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THE PROBABILITIES OF ABSOLUTE RUIN IN THE RENEWAL RISK
MODEL WITH CONSTANT FORCE OF INTEREST

DIMITRIOS G. KONSTANTINIDES, KAI W. NG, AND QIHE TANG

Abstract. In this paper we consider the probabilities of �nite- and in�nite-time absolute
ruin in the renewal risk model with constant premium rate and constant force of interest. In
the particular case of compound Poisson model, explicit asymptotic expressions for the �nite-
and in�nite-time absolute ruin probabilities are given. For the general renewal risk model, we
present an asymptotic expression for the in�nite-time absolute ruin probability. Conditional
distributions of Poisson processes and probabilistic techniques regarding randomly weighted
sums are employed in the course of this study.
Keywords: Absolute ruin; Asymptotics; Constant force of interest; Convolution equiva-

lence; Heavy tails; Renewal risk model

1. Introduction

In this paper we address the probabilities of �nite- and in�nite-time absolute ruin in the re-
newal risk model with constant premium rate and constant force of interest. In this model,
the claim sizes, Xk, k = 1; 2; : : :, form a sequence of independent, identically distributed
(i.i.d.), nonnegative random variables with generic random variable X and common distrib-
ution F = 1�F . The inter-occurrence times �k, k = 1; 2; : : :, form another sequence of i.i.d.
positive random variables with generic random variable �. We assume that the sequences
f�; �k; k = 1; 2; : : :g and fX;Xk; k = 1; 2; : : :g are mutually independent. The occurrence
times of the successive claims, Tn =

Pn
k=1 �k, n = 1; 2; : : :, constitute a renewal counting

process

Nt = #fn = 1; 2; : : : : Tn � tg; t � 0:

Therefore, the compound renewal process, Ct =
PNt

k=1Xk, represents aggregate claims up to
time t � 0, with Ct = 0 when Nt = 0. Let x � 0 be the initial surplus of the insurance
company, let c > 0 be the constant premium rate, and let � > 0 be the constant force of
interest so that after time t a capital x becomes xe�t. Then the total surplus up to time t,
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denoted as W�(t), is given by

(1.1) W�(t) = xe�t + c

Z t

0

e�(t�y)dy �
Z t

0

e�(t�y)dCy; t � 0:

If the inter-occurrence time � is exponentially distributed with mean 1=�, or, equivalently,
fNt; t � 0g is a Poisson process with intensity �, then the model above reduces to the
compound Poisson risk model, also called the classical risk model.
In the actuarial literature, the probability of in�nite-time ruin is de�ned to be the prob-

ability that the surplus falls below zero. This probability has been extensively investigated
in the compound Poisson model with constant force of interest; see, e.g. [23], [24], [1], [19],
[16], [20], and [25].
As commented by Embrechts and Schmidli [10], the boundary zero here plays an unrealistic

role. They used the alternative boundary �c=�. Whenever the surplus process hits this
boundary, the company will not be able to repay its debts. Motivated by the work of [10],
we de�ne the probability of in�nite-time absolute ruin as

(1.2)  (x;1) = Pr
�
inf
t�0

W�(t) < �
c

�

���W�(0) = x

�
; x � 0;

and de�ne the probability of �nite-time absolute ruin as

(1.3)  (x; t) = Pr

�
inf
0�s�t

W�(s) < �
c

�

���W�(0) = x

�
; x � 0; t � 0:

Compared with the study on the ruin probabilities in the ordinary sense, the absolute ruin
probabilities have received less attention than it deserves. In the compound Poisson model
and for the general case with possibly di¤erent forces of interest for invested and borrowed
money, using the technique of piecewise deterministic Markov processes and martingales,
[10, Th. 1] showed an equality as an estimate for the in�nite-time absolute ruin probability.
This estimate involves a function that can be explicitly expressed in certain cases such as
that of exponential claims, but it is not easy in general.
Absolute ruin was initially considered in [12] and further included in the book [13]. It is

to be noted that in [8] martingale methods in the context of absolute ruin were applied and
in [9] the in�uence of the force of interest on the negative surplus through several examples
was described.
Recently, most of the works on absolute ruin have been concentrated on the compound

