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A Coaxial Magnetic Gear With Halbach
Permanent-Magnet Arrays

Linni Jian, Student Member, IEEE, and K. T. Chau, Senior Member, IEEE

Abstract—This paper proposes a coaxial magnetic gear that of-
fers higher torque density, lower cogging torque, and lower iron
losses than its counterparts. The key is to newly employ a Halbach
permanent-magnet (PM) array to constitute the PM poles in the
inner rotor and a partial Halbach array (two segments per pole)
for the outer rotor. The corresponding magnetic field distributions,
torque transmission, and torque ripples are analytically discussed.
Then, the corresponding performances are quantitatively assessed
by using the finite-element method.

Index Terms—Finite-element analysis, Halbach arrays, mag-
netic gear, torque transmission.

I. INTRODUCTION

IN ORDER TO transmit torque or force between separate
parts moving at different speeds, mechanical gearboxes are

extensively used, especially for wind power generation [1] and
vehicular propulsion [2]. Because of their contact mechanisms,
the associated transmission loss, gear noise and regular lubrica-
tion are inevitable.

The concept of noncontact magnetic gear coupling has been
proposed for a decade [3]. It can transform torque and change
speed by the interactive magnetic field between the permanent-
magnet (PM) pieces mounted on two separate shafts, hence
offering some distinct advantages, namely, minimum acous-
tic noise, free from maintenance, improved reliability, inherent
overload protection, and physical isolation between input and
output shafts. Despite these merits, the early magnetic gears
in which parallel-axis topologies are mainly adopted have not
gained much attention. The major drawback is the poor utiliza-
tion of PMs, hence resulting in poor torque density and low
transmission efficiency.

Recently, a high-performance magnetic gear has been pro-
posed [4]–[6]. Because of the adoption of coaxial topology, the
utilization of the PMs is improved significantly. Thus, it can
provide higher torque density than the magnetic coupling. To
strengthen the mechanical structure, a high-speed rotor with
spoke type PMs is employed for a magnetic gear [7]. Also,
various types of magnetic gears, such as the axial magnetic
gear [8] and the linear magnetic gear [9], [10] are developed.
Very recently, the coaxial magnetic gear has been directly
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Fig. 1. Conventional coaxial magnetic gear.

mounted with electric machinery to achieve an integrated elec-
tric drive [11], [12]. However, this coaxial magnetic gear still
suffers from the drawback of high torque ripples. Also, since
its operating principle is not as intuitionistic as the parallel one,
the available numerical analyses are insufficient to illustrate its
physical insight.

It is well known that Halbach PM arrays hold some attractive
features, namely, near-sinusoidal airgap flux density distribu-
tion, strong field intensity, and good self-shielding magnetiza-
tion [13]–[16]. The purpose of this paper is to newly incor-
porate the attractive features of Halbach PM arrays into the
coaxial magnetic gear. Thus, the resulting torque density be-
comes comparable with that of the mechanical gear, while the
corresponding torque ripples and iron losses can be significantly
reduced. Increasingly, with the use of analytical derivations, the
physical insight of the proposed magnetic gear is brought for-
ward. Hence, those “good” harmonics that contribute to torque
transmission and those “bad” harmonics that are the cause of
torque ripples can be analytically identified.

Section II will be devoted to describe the proposed con-
figuration. Then, the proposed magnetic gear will be analyti-
cally discussed in Section III. In Section IV, the correspond-
ing performances will be quantitatively assessed by using the
finite-element method (FEM). Finally, conclusion is drawn in
Section V.

II. PROPOSED CONFIGURATION

Fig. 1 shows the topology of the conventional coaxial mag-
netic gear. It employs high-energy rare-earth PMs on both the
inner rotor and the outer rotor, and has stationary ring sand-
wiched between the two rotors. The stationary ring takes charge
of modulating the magnetic fields in two airgaps beside it. In
order to form good magnetic paths as well as to reduce eddy cur-
rent loss, the stationary ring is built of thin sheets of laminated

0885-8969/$26.00 © 2010 IEEE
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Fig. 2. Proposed coaxial magnetic gear.

