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Brief Papers

Fast ML Estimation for the Mixture of Factor Analyzers
via an ECM Algorithm

Jian-Hua Zhao and Philip L. H. Yu

Abstract—In this brief, we propose a fast expectation conditional max-
imization (ECM) algorithm for maximum-likelihood (ML) estimation of
mixtures of factor analyzers (MFA). Unlike the existing expectation–max-
imization (EM) algorithms such as the EM in Ghahramani and Hinton,
1996, and the alternating ECM (AECM) in McLachlan and Peel, 2003,
where the missing data contains component–indicator vectors as well as la-
tent factors, the missing data in our ECM consists of component–indicator
vectors only. The novelty of our algorithm is that closed-form expressions in
all conditional maximization (CM) steps are obtained explicitly, instead of
resorting to numerical optimization methods. As revealed by experiments,
the convergence of our ECM is substantially faster than EM and AECM
regardless of whether assessed by central processing unit (CPU) time or
number of iterations.

Index Terms—Alternating expectation conditional maximization
(AECM), expectation conditional maximization (ECM), expectation
maximization (EM), maximum-likelihood estimation (MLE), mixture of
factor analyzers (MFA).

I. INTRODUCTION

Mixture factor analysis (MFA) models [1]–[3] and mixture prob-
abilistic principal component analysis (MPCA) models [4] are two
widely applied in recent years mixture models (MM). This can be
attributed to their appealing capability to elegantly perform clustering
and dimensionality reduction simultaneously and their tempting flex-
ibility in density estimation for high-dimensional data to provide an
appropriate tradeoff between usually overfitting full covariance MM
and underfitting diagonal (spherical) MM. Despite their similarity,
MPCA searches for directions with maximal variances while MFA
looks for directions with maximal interesting correlations within each
cluster. If the explained correlation is the main concern, MFA is a
better choice and vice versa.

Expectation maximization (EM) [5] has been suggested for fitting
MFA [1], which is easy to implement and converges stably since
its M-step is in closed form. However, its missing data contains
both component–indicator vectors and latent factor vectors. Given
so much missing information is introduced, convergence of the EM
for MFA can be painfully slow due to the well-known fact that the
rate of convergence of EM is determined by the portion of missing
information in complete data [5]. To accelerate a basic EM algorithm,
perhaps the most natural consideration is to decrease the amount of
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missing data. Unfortunately, it is typically much more difficult to
obtain the closed-form expressions in the resulting (C)M-steps and
thus numerical methods with less simplicity or stability often have
to be employed. One compromise strategy aiming to attain a suitable
tradeoff between simplicity or stability and convergence is to decrease
the amount of missing data only in some CM-steps, e.g., alternating
expectation conditional maximization (AECM) [6]. An application of
AECM to MFA with all its CM-steps in closed form is given in [2].
Similarly, for MPCA, a corresponding algorithm to AECM for MFA
is presented in [4]. Nevertheless, [4] further provides a much more
efficient algorithm, which can make use of eigendecompostion of
local covariance matrices to determine loading matrices and isotropic
noise variances in each iteration. This algorithm is an ECM algorithm
[6] in which only component–indicator vectors are treated as missing
data in the E-step followed by a sequence of CM expected complete
data log-likelihood (CMQ) steps. Its high efficiency can be ascribed to
the fact that all its CM-steps are in closed form.

However, to our knowledge, such an appealing ECM is vacant for
MFA as it is a challenging problem to obtain closed-form (C)M-steps,
and hence, at present, the EM [1] and the AECM [2] are two com-
monly used algorithms for fitting MFA. In this brief, we will propose
an ECM algorithm for MFA to fill up this vacancy. In Section II, we
first describe a CM algorithm for FA with all its CM-steps in closed
form, which we recently proposed in [7]. In Section III, we extend the
work to MFA model. In our ECM, factor loading matrices can be (indi-
rectly) obtained via eigendecompostion of normalized local covariance
matrices. In Section IV, we conduct experiments to compare the per-
formance among the EM, the AECM, and our proposed ECM.