Poisson risk model. In [2] the Gerber-Shiu discounted penalty function was used to study the
relation between the asymptotic expressions for the in�nite-time absolute ruin probability
and the ordinary in�nite-time ruin probability. In [14] the compound Poisson risk model
enriched with an independent Brownian motion was considered and their analysis was based
on the jump di¤usion model. There are calculations in three special examples with the
corresponding numerical applications. In [30] an asymptotic formula for the in�nite-time
absolute ruin probability with di¤erent forces of interest for invested and borrowed money
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was established. In [29] the multilayer model with di¤erent premium rates on di¤erent layers
of the surplus process and di¤erent forces of interest for invested and borrowed money in the
frame of the compound Poisson risk model was examined.
This paper aims at asymptotic estimates for the absolute ruin probabilities de�ned in

(1.2) and (1.3) as the initial surplus x increases for the case where the claim sizes follow a
distribution from the class S() for  � 0. In doing so, we mainly apply some standard
probabilistic arguments in [15], [7], [21], [26], [27], and [28].
The rest of this paper consists of three sections. As the starting point of the present

research, we establish in Section 2 a proposition which presents a simple structure of the
probability of absolute ruin as being the tail probability of a randomly weighted sum of non-
negative random variables, for both cases of �nite- and in�nite-time. In Section 3 three main
results are shown, two providing explicit asymptotic estimates for the �nite- and in�nite-
time absolute ruin probabilities in the compound Poisson model and one providing a general
asymptotic estimate for the in�nite-time absolute ruin probability in the general renewal
model. Section 4 proves the main results after a series of lemmas.

2. A treatment on the probabilities of absolute ruin

At occurrence time Tn =
Pn

k=1 �k, we observe the value W�(Tn) which represents the
surplus immediately after paying the nth claim, n = 1; 2; : : :. By virtue of (1.1), we can see
that this sequence satis�es the recurrence equation

(2.1) W�(0) = x; W�(Tn) =W�(Tn�1)e
��n +

c

�

�
e��n � 1

�
�Xn; n = 1; 2; : : : :

Consider another sequence

Vn = W�(Tn) +
c

�
; n = 0; 1; : : : :

It follows that

V0 = x+
c

�
; Vn = Vn�1e

��n �Xn; n = 1; 2; : : : ;

and hence that

Vn =
�
x+

c

�

� nY
k=1

e��k �
nX
k=1

Xk

nY
i=k+1

e��i ; n = 1; 2; : : : :

Since absolute ruin can happen only at the time of a claim occurrence, we rewrite the
in�nite-time absolute ruin probability in (1.2) as

 (x;1) = Pr
�
inf
n�1

W�(Tn) < �
c

�

���W�(0) = x

�
:
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With Yk = e���k for k = 1; 2; : : :, we further rewrite this probability as

 (x;1) = Pr
�
inf
n�1

Vn < 0
���V0 = x+

c

�

�
= Pr

 
inf
n�1

 �
x+

c

�

�
�

nX
k=1

Xk

kY
i=1

Yi

!
< 0

!

= Pr

 1X
k=1

Xk

kY
i=1

Yi > x+
c

�

!
:(2.2)

Relation (2.2) can be interpreted easily. Each term Xk

Qk
i=1 Yi is the e¤ective claim-size,

as discounted by the constant force of interest or as in�ation-adjusted, viewing from starting
point. The sum

P1
k=1Xk

Qk
i=1 Yi denotes the total of all discounted future claims while the

threshold for absolute ruin, x + c=�, denotes the initial surplus plus the total discounted
premium.
Similarly, for the �nite-time absolute ruin probability de�ned in (1.3), we have

 (x; t) = Pr

�
inf

1�n�Nt
W�(Tn) < �

c

�

���W�(0) = x

�

= Pr

�
inf

1�n�Nt
Vn < 0

���V0 = x+
c

�

�

= Pr

 
NtX
k=1

Xk

kY
i=1

Yi > x+
c

�

!
:(2.3)

We therefore record the following proposition:

Proposition 2.1. Consider the renewal risk model with constant force of interest � > 0.
The absolute ruin probabilities in (1.2) and (1.3) can be expressed as in (2.2) and (2.3),
respectively.