Fig. 3. Halbach PM arrays. (a) Two segments per pole. (b) Three segments
per pole.

ferromagnetic materials. Also, epoxy is filled in its slots to en-
force the structural strength for high torque transmission. Fig. 2
shows the proposed coaxial magnetic gear with the Halbach
PM arrays. It has a similar structure with the magnetic gear
given in Fig. 1, but with different orientations of PM pieces.
The numbers of pole pairs on the inner and outer rotors are 4
and 17, respectively. The number of ferromagnetic segments on
the stationary ring is 21.

Halbach PM arrays can generally be realized by discrete PM
segments. By arranging PM segments with different magneti-
zation directions properly, due to the superposition effect, the
magnetic flux on one side of the device can be augmented while
that on the other side is suppressed. Moreover, the field distribu-
tion becomes more sinusoidal because of the artfully designed
magnetization directions for each PM segment. Fig. 3 shows the
constructions of Halbach PM arrays with the numbers of PM
segments per pole equal to 2 and 3, respectively.

The choice of the number of segments per pole (NSP) is
based on three considerations. First, the higher the value of NSP,
the more sinusoidal the airgap flux densities can be resulted,
which can help suppress the cogging torques. Second, a high
value of NSP suffers from an increase of fabrication cost. Such
increase of cost is particularly significant for the outer rotor
that has a large number of poles. Third, different NSP values
cause different magnetic field strengths, depending on the design
of Halbach cylinders such as the radius and thickness [17].
The magnetic field strength of the main harmonic component
actually governs the pull-out torque of the magnetic gear. When
taking into account these considerations holistically, a tradeoff
has to be made. Therefore, in the proposed magnetic gear, the

Fig. 4. Arrangements of PM segments. (a) One pole pair on inner rotor.
(b) Two pole pairs on outer rotor.

numbers of PM segments per pole on the inner rotor and the
outer rotor are chosen as 3 and 2, respectively.

Fig. 4 shows the arrangements of PM segments on the inner
rotor and the outer rotor. The magnetization direction in each
PM segment is given by

M̄ = Mx + jMy = M cos((1 ± p)θ) + jM sin((1 ± p)θ)
(1)

where the minus case is for the inner rotor, the positive case is
for the outer rotor, p is the number of pole pairs, θ is the angle
between the x-axis and the center line of each PM segment, M =
Br/µ0 is the amplitude of remanent intrinsic magnetization, and
Br is the remanence of the PM.

III. THEORETICAL ANALYSIS

The torque transmission between the two separated rotors
relies on the interaction of the magnetic fields. Starting from the
analysis of magnetic fields in the two airgaps, this section will
deduce how the proposed device functions as a mechanical gear:
transmitting stable torques when the rotors rotating at different
speeds. The torque ripples will also be discussed.

A. Magnetic Fields in Airgaps

The magnetic fields in the coaxial magnetic gear are built
up by the inner rotor PMs and the outer rotor PMs simulta-
neously. In order to analytically investigate the contribution of
these magnetic fields to the torque, magnetic saturation of the
stationary steel teeth is neglected, namely, the assumption of lin-
ear magnetic path [18] is adopted in such a way that the torque
can be computed by using superposition. It should be noted
that this assumption will not affect the constitution of magnetic
field harmonics, and how they interact to achieve stable torque
transmission when the two rotors rotating at different speeds.

First, the stationary ring is removed (see Fig. 5). Assuming
that the PM is oriented according to ideal Halbach magneti-
zation and the yokes are infinitely permeable, the field dis-
tribution in the air space can be modeled by the Laplacian and
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Fig. 5. Magnetic fields excited by rotors without stationary ring. (a) Inner
rotor. (b) Outer rotor.

quasi-Poissonian equations of the scalar magnetic potential [19].
The radial and the tangential components of the magnetic flux
density at a radial distance r solely produced by the inner rotor
and the outer rotor are given by

Br1 (r) =
Brp1

1 + p1

1 − (Ra/Rb)p1 +1

1 − (Ra/Rc)2p1

×
[(

r

Rc

)p1 −1 (
Rb

Rc

)p1 +1

+
(

Rb

r

)p1 +1
]

× cos (p1 (θ − ω1t) + p1θ10)

= A (r) cos (p1 (θ − ω1t) + p1θ10) (2)

Bθ1 (r) =
−Brp1

1 + p1

1 − (Ra/Rb)p1 +1

1 − (Ra/Rc)2p1

×
[(

r

Rc

)p1 −1 (
Rb

Rc

)p1 +1

−
(

Rb

r

)p1 +1
]

