radial velocity xeff //)( =ηη . From top: 10,1,0=λ . (a) R=1 (b) R=10. 

Fig. 3 The axial velocity )()(' xff x=η . From top: 10,1,0=λ . (a) R=1 (b) R=10. 

Fig. 4 The axial velocity g . From top for small x: 10,1,0=λ . (a) R=1 (b) R=10. 
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Figure 2 
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Figure 3 
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Figure 4 
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