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Transceiver Design for Dual-Hop Nonregenerative
MIMO-OFDM Relay Systems Under

Channel Uncertainties
Chengwen Xing, Shaodan Ma, Yik-Chung Wu, and Tung-Sang Ng, Fellow, IEEE

Abstract—In this paper, linear transceiver design for dual-hop
nonregenerative [amplify-and-forward (AF)] MIMO-OFDM sys-
tems under channel estimation errors is investigated. Second order
moments of channel estimation errors in the two hops are first
deduced. Then based on the Bayesian framework, joint design of
linear forwarding matrix at the relay and equalizer at the destina-
tion under channel estimation errors is proposed to minimize the
total mean-square-error (MSE) of the output signal at the desti-
nation. The optimal designs for both correlated and uncorrelated
channel estimation errors are considered. The relationship with ex-
isting algorithms is also disclosed. Moreover, this design is extended
to the joint design involving source precoder design. Simulation re-
sults show that the proposed design outperforms the design based
on estimated channel state information only.

Index Terms—Amplify-and-forward (AF), equalizer, forwarding
matrix, minimum mean-square-error (MMSE).

I. INTRODUCTION

I N order to enhance the coverage of base stations and quality
of wireless links, dual-hop relaying is being considered to

be one of the essential parts for future communication systems
(e.g., LTE, IMT-Adanced, Winner Project). In dual-hop coop-
erative communication, relay nodes receive signal transmitted
from a source and then forward it to the destination [1], [2].
Roughly speaking, there are three different relay strategies:
decode-and-forward (DF), compress-and-forward (CF), and
amplify-and-forward (AF). Among them, AF strategy is the
most preferable for practical systems due to its low complexity
[3]–[7].

On the other hand, for wideband communication, multiple-
input multiple-output (MIMO) orthogonal-frequency-division-
multiplexing (OFDM) has gained a lot of attention in both in-
dustrial and academic communities, due to its high spectral ef-
ficiency, spatial diversity and multiplexing gains [8]–[11]. The
combination of AF and MIMO-OFDM becomes an attractive
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option for enabling high-speed wireless multi-media services
[12].

In the last decade, linear transceiver design for various
systems has been extensively investigated because of its low
implementation complexity and satisfactory performance [8],
[13]. For linear transceiver design, minimum mean-square-error
(MMSE) is one of the most important and frequently used cri-
teria [14]–[20]. For example, for point-to-point MIMO and
MIMO-OFDM systems, linear MMSE transceiver design has
been discussed in details in [14]–[16]. Linear MMSE trans-
ceiver design for multiuser MIMO systems has been considered
in [17], [18]. For single carrier AF MIMO relay systems, linear
MMSE forwarding matrix at the relay and equalizer at the
destination are joint designed in [19]. Furthermore, the linear
MMSE transceiver design for dual hop MIMO-OFDM relay
systems based on prefect channel state information (CSI) is
proposed in [20].

In all the above works, CSI is assumed to be perfectly known.
Unfortunately, in practical systems, CSI must be estimated and
channel estimation errors are inevitable. When channel esti-
mation errors exist, in general, two classes of designs can be
employed: min-max and stochastic designs. If the distribu-
tions of channel estimation errors are known to be unbounded,
stochastic design is preferred. Stochastic design includes proba-
bility-based design and Bayesian design. In this paper, we focus
on Bayesian design, in which an averaged mean-square-error
(MSE) performance is considered. Recently, Bayesian linear
MMSE transceiver design under channel uncertainties has been
addressed for point-to-point MIMO systems [22], [23] and
point-to-point MIMO-OFDM systems [24].

In this paper, we take a step further and consider the linear
MMSE transceiver design for dual-hop AF MIMO-OFDM relay
systems without the direct link. For channel estimation in the
two hops, both the linear minimum mean square error and max-
imum likelihood estimators are derived, based on which the
second order moments of channel estimation errors are deduced.
Using the Bayesian framework, channel estimation errors are
taken into account in the transceiver design criterion. Then a
general closed-form solution for the optimal relay forwarding
matrix and destination equalizer is proposed. Both the uncorre-
lated and correlated channel estimation errors are considered.
The relationship between the proposed algorithm and several
existing designs is revealed. Furthermore, the proposed closed-
form solution is further extended to an iterative algorithm for
joint design of source precoder, relay forwarding matrix and
destination equalizer. Simulation results demonstrate that the

1053-587X/$26.00 © 2010 IEEE
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proposed algorithms provide an obvious advantage in terms of
data mean-square-error (MSE) compared to the algorithm based
on estimated CSI only.