× sin (p1 (θ − ω1t) + p1θ10)

= B (r) sin (p1 (θ − ω1t) + p1θ10) (3)

Br2 (r) =
−Brp2

1 − p2

1 − (Rd/Rc)p2 −1

1 − (Ra/Rc)2p2

×
[(

r

Rd

)p2 −1

+
(

r

Rd

)p2 −1 (
Ra

r

)2p2
]

× cos (p2 (θ − ω2t) + p2θ20)

= C (r) cos (p2 (θ − ω2t) + p2θ20) (4)

Bθ2 (r) =
Brp2

1 − p2

1 − (Rd/Rc)p2 −1

1 − (Ra/Rc)2p2

×
[(

r

Rd

)p2 −1

−
(

r

Rd

)p2 −1 (
Ra

r

)2p2
]

× sin (p2 (θ − ω2t) + p2θ20)

= D (r) sin (p2 (θ − ω2t) + p2θ20) (5)

where p1 , p2 are the number of pole pairs on the inner and outer
rotors, respectively, Ra and Rb are the inside and outside radii
of the inner rotor, respectively, Rd and Rc are the inside and
outside radii of the outer rotor, respectively, ω1 and ω2 are the
rotational speeds of the inner and outer rotors, respectively, and

Fig. 6. Magnetic fields excited by rotors with stationary ring. (a) Inner rotor.
(b) Outer rotor.

θ10 and θ20 are their initial phase angles. The coefficients A, B,
C, and D are all functions of radial distance r and independent
of the position angle θ.

Second, the stationary ring is taken into account (see Fig. 6).
Since magnetic saturation of the stationary ring is ignored, the
ferromagnetic segments can be considered to have infinite per-
meability and hence be equipotential on both airgaps. Therefore,
their distortion effect on the magnetic field is similar to the slot-
ting effect in PM motors [20], which can be approximated by
multiplying the original field distribution (without ferromag-
netic segments) with a modulating function. Also, since this
distortion occurs in two dimensions, the use of 2-D complex
permeance function [21] is preferred. It should be noted that this
approximation technique functions to analytically identify the
constitution of the average torque for transmission and torque
ripples, rather than to provide precise calculation.

Thus, the analytical expression of magnetic flux density with
the stationary ring is given by

BM = Boλ
∗ (6)

where BM and Bo are the flux densities in the air space with and
without the stationary ring, respectively, and λ∗ is the complex
relative airgap permeance. In polar coordinates, it can further be
written as

λ∗ = λa�er − λb�eθ . (7)

For the inner and outer airgaps, it yields

λa in = λ0 in +
∞∑

k=1

λak in cos(kNsθ) (8)

λb in =
∞∑

k=1

λbk in sin(kNsθ) (9)

λa out = λ0 out +
∞∑

k=1

λak out cos(kNsθ) (10)

λb out =
∞∑

k=1

λbk out sin(kNsθ) (11)

where Ns is the number of ferromagnetic segments on the
stationary ring, and λ0 in , λ0 out , λak in , λak out , λbk in , and
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λbk out are Fourier coefficients. Thus, the modulated flux
density in the inner airgap excited by the inner rotor can be
expressed as

Br1 in = λa inBr1(Rin) + λb inBθ1(Rin)

= λ0 inA (Rin) cos (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∞∑
k=1

λak inA (Rin) − jλbk inB (Rin)
2

× cos
[
(kNs + jp1)

(
θ − jp1ω1t

kNs + jp1

)
+ jp1θ10

]

= a0 cos (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∞∑
k=1

ajk cos [p1jk (θ − ω1jk t) + jp1θ10 ] (12)

Bθ1 in = λa inBθ1(Rin) − λb inBr1(Rin)

= λ0 inB (Rin) sin (p1 (θ − ω1t) + p1θ10)

−
∑

j=±1

∞∑
k=1

λak inB (Rin) − jλbk inA (Rin)
2

× sin
[
(kNs + jp1)

(
θ − jp1ω1t

kNs + jp1

)
+ jp1θ10

]

= b0 sin (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∞∑
k=1

bjk sin [p1jk (θ−ω1jk t) + jp1θ10 ]. (13)

Then, the flux density in the outer airgap excited by the inner
rotor can be expressed as:

Br1 out = λa outBr1(Rout) + λb outBθ1(Rout)

= c0 cos (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∞∑
k=1

cjk cos [p1jk (θ − ω1jk t) + jp1θ10 ]

(14)

Bθ1 out = λa outBθ1(Rout) − λb outBr1(Rout)

= d0 sin (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∞∑
k=1

djk sin [p1jk (θ − ω1jk t) + jp1θ10 ].