II. FA MODEL AND A CM ALGORITHM

A. FA Model

Suppose that each �-dimensional data vector �� in the i.i.d sample
� � ����

�

��� follows a �-factor model

�� � ��� � ���� ����
�� � � ��� ��� ���� � � ��������

(1)

where ��� is a �-dimensional mean vector, � is a � � � factor
loading matrix, �� is a �-dimensional latent factor vector, and
��� � ���	���� ��� 
 
 
 � ��� is a positive diagonal matrix. We use � to
denote an unit matrix whose dimension should be apparent from the
context.

Under model (1),�� � � ���������, where��� ������� . The global
maximal estimation [maximum likelihood (ML)] of ��� in FA model is
trivially the sample mean ��. Thus, in this section, without loss of gener-
ality, we will set��� equal to ��. Then, up to a constant, the log-likelihood
function of ��� � ������� is

������ � �
�


��� ������ ����������� (2)

where � is the sample covariance matrix given by
� � ��	�� �

���
��� � ������ � ���� 
 It is well known

that there is no closed-form analytic solution if we take the
derivative of log-likelihood function � in (2) with respect to ���,
and hence, iterative procedures have to be employed for fitting FA.
EM has been suggested in [8]. However, its convergence may be
impractically slow, especially in low-noise case [9]. In the literature,
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a quasi-Newton–Raphson algorithm recommended in [10] has been
found empirically to converge faster than EM and has become the
standard algorithm for fitting FA so far. In Section II-B, we develop
a more tempting CM algorithm that consists of a sequence of CM
log-likelihood steps, as follows: 1) its convergence is quadratic and
monotone [11] (convergence of EM is simply linear) and 2) like EM
for FA, it is easy to implement (the method in [10] is not the case).

B. The CM Algorithm

Let ������ � ������
���
� � �

���
� � � � � � �

���
� 	 and ���

���
�

������
�����
� � � � � � �

�����
��� � ��� �

���
���� � � � � �

���
� 	. Given an initial ������,

the CM algorithm recursively performs the following two steps for
� � 
:

• CM-step 1: Given ������, maximize � with respect to (w.r.t.) �.
• CM-step 2: Given ������ and ���

���
� , maximize � w.r.t. ��, for

� � �� �� � � � � �.
Due to space limitations, here we simply give a sketch of the above two
CM-steps. Further technical details can be found in our work [7].

1) The Maximization in CM-Step 1: Given ������, premultiply by
����������� on both sides of (1). Define � ������������ and ��
�������������� � ��	. Then, the FA model (1) becomes

�� � ��� � ����

�� � � ��� �	� ���� � � ��� �	�
(3)

Model (3) appears very similar to the probabilistic PCA (PPCA)
model [4], since both are isotropic noise models. The only difference
is that isotropic noise variance in model (3) is known and equal
to 1. Define � �����������������������. Let ������	 denote the
eigenvalue–eigenvector pairs of � so that �� � �� � � � � � ��. It
can be shown that the closed-form expression of �, which globally
maximizes ����������	, is given by

� � 	� ����� � �	���
� (4)

Here, 	� is defined as follows. If �� 
 �, then 	� � 	; if
�� � �, 	� is the unique integer satisfying �� 
 � � �� ��.
���� � �������� ��� � � � � �� 	, 	� � ������� � � � ��� 	, and 
 can
be arbitrarily selected except for the requirement of 

� � �. If
desired, ������ can be obtained by setting ������ � �����������.

2) The Maximization in CM-Step 2: Because ������������
���
� 	 is a

function of ��, it is written as ����	 for simplicity. From the model
assumption that ��� is positive, we can pick an arbitrarily very small
number � 
 
 and assume �� � �. Let �� be the �th column of the
� � � identity matrix and

�� �

���

���

�
�����
� ���

�

� � ����
�
� (5)

Let � be the th column vector of���
� and let ��� stand for the th

element of ���
� . Then, the closed-form expression of �� is given by

(see [7] for the proof)

�
�����
� � ��� �

��
�� 

�
� �� � ��� � � �

���
� � � (6)

and the required �
�����
� in (5) is

�
�����
� � �

�����
� ��

���
� 	�� � �� (7)

Note (6) can always be computed as from (6) ������
� � � and from

(7) ������� 
 ��,  � �� � � � � � � �, and thus ���
� (see (5)) can be

performed. Because it has been shown in [7] that ����	 is unimodal in
the interval�� � � and it reaches its maximal point at������

� , using the
general property of (E)CM proved in [6], the above CM is guaranteed to

converge a stationary point of �.���
� � � � �� � � � � � can be recursively

computed as detailed in Appendix I.