We want to highlight that the solution proposed in this
paper can be directly extended to the problem minimizing the
weighted MSE. Various objective metrics such as capacity
maximization and minimizing maximum MSE can be trans-
formed to a weighted MSE problem with different weighting
matrices [14]. For clearness of presentation, we only consider
a sum MSE minimization problem. On the other hand, mini-
mizing the transmit power with a QoS requirement is a different
perspective for transceiver design. Formulating and solving this
problem is out of the scope of this paper.

This paper is organized as follows. System model is presented
in Section II. Channel estimators and the corresponding covari-
ance of channel estimation errors are derived in Section III. The
optimization problem for transceiver design is formulated in
Section IV. In Section V, the general optimal closed-form so-
lution for the relay forwarding matrix and destination equalizer
design problem is proposed. The proposed closed-form solution
is further extended to an iterative algorithm to include the design
of source precoder in Section VI. Simulation results are given in
Section VII and finally, conclusions are drawn in Section VIII.

The following notations are used throughout this paper.
Boldface lowercase letters denote vectors, while boldface up-
percase letters denote matrices. The notations , , and
denote the transpose, Hermitian, and conjugate of the matrix

, respectively, and is the trace of the matrix . The
symbol denotes the identity matrix, while
denotes the all zero matrix. The notation is the
Hermitian square root of the positive semidefinite matrix ,
such that and is a Hermitian matrix.
The symbol represents the expectation operation. The
operation stacks the columns of the matrix into a
single vector. The symbol represents Kronecker product.
The symbol means . The notation
denotes the block diagonal matrix with and as the diagonal
elements.

II. SYSTEM MODEL

In this paper, we consider a dual-hop AF MIMO-OFDM re-
laying cooperative communication system, which consists of
one source with antennas, one relay with receive an-
tennas and transmit antennas, and one destination with
antennas, as shown in Fig. 1. At the first hop, the source trans-
mits data to the relay, and the received signal at the relay on
the subcarrier is

(1)

where is the data vector transmitted by the source with co-
variance matrix on the subcarrier, and
can be an arbitrary covariance matrix. The matrix is the
MIMO channel between the source and relay on the subcar-
rier. The symbol is the additive Gaussian noise with zero
mean and covariance matrix on the sub-
carrier. At the relay, for each subcarrrier, the received signal
is multiplied by a forwarding matrix , under a power con-
straint where and

is the maximum transmit power. Then the resulting signal is
transmitted to the destination. The received data at the des-
tination on the subcarrier is

(2)

where the symbol is the additive Gaussian noise vector on
the subcarrier at the second hop with zero mean and covari-
ance matrix . In order to guarantee the trans-
mitted data can be recovered at the destination, it is assumed
that , , and are greater than or equal to [6].

The signal received at the relay and the signal received at
the destination in frequency domain can be compactly written
as

(3)

(4)

where

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

Notice that in general the matrix in (4) can be an arbi-
trary matrix instead of a block diagonal ma-
trix. This corresponds to mixing the data from different sub-
carriers at the relay, and is referred as subcarrier cooperative
AF MIMO-OFDM systems [20]. It is obvious that when the
number of subcarrier is large, transceiver design for such sys-
tems needs very high complexity. On other hand, it has been
shown in [20] that the low-complexity subcarrier independent
AF MIMO-OFDM systems [i.e., the system considered in (3)
and (4)] only have a slight performance loss in terms of total
data mean-square-error (MSE) compared to the subcarrier coop-
erative AF MIMO-OFDM systems. Therefore, in this paper, we
focus on the more practical subcarrier independent AF MIMO-
OFDM relay systems.