(15)

Similarly, the corresponding flux densities excited by the
outer rotor can be expressed as

Br2 in = λa inBr2(Rin) + λb inBθ2(Rin)

= e0 cos (p2 (θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

ejk cos [p2jk (θ − ω2jk t) + jp2θ20 ]

(16)

Bθ2 in = λa inBθ2(Rin) − λb inBr2(Rin)

= f0 sin (p2 (θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

bjk sin [p2jk (θ − ω2jk t) + jp2θ20 ]

(17)

Br2 out = λa outBr2(Rout) + λb outBθ2(Rout)

= g0 cos (p2 (θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

gjk cos [p2jk (θ − ω2jk t) + jp2θ20 ]

(18)

Bθ2 out = λa outBθ2(Rout) − λb outBr2(Rout)

= h0 sin (p2 (θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

hjk sin [p2jk (θ − ω2jk t) + jp2θ20 ]

(19)

where Rin and Rout are the radii of the inner and outer airgaps
respectively. The coefficients ajk , bjk , cjk , djk , ejk , fjk , gjk ,
and hjk are all constants. The pole-pair number of the harmonic
components is given by

pijk = kNs + jpi, i = 1, 2, j = 1,−1,

k = 1, 2, . . . ,∞. (20)

Therefore, the corresponding rotational speed is given by

ωijk =
jpiωi

kNs + jpi
. (21)

Finally, ignoring the nonlinear factors of the magnetic path,
the resultant magnetic fields in the airgaps are obtained as

Br in = Br1 in + Br2 in

= a0 cos(p1(θ − ω1t) + p1θ10)

+ e0 cos(p2(θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

[
ajk cos(p1jk (θ − ω1jk t) + jp1θ10)

+ejk cos(p2jk (θ − ω2jk t) + jp2θ20)

]

(22)

Bθ in = Bθ1 in + Bθ2 in

= b0 sin(p1(θ − ω1t) + p1θ10)

+ f0 sin(p2(θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

[
bjk sin(p1jk (θ − ω1jk t) + jp1θ10)

+fjk sin(p2jk (θ − ω2jk t) + jp2θ20)

]

(23)
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Br out = Br1 out + Br2 out

= c0 cos(p1(θ − ω1t) + p1θ10)

+ g0 cos(p2(θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

[
cjk cos(p1jk (θ − ω1jk t) + jp1θ10)

+gjk cos(p2jk (θ − ω2jk t) + jp2θ20)

]

(24)

Bθ out = Bθ1 out + Bθ2 out

= d0 sin(p1(θ − ω1t) + p1θ10)

+ h0 sin(p2(θ − ω2t) + p2θ20)

+
∑

j=±1

∞∑
k=1

[
djk sin(p1jk (θ − ω1jk t) + jp1θ10)

+hjk sin(p2jk (θ − ω2jk t) + jp2θ20)

]
.

(25)

B. Torque Transmission

In order to function as a mechanical gear, the proposed mag-
netic gear should achieve stable torque transmission while the
rotors rotating at different speeds. By choosing proper combina-
tion of (p1 , p2 , Ns), this goal can be reached. They are governed
by

Ns = p1 + p2 . (26)

The corresponding inner and outer rotors are rotating at the
speed of ω1 and ω2 , respectively, which are governed by

ω2 = −p1

p2
ω1 = −Grω1 (27)

where Gr is called the gear ratio, and the minus notation indi-
cates that the two rotors rotate in opposite directions.