Proposition 2.1, which forms the foundation of our study, rewrites the absolute ruin proba-
bilities as the tail probabilities of randomly weighted sums. This gives rise to the opportunity
of applying some techniques well developed in the study of randomly weighted sums. We
also remark that relations (2.2) and (2.3) hold most generally, since in deriving them nei-
ther independence nor i.i.d. assumption is used. However, in developing (2.2) and (2.3)
our assumption of the same force of interest on invested and borrowed money is essential.
Therefore, Proposition 2.1 cannot handle the case of varying force of interest.

3. Main results

Here and henceforth, all limit relationships are for x ! 1 unless stated otherwise and
the symbol � means that the quotient of both sides tends to 1. Clearly, for two positive
functions f(�) and g(�), the relation f(x) � g(x) amounts to the conjunction of the relations
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lim supf(x)=g(x) � 1 and lim inff(x)=g(x) � 1, which are denoted as f(x) . g(x) and
f(x) & g(x), respectively. For two distributions F1 and F2 on [0;1), denote by F1 �F2 their
convolution; that is, for every x � 0,

F1 � F2(x) =
Z x

0�
F1(x� y)F2(dy):

Furthermore, we write F 1� = F and F n� = F (n�1)� � F for every n = 2; 3; : : :.
A distribution F on [0;1) is said to belong to the class S() for some  � 0 if

(3.1) lim
x!1

F (x� y)

F (x)
= ey

for every real number y and the limit

(3.2) lim
x!1

F 2�(x)

F (x)
= 2

Z 1

0�
eyF (dy)

exists and is �nite. A larger class, L(), is de�ned by relation (3.1) alone. For the well-
known subexponential class S(0), when  = 0, the right-hand side of (3.2) becomes 2.
For two distributions, F1 2 L() and F2 2 L(), satisfying 0 < lim inf F1(x)=F2(x) �
lim supF1(x)=F2(x) <1, it is known that F1 2 S() if and only if F2 2 S(); see, e.g. [17,
pages 133-134].
Since it was introduced by [3], [4], and [5], the class S() has been extensively investigated

by many researchers and applied to various �elds. This class is often used to model claim-size
distributions; see, e.g. [11], [18], and [28].
Closely related is the class R�1 of distributions with rapidly-varying tails, characterized

by the relation

lim
x!1

F (xy)

F (x)
= 0; y > 1:

Clearly, if F 2 L() for some  > 0 then F 2 R�1. A lot of distributions in the class S(0)
such as lognormal and Weibull distributions still belong to the class R�1.
For the compound Poisson model, the conditional joint distribution of the n occurrence

times given a �xed time of observation, Nt = n, lends easier evaluation of the weighted sum
in (2.3). The inter-play of this conditional distribution and the asymptotic approximation
of convolution-equivalent tails entails the �rst main result in this paper:

Theorem 3.1. In the compound Poisson model with constant force of interest � > 0, if
F 2 S() for some  � 0 then it holds for every 0 < t <1 that

(3.3)  (x; t) � � exp

�
�

�

Z 

e��t

EesX � 1
s

ds� c

�

�Z t

0

F
�
xe�s

�
ds:

It is tempting to plug in t =1 on both sides of (3.3) to get an asymptotic expression for
the in�nite-time absolute ruin probability. But in general, the repeated limits with respect
to x!1 and t!1 of the ratio of both sides of (3.3) may depend on the order of limits,
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yielding di¤erent results. It turns out, however, that this intuitive plug-in result in the
compound Poisson model is valid as a consequence of our next main result for the general
renewal risk model.

Theorem 3.2. In the renewal risk model with constant force of interest � > 0, if F 2
S() \R�1 for some  � 0 then

EeS1 <1; where S1 =

1X
k=1

Xk

kY
i=1

Yi

and

(3.4)  (x;1) � EeS1 Pr (XY > x+ c=�) ;

where Y = e��� is the generic random variable of the sequence fYk = e���k ; k = 1; 2; : : :g.