III. CHANNEL ESTIMATION ERROR MODELING

In practical systems, channel state information (CSI) is un-
known and must be estimated. Here, we consider estimating the
channels based on training sequence. Furthermore, the two fre-
quency-selective MIMO channels between the source and relay,
and that between the relay and destination are estimated inde-
pendently. In this paper, the source-relay channel is estimated at
the relay, while the relay-destination channel is estimated at the
destination. Then each channel estimation problem is a standard
point-to-point MIMO-OFDM channel estimation.

For point-to-point MIMO-OFDM systems, channels can be
estimated in either frequency domain or time domain. The ad-
vantage of time domain over frequency domain channel esti-
mation is that there are much fewer parameters to be estimated
[25]. Therefore, we focus on time domain channel estimation.
Because the channels in the two hops are separately estimated in
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Fig. 1. AF MIMO-OFDM relaying diagram.

time domain, we will present the first hop channel estimation as
an example and the same procedure can be applied to the second
hop channel estimation.

From the received signal model in frequency domain given
by (3), the corresponding time domain signal is

(6)

where is the normalized discrete-Fourier-transform (DFT)
matrix with dimension . Based on the properties of DFT
matrix, it is proved in Appendix A that (6) can be rewritten as

(7)

where the matrices are defined as

(8)

It is obvious that is the tap of the multi-path MIMO
channel between the source and relay in the time domain and

is the length of the multi-path channel. The data matrix is
a block circular matrix as

. . .
. . .

...
...

. . .
. . .

...
...

(9)

where the element is expressed as

(10)

Based on the signal model in (7), the linear minimum-mean-
square-error (LMMSE) channel estimate is given by [25]

(11)

with the corresponding MSE

(12)

where is the prior information
for channel covariance matrix. For uncorrelated channel
taps, and

, where is the variance of
the channel tap [24].

On the other hand, the channel in frequency domain and time
domain has the following relationship1:

(13)

where is the first columns of . If the frequency domain
channel estimate is computed according to (13), we have

(14)

where .
In case there is no prior information on , we can as-

sign uninformative prior to , that is, ap-
proach infinity [26]. In this case, , and then the
channel estimator (11) and estimation MSE (12) reduce to that
of maximum likelihood (ML) estimation [25, p. 179].

Taking the block diagonal elements from
(14) gives

(15)

where is the matrix taken from the following
partition of

...
. . .

... (16)

Furthermore, based on (15), for an arbitrary square matrix , it
is proved in Appendix B that

(17)

1This relationship holds for both perfect CSI and estimated CSI.
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A similar result holds for the second hop. In particular, de-
noting the relationship between the true value and estimate of
the second hop channel as

(18)

we have the following property:

(19)

where is the length of the second hop channel in time do-
main. Furthermore, as the two channels are estimated indepen-
dently, and are independent.

IV. TRANSCEIVER DESIGN PROBLEM FORMULATION

At the destination, a linear equalizer is adopted for each
subcarrier to detect the transmitted data (see Fig. 1). The
problem is how to design the linear forwarding matrix at the
relay and the linear equalizer at the destination to minimize
the MSE of the received data at the destination:

(20)

where the expectation is taken with respect to , ,
, , and .2 Since , and are indepen-

dent, the MSE expression (20) can be written as

(21)

Because and are independent, the first term of
is

2In this paper, the MSE is in fact an average of the traditional MSE over all
possible channel estimation errors �� and �� . When the LMMSE
channel estimator is adopted, it is equivalent to the conditional MSE corre-
sponding to the partial CSI case defined in [27].

(22)

For the inner expectation, the following equation holds:

(23)

where based on (17) the matrix is defined as

(24)

Applying (23) and the corresponding result for to
(22), the first term of becomes

(25)

where the matrix is defined as

(26)

Similarly, the second term of in (21) can be simplified
as

(27)

Based on (25) and (27), the (21) equals to

(28)

where

(29)

(30)

Notice that the matrix is the correlation matrix of the re-
ceive signal on the subcarrier at the relay.