The average magnetic torque developed on the inner rotor
can be obtained by calculating the Maxwell stress in the inner
airgap

Tm in =
LefR

2
in

µ0

∫ 2π

0
Br inBθ indθ (28)

where Lef is the effective axial length.
From (22) and (23), it can be found that both the radial and

tangential flux densities in the inner airgap are the sum of infinite
harmonic terms. Each term can be generally expressed as

br in = δ cos(pm θ + α) (29)

bθ in = ε sin(pnθ + β) (30)

where pm and pn are the pole-pair numbers, and α and β are
the phase angles. The coefficients δ and ε are constants, which
are independent of the position angle θ. Thus, it yields∫ 2π

0
br inbθ indθ =

∫ 2π

0
δε cos(pm θ + α) sin(pnθ + β)dθ

=
{

0, pm �= pn

δεπ sin(β − α), pm = pn .
(31)

It can be found that the product term br inbθ in can contribute
to the average magnetic torque if it satisfies the following two
rules:

1) R1: br in and bθ in have the same pole-pair number;
2) R2: br in and bθ in have different phase angles.
Table I illustrates the overall combinations of br in and bθ in ,

in which the first row lists all the pole-pair numbers of the ra-
dial flux density harmonics, and the first column lists that of
the tangential flux density harmonics. The intersection of each
row and column is marked with either 0 or 1, where 1 signifies
that the corresponding product term br inbθ in may contribute to
the average magnetic torque, whereas 0 means no contribution.
These can be determined by considering (20), (21), (26), (27),
and the rules R1 and R2. The harmonics with the pole-pair num-
ber marked with 1 are called effective harmonics. Consequently,
Table II gives the pole-pair numbers of the effective harmonics
in the inner airgap and their contributed magnetic torques.

The average magnetic torque developed on the outer rotor
can be obtained by calculating the Maxwell stress in the outer
airgap

Tm out =
LefR

2
out

µ0

∫ 2π

0
Br outBθ outdθ. (32)

Consequently, the pole-pair numbers of the effective harmon-
ics in the outer airgap and their contributed magnetic torques
are shown in Table III. Both Tables II and III demonstrate that
the magnetic torques are sinusoidal functions of the initial phase
angle difference of the two rotors. Since they are independent of
time, the proposed magnetic gear can transmit stable magnetic
torque while realize speed variation as governed by (27).

C. Torque Ripples

As shown in Tables II and III, when the PMs are oriented
according to ideal Halbach magnetization, the developed mag-
netic torques only depend on (p2θ20 − p1θ10), hence resulting
no torque ripples. However, for Halbach PM array with discrete
PM segments, torque ripples do exist.

For nonideal Halbach magnetization, the flux density at a
radial distance r solely produced by the inner rotor is no longer
purely sinusoidal and should be written as

B′
r1 (r) =

∑
m=1,3,5,...

Am (r) cos (mp1 (θ − ω1t) + mp1θ10)

(33)

B′
θ1 (r) =

∑
m=1,3,5,...

Bm (r) sin (mp1 (θ − ω1t) + mp1θ10).

(34)

Taking into account the stationary ring, the modulated flux
density in the inner airgap excited by the inner rotor can be
expressed as

B′
r1 in = a′

0 cos (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∑
m=1,3,5,...

∞∑
k=1

ajkm

× cos [p1jkm (θ − ω1jkm t) + jmp1θ10 ] (35)
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TABLE I
COMBINATION OF FLUX DENSITY HARMONICS IN INNER AIRGAP

TABLE II
AVERAGE MAGNETIC TORQUE CONSTITUTION IN INNER AIRGAP

TABLE III
AVERAGE MAGNETIC TORQUE CONSTITUTION IN OUTER AIRGAP

B′
θ1 in = b′0 sin (p1 (θ − ω1t) + p1θ10)

+
∑

j=±1

∑
m=1,3,5,...

∞∑
k=1

bjkm

× sin [p1jkm (θ − ω1jkm t) + jmp1θ10 ] . (36)

The harmonic pole-pair number is given by

p1jkm = kNs + jmp1

j = 1,−1, k = 1, 2, . . . ,∞, m = 1, 3, 5, . . . ,∞.

(37)

The corresponding rotational speed is given by

ω1jkm =
jmp1ω1

kNs + jmp1
. (38)

Similar to (29) and (30), the radial and tangential flux densi-
ties can be expressed in terms of the following harmonic com-
ponents:

b′r in = a1k1 m 1 cos (p11k1 m 1 (θ − ω11k1 m 1 t) + m1p1θ10)

(39)

b′θ in = b−1k2 m 2 sin (p1−1k2 m 2 (θ − ω1−1k2 m 2 t) − m2p1θ10) .