The expectation EeS1 appearing in relation (3.4) is generally unknown for  > 0. How-
ever, if we go back to the compound Poisson model then this quantity is explicitly available,
as shown in the following last main result of the paper:

Theorem 3.3. In the compound Poisson model with constant force of interest � > 0, if
F 2 S() \R�1 for some  � 0 then it holds that

(3.5)  (x;1) � � exp

�
�

�

Z 

0

EesX � 1
s

ds� c

�

�Z 1

0

F
�
xe�s

�
ds:

As remarked above, relation (3.5) corresponds to relation (3.3) with t =1.

4. Proofs

4.1. Lemmas.

Lemma 4.1. Let F , F1, and F2 be three distributions on [0;1) such that F 2 S () and
that the limit li = limx!1 Fi(x)=F (x) exists and is �nite for i = 1; 2. Then

lim
x!1

F1 � F2(x)
F (x)

= l1

Z 1

0�
eyF2(dy) + l2

Z 1

0�
eyF1(dy):

Proof. See [21, Proposition 2]. �

Lemma 4.2. Let F1 and F2 be two distributions on [0;1). If F1 2 S (), F2 2 L (), and
F2(x) = O

�
F1(x)

�
, then F1 � F2 2 S () and

F1 � F2(x) � F1(x)

Z 1

0�
eyF2(dy) + F2(x)

Z 1

0�
eyF1(dy):

Proof. See [6, Corollary 1]. �
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Lemma 4.3. Let fNt; t � 0g be a Poisson process with occurrence times Tk, k = 1; 2; : : : and
let fXk; k = 1; 2; : : :g be a sequence of i.i.d. random variables independent of fNt; t � 0g.
Given Nt = n for arbitrarily �xed t > 0 and n = 1; 2; : : :, the sum

Pn
k=1Xke

��Tk is equal
in distribution to the sum

Pn
k=1Xke

��tUk , where the random vector (U1; : : : ; Un) consists
of i.i.d. random variables uniformly distributed on (0; 1) and is independent of the vector
(X1; : : : ; Xn).

Proof. According to [22, Theorem 2.3.1], the conditional distribution of (T1; : : : ; Tn) given
Nt = n is the same as the distribution of the random vector (tU(1;n); : : : ; tU(n;n)), where U(1;n),
: : :, U(n;n) denote the order statistics of the n random variables U1, : : :, Un. Furthermore,
since in the sum

Pn
k=1Xke

��tU(k;n) the vector (X1; : : : ; Xn) consists of i.i.d. random variables
and is independent of (U(1;n); : : : ; U(n;n)), by rearrangement this sum is equal in distribution
to the sum

Pn
k=1Xke

��tUk . �

Lemma 4.4. For two independent nonnegative random variables X and Y , if X follows a
distribution F 2 S() and Y follows a distribution with an upper endpoint

1 = sup fy : Pr(Y � y) < 1g ;

then the product XY still follows a distribution in the class S().

Proof. See [26, Theorem 1.1]. �

Lemma 4.5. Let F be a distribution on [0;1). If F 2 S(), then
(i) it holds for each �xed n = 1; 2; : : : that

(4.1) F n�(x) � n

�Z 1

0�
eyF (dy)

�n�1
F (x);

(ii) for every " > 0 there exists some constant C" > 0 such that the inequality

(4.2)
F n�(x)

F (x)
� C"

�Z 1

0�
eyF (dy) + "

�n
holds for all n = 1; 2; : : : and all x.

Proof. See [5, page 665]. �

4.2. Proof of Theorem 3.1. Starting with (2.3) and conditioning on Nt, we have

 (x; t) =

1X
n=1

Pr

 
nX
k=1

Xke
��Tk > x+

c

�

��� Nt = n

!
Pr (Nt = n) :

By means of Lemma 4.3, we can have a sequence of i.i.d. random variables, fU;Uk; k =
1; 2; : : :g, uniformly distributed on the interval (0; 1) and independent of fX;Xk; k = 1; 2; : : :g,
such that

 (x; t) =

1X
n=1

Pr

 
nX
k=1

Xke
��tUk > x+

c

�

!
Pr (Nt = n) :
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By Lemma 4.4, the products Xke
��tUk ; k = 1; 2; : : :, are i.i.d. with common distribution

belonging to the class S(). Therefore by Lemma 4.5(i), it holds for each n = 1; 2; : : : that