Subject to the transmit power constraint at the relay, the joint
design of relay forwarding matrix and destination equalizer that
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minimizes the total MSE of the output data at the destination
can be formulated as the following optimization problem:

(31)

Remark 1: In this paper, the relay estimates the source-relay
channel and the destination estimates the relay-destination
channel. The forwarding matrix and equalizer are
designed at the relay. Therefore, the estimated second hop CSI
should be fed back from destination to relay. However, when
channel is varying slowly, and the channel estimation feedback
occurs infrequently, the errors in feedback can be negligible.

V. PROPOSED CLOSED-FORM SOLUTION FOR ’S AND ’S

In this section, we will derive a closed-form solution for the
optimization problem (31). In order to facilitate the analysis, the
optimization problem (31) is rewritten as

(32)

with the physical meaning of being the maximum allocated
power over the subcarrier.

The Lagrangian function of the optimization problem (32) is

(33)

where the positive scalars and are the Lagrange multipliers.
Differentiating (33) with respect to , and , and set-
ting the corresponding results to zero, the Karush-Kuhn-Tucker
(KKT) conditions of the optimization problem (32) are given
by [28]

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

(34g)

(34h)

It is obvious that the objective function and constraints of (32)
are continuously differentiable. Furthermore, it is easy to see
that solutions of the optimization problem (32) satisfy the regu-
larity condition, i.e., Abadie constraint qualification (ACQ), be-
cause linear independence constraint qualification (LICQ) can
be proved [29]. Based on these facts, the KKT conditions are
the necessary conditions.3 From KKT conditions, we can derive
the following two useful properties which can help us to find the
optimal solution.

Property 1: It is proved in Appendix C that for any sat-
isfying the KKT conditions (34a)–(34e), the power constraints
(34g) and (34h) must occur on the boundaries

(35)

(36)

Furthermore, the corresponding satisfies

(37)

Property 2: Define the matrices , , , , and
based on eigenvalue decomposition (EVD) and singular

value decomposition (SVD) as

(38)

(39)

with elements of the diagonal matrix and arranged in
decreasing order. Then with KKT conditions (34a) and (34b), it
is proved in Appendix D that the optimal forwarding matrix
and equalizer must be in the form

(40)

(41)

where and are to be determined. The matrix
and are the first columns of and , respec-
tively, and . Similarly, is the first
columns of , and .

Right multiplying both sides of (34a) with and left multi-
plying both sides of (34b) with , and making use of (40) and
(41), the first two KKT conditions become

(42)

(43)

3Notice that the solution � � � � � � � � � and � � � � � �

� � � also satisfies the KKT conditions, but this solution is meaningless
as no signal can be transmitted [14].
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where the matrix is the principal submatrix of .
Similarly, is the principal submatrix of . In this
paper, we consider AF MIMO-OFDM relay systems, the ma-
trices and can be of arbitrary dimension instead of the
square matrices considered in point-to-point systems [14], [22].
Then, the solutions satisfying KKT conditions and obtained by
solving (42) and (43) are not unique. To identify the optimal so-
lution, we need an additional information which is presented in
the following Property 3.

Property 3: Putting the results of Property 1 and Property
2 into the optimization problem (32), based on majorization
theory, it is proved in Appendix E that the optimal and

have the following diagonal structure:

(44)

(45)

where and are two diagonal matrices
to be determined, and . Notice that Property 3
is obtained by applying majorization theory to the original op-
timization problem. It is also a necessary condition for the op-
timal solution, and contains different information from that of
Property 2.

Combining Property 2 and Property 3, and following the ar-
gument in [14], it can be concluded that the optimal solution
of and is unique. Now, substituting (44) and (45)
into (42) and (43), and noticing that all matrices are diagonal,

and can be easily solved to be

(46)

(47)

where the matrices and are the principal sub-
matrices of and with dimension , and

. The matrices ,
and are the first columns of ,

and , respectively. From (46) and (47), it can be seen
that the optimal solutions are variants of water-filling solution.
Furthermore, the eigen channels of two hops are paired based
on the best-to-best criterion at the relay.

In the general solution (46), (47), , , and are un-
known. However, notice that from (35) and (37) in Property 1,
the optimal forwarding matrix and equalizer should simultane-
ously satisfy

(48)

(49)

Substituting (44)–(47) into (48) and (49), it can be straightfor-
wardly shown that and can be expressed as functions of

(50)

(51)

where , , , and are defined as

(52a)

(52b)

(52c)

(52d)

and is a diagonal selection matrix with diagonal elements
being 1 or 0, and serves to replace the operation ‘ ’. Combining
all the results in this section, we have the following summary.