III. MFA MODEL AND AN ECM ALGORITHM

A. The MFA Model

The MFA model is a mixture of � FA submodels with mixture pro-
portions �	 ’s. In detail, first pick a component label � according to the
multinomial distribution ���	 � �	 � � � �� � � � �� with the constraint



	�� �	 � �. Then, given label �, generate �� from a 		 -factor FA

model with parameter ���	 � ����	 ��	 ����		

���� � �	��	 � ���	 � ����	

��	 � � ��� �	� ����	 � � ������		
(8)

where���	 is a �-dimensional mean vector;�	 is a ��		 factor loading
matrix; ��	 is a 		 -dimensional factor vector, and ���	 is a positive di-
agonal matrix.

Before we propose our ECM in Section III-D, for completeness,
we briefly review the EM [1] in Section III-B and the AECM [2] in
Section III-C and give an insight to their speed of convergence in
Section III-E.

B. The EM Algorithm

Let � � 	��

�
��� and � � 	��


�
���, where �� �

����� � � � � ��
	 and ��	 is an indicator variable taking the value
1 if �� comes from the �th component, and 0 otherwise. In the EM
for MFA, latent label vectors and latent factor vectors are treated as
missing data and the augmented complete data is ������	. The
corresponding complete data log likelihood is

������������	 �
�

���




	��

��	 ��	�	�����������		


where ��� � ��	 � ���	 � � � �� � � � ��	. The EM performs an E-step fol-
lowed by a M-step.

• E-step: Compute the expected �� given � and ������

����������
���	 � ������ ���

���	� (9)

• M-step: Maximize �� w.r.t. ���.

C. The AECM Algorithm

Unlike the EM, the AECM for MFA consists of two cycles: cycle 1
followed by cycle 2, each of which has its own E-step and CM-step. Its
salient feature is that the augmented complete data is allowed to vary
between E-steps. Specifically, the complete data in cycle 1 is ����	
and its log-likelihood is

����������	 �
�

���




	��
��	 ��	�	��������		
�

• E-step of cycle 1: Compute the expected �� given � and ������

����������
���	 �




	��
�	 ���	 ����

��� (10)

where

�	 ���	 ����
��� �

�

���
��	����

���	 ��	�	��������		
 (11)

depending only on ��	 � ���		 of component �.
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Here, �������
���� is the posterior possibility of data point �� be-

longing to component � given ������

�������
����

�
���
� � ������

���
�

�

���

�
���
� � ������

���
�

� (12)

• CM-step of cycle 1: Maximize �� w.r.t. �� ’s and ���� ’s given
��

���
� 	���

���
� �’s under the restriction �

��� �� � �, which is
easy and similar to that in conventional Gaussian mixture model,
leading to the following updating equations:

�
�����
� �

�




�

���
�������

����	

���
�����
� �

�


�
�����
�

�

���
�������

������� (13)

In cycle 2, the complete data is ��	�	�� and its log-likelihood
is ��, which is the same as that in the EM given in Section III-B.

• E-step of cycle 2: Compute the expected �� given � and
��

�����
� 	 ���

�����
� 	�

���
� 	���

���
� �’s.

• CM-step of cycle 2: Maximize �� w.r.t. �� ’s and ���� ’s.
Compared with the EM, the AECM utilizes less data augmentation
��	�� to update ���� ’s, but the step to update �� ’s and ���� ’s still re-
quires larger one ��	�	�� as in the EM.

D. The ECM Algorithm

Rather than turning to larger data augmentation ��	�	�� as in the
AECM, our ECM persists in utilizing the smaller one ��	�� even if
in the step to update �� ’s and ���� ’s as we find the maximization of
�� w.r.t. �� ’s or ���� ’s can be solved analytically. In detail, the ECM
performs an E-step followed by three successive CM-steps.

• E-step: The same as the E-step of cycle 1 in AECM.
• CM-step 1: The same as the CM-step of cycle 1 in AECM.
• CM-step 2: Maximize �� w.r.t. �� ’s given

��
�����
� 	 ���

�����
� 	���

���
� �’s.

• CM-step 3: Maximize �� w.r.t. ���� ’s given
��

�����
� 	 ���

�����
� 	�

�����
� �’s.