Pr

 
nX
k=1

Xke
��tUk > x+

c

�

!
� ne�c=�

�
EeXe

��tU
�n�1

Pr
�
Xe��tU > x

�
:

Applying the dominated convergence theorem justi�ed by Lemma 4.5(ii), we obtain

 (x; t) � e�c=�
1X
n=1

n
�
EeXe

��tU
�n�1

Pr
�
Xe��tU > x

� (�t)n
n!

e��t

= �te�c=� exp
n
�t
�
EeXe

��tU � 1
�o
Pr
�
Xe��tU > x

�
= � exp

�
�

�

Z 

e��t

EesX � 1
s

ds� c

�

�Z t

0

F
�
xe�s

�
ds:

This leads to (3.3).

4.3. Proof of Theorem 3.2. Our proof below is motivated by an idea of Grey [15] in his
proof of Theorem 1. Let Z be a random variable with distribution F and independent of
f(X; Y ); (Xk; Yk); k = 1; 2; : : :g, and denote the distribution of Y = e��� by G, which is
supported on (0; 1). Then,

Pr ((Z +X)Y > x) =

Z 1

0

Pr (Z +X > x=y)G(dy)

� 2EeX
Z 1

0

F (x=y)G(dy)

= o(1)F (x);

where the second step is due to F 2 S() and the last step due to F 2 R�1. Therefore,
there is some x0 > 0 large enough such that, for all x > x0,

(4.3) Pr ((Z +X)Y > x) � F (x):

Construct a new conditional random variable X� = (ZjZ > x0), whose distribution still
belongs to the intersection S() \R�1. Then, it is easy to see that

(4.4) (X� +X)Y
d

� X�;

or, equivalently, for all x,

(4.5) Pr ((X� +X)Y > x) � Pr (Z > xjZ > x0) :
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Actually, when x � x0 relation (4.5) is trivial as the right-hand side becomes equal to 1,
while when x > x0, by (4.3),

Pr ((X� +X)Y > x) =
Pr ((Z +X)Y > x; Z > x0)

Pr (Z > x0)

� Pr ((Z +X)Y > x)

Pr (Z > x0)

� Pr (Z > x)

Pr (Z > x0)

= Pr (Z > xjZ > x0) :

Thus, relation (4.5) always holds. Relation (4.4) leads to

(X� +X1)Y1
d

� X�; (X� +X2)Y2
d

� X�:

It follows that

((X� +X2)Y2 +X1)Y1
d

� X�:

Hence, ST1 = X1Y1
d

� X� and ST2 = X1Y1 + X2Y2Y1
d

� X�. Repeating these iterations we

obtain STn
d

� X� for every n = 1; 2; : : :. Letting n!1 yields

S1
d

� X�;

which implies, as a by-product, that EeS1 < 1. Let ~S1 be a copy of S1 independent of
f(Xk; Yk); k = 1; 2; : : :g. Then, for every n = 1; 2; : : :,

S1
d
= STn + ~S1

nY
i=1

Yi:

Therefore,

S1
d

� STn +X�
nY
i=1

Yi:

From this we obtain

Pr (S1 > x) � Pr
 
STn +X�

nY
i=1

Yi > x

!

=

Z 1

0

Pr

 
X1 +

nX
k=2

Xk

kY
i=2

Yi +X�
nY
i=2

Yi >
x

y

!
G(dy):(4.6)
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Let n � 2 in (4.6). By Lemma 4.2,

Pr

 
nX
k=2

Xk

kY
i=2

Yi +X�
nY
i=2

Yi > x

!

� Pr
  

nX
k=2

Xk +X�

!
Y2 > x

!