Summary: The optimal forwarding matrix and equal-
izer are

(53)

(54)

where

(55)

(56)

with and given by (50)–(52).
From the above summary, it is obvious that the problem of

finding optimal forwarding matrix and equalizer reduces to
computing , and it can be solved based on (51) and the
following two constraints [i.e., (34f) and (36)]

(57)

(58)

In the following subsections, we will discuss how to compute
.

Remark 2: When both channels in the two hops are flat-
fading channels, the considered system reduces to single-carrier
AF MIMO relay system. Note that for single-carrier systems no
power allocation has to be calculated since only one carrier ex-
ists, i.e., , . In this case, the proposed closed-
form solution is exactly the optimal solution for the transceiver
design under channel estimation errors in flat-fading channel.
Furthermore, when the CSI in the two hops are perfectly known,
the derived solution reduces to the optimal solution proposed in
[19].
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Remark 3: Notice that when the source-relay link is noiseless
and the first hop channel is an identity matrix, the closed-form
solution can be simplified to the optimal linear MMSE trans-
ceiver under channel uncertainties for point-to-point MIMO-
OFDM systems [24]. Moreover, if single carrier transmission
is employed, the closed-form solution further reduces to the op-
timal point-to-point MIMO LMMSE transceiver under channel
uncertainties [22].

Remark 4: The complexity of the proposed algorithm is dom-
inated by one matrix inversion of ,
three matrix multiplications and one EVD in (38), one matrix
inversion of , two matrix multiplications and one
SVD in (39), four matrix multiplications in (53), four matrix
multiplications in (54), and two water-filling computations
in (55) and (56). Note that the matrix inversions in (53) and
(54) are the same as those in (38) and (39) and therefore
their computations could be saved. Specifically, in (38), the
matrix inversion, matrix multiplications and EVD operation
have complexities of , and

, respectively [30]. In (39), the matrix inversion,
matrix multiplications and SVD operation costs ,

, and , respectively.
With the diagonal structures of and , the
matrix multiplications in (53) and (54) have complexities
of and

, respectively.
On the other hand, the complexities for the two water-filling
computations in (55) and (56) are . As a result, for the
AF MIMO-OFDM system with subcarriers, the complexity
of the proposed transceiver design is approximately upper
bounded by , where .

A. Uncorrelated Channel Estimation Error

When the channel estimation errors are uncorrelated (for ex-
ample, by using training sequences that are white in both time
and space dimensions), the following condition must be satis-
fied [10], [31]–[33]:

(59)

Then according to (14), we have
. Similarly, for the second hop, we also have

(60)

where the specific form of can be easily derived based on
(26).

Putting (60) into the left-hand side of (38), the expression
becomes

(61)

Applying eigen-decomposition
and comparing with the right-hand side of (38), we have

(62)

Substituting (62) into (51), reduces to

(63)
where is the principal submatrix of .

With (63) and the facts that and
, can be straightforwardly computed to be

(64)

where equals

(65)

B. Correlated Channel Estimation Error

Due to limited length of training sequence, may
not be possible to achieve [31]. In this case, the channel esti-
mation errors are correlated, and . From (38), it can
be seen that the relationship between and cannot be
expressed in a closed-form. Then the solution for cannot
be directly obtained. Here, we employ the spectral approxima-
tion (SPA)

(66)

For spectral approximation, is replaced by ,
where is the maximum eigenvalue of . Ap-
plying (66) to the MSE formulation in (28), it is obvious that the
resultant expression forms an upper-bound to the original MSE.
Notice that when the training sequences are close to white se-
quence [35], [36], the eigenvalue spread of is small, and
SPA is a good approximation. With SPA, the left-hand side of
(38) becomes

(67)
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Comparing (67) to (61), it is obvious that the problem becomes
exactly the same as that discussed for uncorrelated channel es-
timation errors. Therefore, the allocated power to the sub-
carrier can be calculated by (64) but with replaced by

.