Obviously, maximizing �� w.r.t. �� or ���� equals to maximizing ��

w.r.t. �� or ���� . Corresponding to the covariance matrix � in FA, we
define the local covariance matrix for MFA

��
�


�
�����
�

�

���

�������
���� �� � ���

�����
� �� � ���

�����
�

�

�

The expected log-likelihood of �th submodel �� up to a constant is
now given by

����� 	����� � �

�

�����
�

�
�� �			� �
 �� 			��� �� (14)

where 			� � ���� 
���� . Clearly, (14) is similar to (2), and therefore,
the procedure for single FA model developed in Section II-B can be

directly used here. Define �� ���
���
� �����

���
� . Let ����	����

be its eigenvalue–eigenvector pair in the order ��� � ��� �    �
��	. Then, the solution for CM-step 2 is given by

�
�����
� � �� ����� � 	�

�
� �

Here, ��� � �
��� �����  �� (���� is an indicator function), �� �

����	���	    	��� �, and ���� � ��������	 ���	    	 ��� �.
For CM-step 3, define


� �
���

���
�
�����
�� ���

�
� 
 	
�

�����
� �

�����
�

�

�

Then, we have

�
�����
�� ���� ����� �

�
� ���� � ��� 	 ���

���
� ��� � � (15)

�
�����
�� � �

�����
�� 
 � �

���
�� �

E. On Speed of Convergence

In this section, we compare the speed of the EM with our pro-
posed ECM. The relationship with the AECM can be obtained
similarly. Let ���	 be the observed data information matrix. Denote
���� ��	�	�� and ���� ��	�� and their corresponding
complete data information matrices �
��� and �
���. These infor-
mation matrices are closely related to the speeds of convergence or,
more exactly, matrix speeds of convergence of EM, AECM, and ECM.
Meng and Rubin [12] show that the speed of the EM is given by

speed of EM � ���	�
��

��� (16)

“the fractions of observed information” in data augmentation ����.
Let �
��� be the upper block part of �
��� with respect to the partition
of parameters used in three CM steps, i.e., [��� 	 �����’s, �� ’s, ���� ’s].
From [11, eq. (15)], we have

speed of ECM � ���	�
��

��� (17)

which is called “the sequential fractions of observed information” [11]
in data augmentation ����. By (16) and (17), we have

speed of ECM � speed of EM � �
����
��

��� (18)

where �
����
��

��� can be called “the sequential fractions of relatively

observed information” in data augmentation ���� because ���� is
nested in ����. Therefore, the ECM for MFA converges typically
faster than the EM.

IV. EXPERIMENTS

The theoretical analysis in Section III-E gives us some insight into
why the ECM has faster convergence. However, the analysis does not
tell us to what extent the ECM will be faster than the EM. In addition,
because the ECM requires more computation (see Table IV), we are
also interested in seeing whether its performance in central processing
unit (CPU) time deserves its higher computation cost. We hence empir-
ically examine the performance of EM, AECM ,and ECM in terms of
CPU time and number of iterations using synthetic and real data. All
computations are carried out by Matlab. For EM, we use the code,1

which implements the algorithm described in [1]. Unless otherwise
stated, we use the following in the experiments.

• Initialization: Perform �-means followed by deciding ������ by
PCA, which is suggested in [2] for AECM.

• Convergence criterion: Stop algorithms if �  ��� or �� �
������������ � ���� with ���� � ���� and the maximal number
of iterations: ��� � ����.

• Constraint: � � �����.

1http://lear.inrialpes.fr/~verbeek/code/MoFA.tar.gz
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Fig. 1. (a) Artificial data. (b)–(d) Typical evolvements of log-likelihood � by EM (dashed line), AECM (dotted line), and ECM (solid line) when the data set is
fitted by MFA models with different� and �. The vertical line with the corresponding line type signals the number of iterations that first meets ��� � �� .