(40)

Assuming that they have the same pole-pair number, namely,
p11k1 m 1 = p1−1k2 m 2 , from (37), it yields

(k1 − k2)Ns = (m1 + m2)p1 . (41)

Denoting U as the least common multiple of Ns and 2p1 , it
is easy to find k1 , k2 , m1 , and m2 , which can satisfy

(k1 − k2)Ns = (m1 + m2)p1 = nU (42)
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where n can be chosen as any natural number. By using (31) and
(39)–(42), it yields∫ 2π

0
b′r inb′θ indθ

= a1k1 m 1 b−1k2 m 2 π sin ((m1 + m2) p1 (ω1t − θ10))

= a1k1 m 1 b−1k2 m 2 π sin (nU (ω1t − θ10)) . (43)

Hence, the developed magnetic torque on the inner rotor has
a component fluctuating with time t, so-called the torque ripple,
and can be expressed as

Tripple in =
∞∑

n=1

sn in sin (nU (ω1t − θ10)) (44)

where sn in is the Fourier coefficient.
Similarly, the pole-pair number of the harmonics excited by

the outer rotor is given by

p2jkm = kNs + jmp2

j = 1,−1, k = 1, 2, . . . ,∞, m = 1, 3, 5, . . . ,∞.

(45)

The corresponding rotational speed is given by

ω2jkm =
jmp2ω2

kNs + jmp2
. (46)

Consequently, the torque ripple on the outer rotor can be
obtained as

Tripple out =
∞∑

n=1

sn out sin (nW (ω2t − θ20)) (47)

where W is the least common multiple of Ns and 2p2 , and sn out
is the Fourier coefficient.

With no doubt, the existence of torque ripples will be detri-
mental to the performance of all machines [22], [23], including
the magnetic gear. The adoption of Halbach PM arrays can sig-
nificantly improve the flux distribution, thus help to eliminate
or greatly reduce such torque ripples. This improvement is very
essential for coaxial magnetic gears, especially for application
to servomechanism.

IV. PERFORMANCE ANALYSIS

By using time-stepping FEM, the performances of the pro-
posed magnetic gear and the conventional coaxial magnetic gear
are quantitatively compared. Table IV lists the major parame-
ters of both gears, which hold exactly the same size. With the
number of pole pairs on the inner rotor and the outer rotor equal
to 4 and 17, respectively, the gear ratio Gr = 4.25 is resulted.

A. Magnetic Field Distribution and Harmonics Analysis

Fig. 7 shows the magnetic field distributions of both magnetic
gears. It can be easily observed that the proposed magnetic gear
exhibits much lower magnetic flux density in both the inner ro-
tor yoke and the outer rotor yoke than that in the conventional

TABLE IV
PARAMETERS OF MAGNETIC GEAR

Fig. 7. Magnetic field distributions. (a) Conventional. (b) Proposed.

magnetic gear. As a result, the rotor yokes can be further di-
minished, hence reducing the overall weight and volume of the
gear, as well as the inertias of the rotors.

Figs. 8 and 9 show the radial and tangential magnetic flux
density waveforms in the inner airgap of both magnetic gears,
respectively. Fig. 10 shows their harmonic spectra. From the
theoretical analysis summarized in Table II, the harmonic com-
ponents with the pole-pair numbers equal to p1 = 4, p2 = 17,
p111 = 25, p112 = 46, and p211 = 38 are effective harmonics that
can contribute to torque transmission in the inner airgap. It can
be seen that these effective harmonics match with the major har-
monics in the harmonic spectrum shown in Fig. 10. Moreover,
the harmonic components with 12, 20, 28, 33, 36, 41, and 49
pole pairs that exist in the conventional magnetic gear are sig-
nificantly suppressed in the proposed magnetic gear. From (37),
the harmonics with p1113 = 33, p1115 = 41, and p1117 = 49 are
the source of torque ripples. From (45) and (46), the harmonics
with p2−133 = 12, p2−155 = 20, p2−177 = 28, and p2−199 = 36
rotate at the same speed with ω1 , which arouse iron losses in the
stationary ring.

Figs. 11 and 12 show the radial and tangential magnetic
flux density waveforms in the outer airgap of both magnetic
gears, respectively. Fig. 13 shows their harmonic spectra. From
Table III, the harmonics with p1 = 4, p2 = 17, p111 =
25, p112 = 46, p113 = 67, p114 = 88, p114 = 109, p211 = 38,
p212 = 59, p213 = 80, and p213 = 101 are effective harmonics
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Fig. 8. Radial flux densities in inner airgap. (a) Proposed. (b) Conventional.