VI. EXTENSION TO THE JOINT DESIGN INVOLVING

SOURCE PRECODER

Notice that the design in the previous section is suitable for
scenarios where the source has fixed precoder. For example,
the source precoder can be set to for full spatial multiplexing
or space-time block coding matrix for increasing diversity. On
the other hand, if source precoder, relay forwarding matrix and
destination equalizer are jointly designed, we can proceeds as
follows. First, with a source precoder before transmission,
the system model in (2) is rewritten as

(68)

It can be seen that (68) is the same as (2) except
is in the place of . Furthermore, without loss of gener-
ality, we can assume in (68) as all correlations are
represented by . Then by using the substitutions

and into the first line of (21), and fol-
lowing the same derivation in Section IV, it can be easily proved
that the data MSE at destination in the subcarrier is

(69)

where

(70)
Comparing (28) to (69), it can be seen that another way to obtain
the data MSE with source precoder is to use the substitutions

, , and , in
(28).

With the additional power constraint for the source precoders,
the optimization problem of joint transceiver design is formu-
lated as

(71)

where is the maximum transmit power at the source. In gen-
eral, the optimization problem (71) is nonconvex with respective
to the three design variables, and there is no closed-form solu-
tion. However, when ’s are fixed, the solution for ’s and

’s can be directly obtained from results given by (46) and (47)

with substitutions , ,
and . On the other hand, when ’s and ’s are
fixed, the optimization problem (71) is convex with respect to

’s. Therefore, an iterative algorithm can be employed for
joint design of source precoder, relay forwarding matrix and
destination equalizer.

In order to solve ’s when ’s and ’s are fixed, the data
MSE (69) is rewritten as

(72)

with

(73)

(74)

In (73), we have used the spectral approximation
, so that the objective function for designing

’s is consistent with that of ’s and ’s. However, if
there is no correlation in the second hop channel estimation
error, and there is no approximation.

Notice that the data MSE (72) is equivalent to the following
expression involving Frobenius norm

(75)

Furthermore, the two power constraints in the optimization
problem (71) can also be reformulated into expressions in-
volving Frobenius norm

(76)

(77)

where

(78)

Because the last term in (72) is independent of ’s, it can
be neglected, and the optimization problem (71) with respective
to ’s can be formulated as the following second-order conic
programming (SOCP) problem [see (79) at the bottom of the
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page]. This problem can be efficiently solved by using interpoint
polynomial algorithms [28].

When ’s are fixed, the proposed solutions for ’s and
’s in the previous section are the optimal solution for the

corresponding optimization problem. On the other hand, when
’s and ’s are fixed, the solution for ’s obtained from

the SOCP problem is also the optimal solution. It means that
the objective function of joint transceiver design monotonically
decreases at each iteration, and the proposed iterative algorithm
converges.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, we investigate the performance of the
proposed algorithms. For the purpose of comparison, the
algorithm based on estimated channel only (without taking
the estimation errors into account) is also simulated. An AF
MIMO-OFDM relay system where the source, relay and
destination are equipped with same number of antennas,

is considered. The number of
subcarriers is set to be 64, and the length of the multipath
channels in both hops is . The channel impulse response
is generated according to the HIPERLAN/2 standard [10].
The signal-to-noise ratio (SNR) of the first hop is defined as

, and is fixed as 30 dB. At the source, on
each subcarrier, four independent data streams are transmitted,
and QPSK is used as the modulation scheme. The SNR at the
second hop is defined as . In the figures,
MSE is referred to total simulated MSE over all subcarriers
normalized by . Each point in the following figures is an av-
erage of 10 000 realizations. In order to solve SOCP problems,
the widely used optimization Matlab toolbox CVX is adopted
[39].

Based on the definition of in (9), is a block circular
matrix. In the following, only the effect of spatial correlation in
training sequence is demonstrated, and the training is white in
time domain. In this case, is a block diagonal matrix, and
can be written as , where is

the spatial correlation matrix of the training sequence. Further-
more, the widely used exponential correlation model is adopted
to denote the spatial correlation [22], [23], and therefore we have

(80)

It is assumed that the same training sequence is used for channel
estimation in the two hops. Based on the definition of and

in (24) and (26), and together with (80), we have

(81)

where can be viewed as the variance of channel
estimation errors and is SNR during channel estimation
process.