TABLE I
AVERAGED CPU TIME SHOWN IN SECONDS AND NUMBER

OF ITERATIONS FOR CONVERGENCE

A. Artificial Data

An artificial data set of� � ���� points in ��� � ��� is generated
from an MFA model with � � �, �� � �, � � 	� 
 
 
 �� , and

���� � 	������ �� � ������ ��� ���� � ��������	� ���

except that ��� � 	������	� 	�� 	 � �� 	�� ��� 
� �
	

�
�

Here, ������ � is an ��  random number matrix drawn from a uni-
form distribution on the unit interval. The first 2-D view of the data
is shown in Fig. 1(a). We fit the data set using different MFA models:
Model I �� � �� � � ��, Model II �� � �� � � ��, and Model III
�� � �� � � ��. Fig. 1(b)–(d) plots the typical evolution of log-likeli-
hood �. All algorithms are run ten times using different initializations
from �-means but the same initialization is used for all algorithms in
a single run. Table I shows the averaged CPU time and number of it-
erations. When the convergence criterion is met, ECM can generally
obtain higher final � than EM and AECM.

B. Real Data

As a dimensionality reduction tool, an MFA model can be used
to perform image compression. In this brief, we focus on comparing
the performance of an MFA model trained by EM, AECM, and
ECM, rather than the performance between an MFA model and other

TABLE II
AVERAGED REQUIRED CPU TIME (IN SECONDS) AND NUMBER OF ITERATIONS

TABLE III
AVERAGED MSE [MEAN (STD.)] AND LOG-LIKELIHOOD ��� FROM TEN RUNS.
CONVERGENCE CRITERION IS DENOTED BY CC ���� � �� ��� � �� �

competing models such as PCA and MPCA for this task. We, in
general, follow the compression algorithm detailed in [13] to conduct
an image compression experiment, using EM, AECM, and ECM
respectively, but in our implementation, the component label of data
point � is decided by maximizing posterior probability ������ instead
of minimizing reconstruction error.

A 512� 512 gray image “Lena” is subdivided into ��� �����
nonoverlapping blocks of 8� 8 pixels and each block is taken as a
���� � � ��-dimensional random vector �. Then, the obtained data
is fitted by different common ��� �� MFA models: Model I �� � ��
and Model II �� � ��. Fig. 2(a) and (b) plots the typical convergence
curve of � for Models I and II. Table II lists the averaged required CPU
time and number of iterations for convergence. When the convergence
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Fig. 2. Typical evolvements of log-likelihood � by EM (dashed line), AECM (dotted line), and ECM (solid line). The vertical line with the corresponding line
type signals the number of iterations that first meets ��� � �� .

TABLE IV
COMPUTATIONAL COST OF DIFFERENT ALGORITHMS FOR EACH COMPONENT

criterion is satisfied, ECM can usually obtain higher final � than EM
and AECM.

To measure estimators from EM, AECM, and ECM, besides
log-likelihood, we calculate mean squared error (MSE)2 of the recon-
struction image. Table III shows the averaged MSE and negative log-
likelihood from ten runs for ����, and particularly, for ���� � ����.
Because the slow convergence suffered by EM and AECM (see Figs. 1
and 2), one usually chooses to stop the algorithms early or to use a
loose convergence criterion. The use of ���� here aims to check what
cost it may bring if we do so. It can be observed from Table III that: 1)
both EM and AECM are worse than ECM in terms of averaged MSE
and log-likelihood whether ���� or ���� is used and 2) EM and AECM
in ���� have larger MSE and lower log-likelihood than those in ����.
Unlike EM and AECM, the MSEs and log-likelihood values of ECM
in ���� and ���� are almost the same. These observations imply that
ECM provides a much faster and more accurate estimator than EM
and AECM.

V. CONCLUDING REMARKS

For fitting MFA, we have proposed an ECM algorithm, which, un-
like existing EM and AECM, treats the component–indicator vectors as
missing data only. In our empirical studies, we focus on the case that
sample size � is large relative to dimension �. In this case, our ECM
is computationally much more efficient than EM and AECM and thus
our proposed ECM is very useful for ML estimation of MFA. It would
be interesting to investigate more carefully why our ECM performs so
much better than the other EMs. Notice that when � is small relative
to � and the number of factors is extremely small (e.g., face recogni-
tion), our proposed ECM will be costly both in time and space and EM
and AECM could become computationally more efficient, in particular,
when there is no rigorous requirement on the accuracy of estimators.