Fig. 9. Tangential flux densities in inner airgap. (a) Proposed. (b) Conven-
tional.

Fig. 10. Harmonic spectra of flux densities in inner airgap. (a) Radial.
(b) Tangential.

Fig. 11. Radial flux densities in outer airgap. (a) Proposed. (b) Conventional.

Fig. 12. Tangential flux densities in outer airgap. (a) Proposed. (b) Conven-
tional.

that can contribute to torque transmission in the outer airgap.
As expected, they match with those major harmonics shown in
Fig. 13. Moreover, the harmonic components with 51, 72, 85,
106, and 109 pole pairs that exist in the conventional magnetic
gear are significantly suppressed in the proposed magnetic gear.
From (45), the harmonics with p2113 = 72 and p2115 = 106 are
the source of torque ripples. From (37) and (38), the harmonics
with p1−133 = 51, p1−155 = 85, and p1−177 = 109 rotate at the
same speed with ω2 , which arouse iron losses in the stationary
ring.

B. Torque–Angle Curve and Torque Ripples

By holding the outer rotor still and incrementally rotating the
inner rotor, the magnetic torques can be calculated by using the
time-stepping FEM. These torque–angle curves are shown in
Fig. 14. It can be found that the torques vary sinusoidally with
the angles, which well agree with the results listed in Tables II
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Fig. 13. Harmonic spectra of flux densities in outer airgap. (a) Radial. (b)
Tangential.

Fig. 14. Torque–angle curves. (a) Inner rotor. (b) Outer rotor.

and III. Moreover, there is a π difference between the phase
angles of inner rotor and outer rotor curves. This implies that the
two rotors rotate in opposite directions, which agrees with (27).

The maximum values of the torque–angle curves denote the
pull-out torques. On the inner rotor, the pull-out torque of the
proposed magnetic gear is 41.4 N·m, which is 13% higher than
that of the conventional one (36.6 N·m). On the outer rotor, the
pull-out torque of the proposed magnetic gear is 175.7 N·m,
which is also 13% higher than that of the conventional one
(155.3 N·m). Hence, the proposed magnetic gear can offer 13%
higher torque density. It should be noted that the unique feature
of much lower flux density in both rotor yokes, and hence,
the reduction of iron material has not been taken into account
for the above assessment of torque densities. Thus, if taking
into account the reduction of the iron material, the proposed
magnetic gear will have further improvement.

Fig. 15. Torque ripples on inner rotor.

Fig. 16. Iron losses at different rotational speeds. (a) Stationary ring. (b) Inner
rotor yoke. (c) Outer rotor yoke. (d) Total iron yoke.

Fig. 15 shows the torque ripples on the inner rotors of the two
magnetic gears. It can be seen that the cogging torque in the
proposed magnetic gear is only about 0.3 N·m, which is much
less than 1.2 N·m in the conventional magnetic gear, leading to
67% reduction in cogging torque.

C. Iron Losses

The transmission loss of magnetic gears consists of the iron
losses, friction loss, windage loss, and stray loss, in which the
iron losses are considered as the major contributor.

By using the time-stepping FEM, the iron losses can be esti-
mated [24], [25]. Fig. 16 shows the no-load iron losses at various
speeds in the stationary ring, the inner rotor yoke, the outer rotor
yoke, and the whole magnetic gear. It can be observed that the
iron losses in any components of the proposed magnetic gear
are typically lower than that of the conventional one. When the
inner rotor rotates at 1000 r/min, the total iron losses in the pro-
posed magnetic gear and its conventional counterpart are 38.3
and 53.3 W, respectively. It verifies that the use of the Halbach
PM arrays for the coaxial magnetic gear can typically result in
28% reduction of the total iron losses.
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V. CONCLUSION

In this paper, a coaxial magnetic gear with Halbach PM arrays
has been proposed. The configuration and theoretical analysis
of the proposed magnetic gear has been discussed. By using
the time-stepping FEM, the performance analysis quantitatively
verifies that the proposed magnetic gear can offer at least 13%
higher torque density, up to 67% lower cogging torque, and
typically 28% lower iron losses than the conventional one.
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