First, we investigate the performance of the proposed algo-
rithm with fixed source precoder and when in
(81). Fig. 2 shows the MSE of the received signal at the destina-
tion with different . It can be seen that the performance of the
proposed algorithm is always better than that of the algorithm
based on estimated CSI only, as long as is not zero. Further-
more, the performance improvement of the proposed algorithm
over the algorithm based on only estimated CSI enlarges when

increases.
Fig. 3 shows the MSE of the output data at the destination for

both proposed algorithm and the algorithm based on estimated
CSI only with fixed source precoder and with dif-
ferent . It can be seen that although performance degradation
is observed for both algorithms when increases, the proposed
algorithm shows a significant improvement over the algorithm
based on estimated CSI only. Furthermore, as gives the
best data MSE performance, it demonstrates that white sequence
is preferred in channel estimation.

...

(79)
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Fig. 2. MSE of received signal at the destination for different� when� � ���
and with � � � .

Fig. 3. MSE of received signal at the destination for different � when
� ��� � �� dB and with � � � .

Fig. 4 shows the bit error rates (BER) of the output data at
the destination for different , when . It can be seen
that the BER performance is consistent with MSE performance
in Fig. 2.

When source precoder design is considered, the proposed al-
gorithm is an iterative algorithm. Fig. 5 shows the convergence
behavior of the proposed iterative algorithm with different initial
values of . In the figure, the suboptimal solution as the initial
value for refers to the solution given in [24] based on the first
hop CSI. It can be seen that the proposed algorithm with sub-
optimal solution as initial value has a faster convergence speed
than that with identity matrix as the initial value.

Fig. 6 compares the data MSEs of the proposed iterative
algorithm under channel uncertainties and the iterative algo-
rithm based on estimated CSI only in [20]. Similar to the case

Fig. 4. BER of received data at the destination for different � when � � ���
and with � � � .

Fig. 5. Convergence behavior of the proposed iterative algorithm when � �

��� and � � ����.

with fixed source precoder, the proposed joint design algorithm
taking into account the channel estimation uncertainties per-
forms better than the algorithm based on estimated CSI only.

Finally, Fig. 7 illustrates the data MSE of the iterative trans-
ceiver design algorithm based on estimated CSI only [20] and
the proposed algorithms with source precoder jointly designed
or simply set to . It can be seen that when CSI is per-
fectly known , the algorithms with source precoder
design performs better than that by setting precoder .
On the other hand, when , even the proposed algo-
rithm with simple precoder performs better than the
algorithm based on estimated CSI only with source precoder
design. Furthermore, when the channel estimation errors in-
creases, the performance gap between the proposed algorithms
with and without source precoder design decreases. Notice that
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Fig. 6. MSE of received signal at the destination for different � when � �
���.

Fig. 7. MSE of received data at the destination for different � , when � � ���
and � ��� � �� dB.

the algorithm without source precoder design has a much lower
complexity, thus it represents a promising tradeoff in terms of
complexity and performance.

VIII. CONCLUSION

In this paper, linear transceiver design was addressed for AF
MIMO-OFDM relaying systems with channel estimation errors
based on MMSE criterion. The linear channel estimators and
the corresponding MSE expressions were first derived. Then a
general solution for optimal relay forwarding matrix and desti-
nation equalizer was proposed. When the channel estimation er-
rors are uncorrelated, the optimal solution is in closed-form, and
it includes several existing transceiver design results as special
cases. Furthermore, the design was extended to the case where
source precoder design is involved. Simulation results showed
that the proposed algorithms offer significant performance im-
provements over the algorithms based on estimated CSI only.

APPENDIX A
PROOF OF (7)

Based on the characteristics of DFT operation, the matrix
defined in (6) is a block circulant matrix given by
(82) at the bottom of the page, whose element is defined in
(8). It is obvious that is the tap of the multi-path MIMO
channels between the source and relay in the time domain and

is the length of the multi-path channel.
On the other hand, based on the definition of in (6), we have

the relationship between and which is given by (83).