2��	 � 
� � �� � ���

APPENDIX I
RECURSIVE COMPUTATION OF THE MATRIX ����

Proposition 1: Suppose � � �, � is a real number such that
� � �����

��
�� �� �. Then

����
�

� ��
��

� �
�� �

����
���

�

��
��

� � �����
����

� (19)

Proposition 1 can be viewed as a special case of a gen-
eralized Woodbury’s formula [14, p. 90]. From (5), we have
�� � ���

������������	� and the following recursive relation:

���� � �
�����
� ���

�

� ���� � � �� 
� � � � � �� �� (20)

Because �� � � and �
�����
� � �� as detailed in Section II-B, from

(20), we have �� � �� � � �� � � � � �. Furthermore, it can be shown in
[7] that ������

� � �� guarantees � � �
�����
� �

�

��
��
� �� � �. We hence

can use Proposition 1 and obtain

�
��
��� � �

��
� � �

�����
� ���

�
� � � �

�����
� ���

��

� (21)

Thus, ���
� can be recursively computed. The first one is computed by

using (4)

�
��
� � �� �����

� � � ��

� � �� (22)

Note that (4) and (22) simply require at most the first 	 eigenvalues and
eigenvectors of �.

APPENDIX II
COMPUTATIONAL COMPLEXITY

We analyze the cost of ECM for each component 
 in each iteration.
To obtain posterior probability ��� in E-step, it is required from (12)
to evaluate probability density ��������, cost of which is��	 � ���.
Cost of E-step is, therefore, ���	 � ���. For CM-step 1, from (13),
the cost is ����. For CM-step 2, it is required to calculate local co-
variance matrix�� , whose cost is�����, and its eigendecomposition,
cost of which is ����. For CM-step 3, as �� has been calculated, the
main computation in each step of � substeps is in (21) and (15), which
is ����, and hence, the total cost of � steps is ����. For comparison,
Table IV summarizes the computational cost for EM, AECM, and ECM.
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A-Optimality Orthogonal Forward Regression Algorithm
Using Branch and Bound

Xia Hong, Sheng Chen, and Chris J. Harris

Abstract—In this brief, we propose an orthogonal forward regression
(OFR) algorithm based on the principles of the branch and bound (BB) and
A-optimality experimental design. At each forward regression step, each
candidate from a pool of candidate regressors, referred to as , is evaluated
in turn with three possible decisions: 1) one of these is selected and included
into the model; 2) some of these remain in for evaluation in the next for-
ward regression step; and 3) the rest are permanently eliminated from .
Based on the BB principle in combination with an A-optimality composite
cost function for model structure determination, a simple adaptive diagnos-
tics test is proposed to determine the decision boundary between 2) and 3).
As such the proposed algorithm can significantly reduce the computational
cost in the A-optimality OFR algorithm. Numerical examples are used to
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Branch and bound (BB), experimental design, forward re-
gression, structure identification.

I. INTRODUCTION

A large class of nonlinear models and neural networks can be classi-
fied as a linear-in-the-parameters model [1], [2]. The linear-in-the-pa-
rameters models are well structured for adaptive learning, have prov-
able learning and convergence conditions, have the capability of par-
allel processing, and have clear applications in many engineering appli-
cations [3]–[5]. A basic principle in practical nonlinear data modeling
is the parsimonious principle that ensures the smallest possible model
for the explanation of the observational data. For the linear-in-the-pa-
rameters models, the forward orthogonal least squares (OLS) algorithm
efficiently constructs parsimonious models [6], [7], and has been a pop-
ular tool in associative neural networks such as fuzzy/neurofuzzy sys-
tems [8], [9] and wavelet neural networks [10], [11]. The algorithm has
also been utilized in a wide range of engineering applications, e.g., air-
craft gas turbine modeling [12], fuzzy control of multiple-input–mul-
tiple-output (MIMO) nonlinear systems [13], power system control
[14], and fault detection [15].

In optimum experimental design [16], the model adequacy is eval-
uated by design criteria that are statistical measures of goodness of
experimental designs by virtue of design efficiency and experimental
effort. Quantitatively, model adequacy is measured as function of the
eigenvalues of the design matrix. In order to produce a model with good
generalization capabilities, the A-optimality composite cost function
has been used as the model selection criterion in the A-optimality-based
orthogonal forward regression (OFR) algorithms [17].

Note that the nonlinear system identification is an intractable op-
timization problem of mixed integer programming that involves both
continuous variables, e.g., model parameters and discrete variables,
e.g., enumeration of possible model terms. The principle of branch-
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