=

Z 1

0

Pr

 
nX
k=2

Xk +X� >
x

y

!
G(dy)

�
 
EeX

�
(n� 1)

�
EeX

�n�2
+

�
EeX

�n�1
F (x0)

!Z 1

0

Pr (X > x=y)G(dy)

= o(1)F (x);

where the last step is due to F 2 R�1. Now we apply Lemma 4.1 to continue the derivation
of (4.6) to �nd that

Pr (S1 > x) .
Z 1

0

Ee(
Pn
k=2Xk

Qk
i=2 Yi+X

�Qn
i=2 Yi) Pr (X1 > x=y)G(dy)

= Ee(
Pn
k=2Xk

Qk
i=2 Yi+X

�Qn
i=2 Yi) Pr (XY > x) ;

or, equivalently,

lim sup
x!1

Pr (S1 > x)

Pr (XY > x)
� Ee(

Pn
k=2Xk

Qk
i=2 Yi+X

�Qn
i=2 Yi):

Clearly,
Pn

k=2Xk

Qk
i=2 Yi + X�Qn

i=2 Yi converges to S1 in distribution as n ! 1. There-
fore, by the dominated convergence theorem, the expectation on the right-hand side above
converges to EeS1 as n!1. This establishes the asymptotic upper bound as

lim sup
x!1

Pr (S1 > x)

Pr (XY > x)
� EeS1 :

It is easier to construct the corresponding asymptotic lower bound. Similarly as above,

Pr (S1 > x) � Pr (STn > x)

=

Z 1

0

Pr

 
X1 +

nX
k=2

Xk

kY
i=2

Yi >
x

y

!
G(dy)

� Ee(
Pn
k=2Xk

Qk
i=2 Yi) Pr (XY > x) ;

or, equivalently,

lim inf
x!1

Pr (S1 > x)

Pr (XY > x)
� Ee(

Pn
k=2Xk

Qk
i=2 Yi):
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Clearly,
Pn

k=2Xk

Qk
i=2 Yi converges to S1 in distribution as n !1. Therefore, the expec-

tation on the right-hand side above converges to EeS1 as n!1 too. We have

lim inf
x!1

Pr (S1 > x)

Pr (XY > x)
� EeS1 :

This ends the proof of Theorem 3.2.

4.4. Proof of Theorem 3.3. We �rst calculate the factor EeS1 of (3.4) in the framework
of the compound Poisson model. As in the proof of Theorem 3.1, applying Lemma 4.3 to

St =

NtX
k=1

Xk

kY
i=1

Yi =
NtX
k=1

Xke
��Tk

we have a sequence of i.i.d. random variables, fU;Uk; k = 1; 2; : : :g, uniformly distributed on
the interval (0; 1) and independent of fX;Xk; k = 1; 2; : : :g, such that

EeSt =
1X
n=0

E
�
e
PNt
k=1Xke

��Tk
��� Nt = n

�
Pr (Nt = n)

=
1X
n=0

E
�
e
Pn
k=1Xke

��tUk
�
Pr (Nt = n)

=
1X
n=0

�
EeXe

��tU
�n (�t)n

n!
e��t

= exp
n
�t
�
EeXe

��tU � 1
�o

:

It follows that

EeS1 = lim
t!1

EeSt

= lim
t!1

exp
n
�t
�
EeXe

��tU � 1
�o

= exp

�
lim
t!1

�

Z t

0

�
EeXe

��s � 1
�
ds

�
= exp

�
�

�

Z 

0

EesX � 1
s

ds

�
:(4.7)

We then calculate the probability Pr (XY > x+ c=�) in (3.4). Since F 2 R�1, by [26,
Lemma 3.1(i)] it holds for every " > 0 that

Pr (XY > x) �
Z "

0

F
�
xe�s

�
�e��sds

and that Z "

0

F
�
xe�s

�
ds �

Z 1

0

F
�
xe�s

�
ds

By the arbitrariness of " > 0, it follows that

Pr (XY > x) � �

Z 1

0

F
�
xe�s

�
ds:
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Note that the distribution of XY still belongs to the class S() according to Lemma 4.4.
Hence,

(4.8) Pr (XY > x+ c=�) � e�c=� Pr (XY > x) � �e�c=�
Z 1

0

F
�
xe�s

�
ds:

Plugging (4.7) and (4.8) into (3.4) yields relation (3.5).

Acknowledgments. The authors would like to thank the anonymous referee for his/her
careful reading of an earlier version of this paper.
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