(83)

From (82) and (83), by straightforward computation, the signal
model given in (6) can be reformulated as

(84)

where the matrix is defined in (9).

...
...

...
...

...
...

...
(82)
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APPENDIX B
PROOF OF (17)

For the expectation of the following product

(85)

where and are two random matrices with com-
patible dimension to , the element of is

(86)

If the two random matrices and satisfy

(87)

where is a matrix while is a ma-
trix, then we have the equality

. As and are scalars, (86)
can be further written as

(88)

Finally, writing (88) back to matrix form, we have [37]

(89)

Notice that this conclusion is independent of the ma-
trix variate distributions of and , but only deter-
mined by their second order moments. Putting

, and
, into (89), we have (17).

APPENDIX C
PROOF OF PROPERTY 1

Right multiplying both sides of (34a) with , the following
equality holds

(90)

Left multiplying (34b) with , we have

(91)

After taking the traces of both sides of (90) and (91) and with
the fact that the traces of their right-hand sides are equivalent,
i.e.,

we directly have

(92)

By the property of trace operator

and (92) reduces to

(93)

On the other hand, based on the definition of in (30),
can be also expressed as

(94)

Comparing (93) with (94), it can be concluded that

(95)

Putting (95) into (34c), we have
. As , it is straightforward that

(96)

Furthermore, based on the fact
and taking summation of both sides of (96), the following

equation holds:

(97)

Putting (97) into (34e), we have

(98)

and it follows that

(99)
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Since for the optimal equalizer ,
, it can be concluded that . In order to have (34c) satis-

fied, we must have

(100)

Furthermore, as , based on (34e), it is also concluded that

(101)

Finally, (96) constitutes the second part of the Property 1.

APPENDIX D
PROOF OF PROPERTY 2

Defining a full rank Hermitian matrix
, then for an arbitrary matrix , it can be

written as

(102)

where the inner matrix equals to
.

Putting (102) into (34a), and with the following definitions
[the same as the definitions in (38) and (39)]:

(103)

(104)

the equalizer can be reformulated as

(105)

where the second equality is due to the matrix inversion lemma.
Putting (96) from Appendix C into (34b), after multiplying

both sides of (34b) with , we have

(106)

Then substituting in (102) and in (105) into (106), we
have

(107)
Since and are rectangular diagonal matrices (denoting
their ranks by and respectively), based on (107), it can be
concluded that has the following form

(108)

where is of dimension and to be determined. Fur-
thermore, putting (108) into the definition of in (105), we
have

(109)

where is of dimension , and to be determined. Sub-
stituting (108) and (109) into (102) and (105), it can be con-
cluded that

(110)

(111)

where

(112)

and is the principal submatrix of .

APPENDIX E
PROOF OF PROPERTY 3

Taking the trace of both sides of (42) and (43), and noticing
that the resultant two equations are the same, it is obvious that

(113)

On the other hand, substituting (111) into (96) in Appendix C,
we have

(114)

Comparing (113) and (114), it follows that

(115)
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For the objective function in the optimization problem (32),
substituting (40) and (41) into the MSE expression in (28), the
MSE on the subcarrier can be written as

(116)

where is a constant part independent of . Therefore, based
on (115) and (116), the optimization problem (32) becomes as

(117)

For any given , then the optimization problem (117) can
be decoupled into a collection of the following suboptimization
problems:

(118)

where the constant part is neglected. For any two
positive semidefinite Hermitian matrices and , we have

, where denotes the
largest eigenvalue of the matrix [38]. Together with

the fact that elements of the diagonal matrix are in de-
creasing order, the objective function of (118) is minimized,
when is a diagonal matrix with the
diagonal elements in decreasing order. The objective function
can be rewritten as

(119)

where denotes the vector which consists of the main diag-
onal elements of the matrix .

It follows that is a Schur-concave function of [38,
3.H.3]. Then, based on [15, Theorem 1], the optimal has
the following structure:

(120)

where is a diagonal matrix to be determined,
and .

Putting (120) into the definition of in (112), the
structure of the optimal is given by

(121)

where is also a diagonal matrix.
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